bims-tofagi Biomed News
on Mitophagy
Issue of 2023‒12‒10
two papers selected by
Michele Frison, University of Cambridge and Aitor Martínez Zarate, Euskal Herriko Unibertsitatea



  1. PeerJ. 2023 ;11 e16497
      Abstract Background: Recent studies indicate that endometrial hypoxia plays a critical role in adenomyosis (AM) development. Mitochondria are extremely sensitive to hypoxic damage, which can result in both morphological and functional impairment. Mitophagy is a crucial mechanism for preserving mitochondrial quality by selectively removing damaged mitochondria, thus ensuring the proper functioning of the entire mitochondrial network. In response to hypoxia, PINK1 is activated as a regulator of mitophagy, but its role in AM requires further study.Objective: To explore the potential mechanism of mitophagy mediated by PINK1 in the pathogenesis of AM.
    Method: The study compared PINK1, Parkin, OPTIN, P62, and NDP52 protein expression levels in patients with or without AM using clinical specimens and an AM mouse model. Pathological changes were compared using HE staining. Immunofluorescence and western blot were used to detect protein expression levels. Endometrial stromal cells (ESC) were isolated and examined for mitophagy, protein expression level, and cell invasion ability.
    Results: Both the endometrial tissue from patients with AM and AM ESC displayed an upregulation of protein levels for PINK1, Parkin, OPTIN, P62, and NDP52 when compared with the control group. Then, HE staining confirmed the successful establishment of the AM mouse model. Moreover, the ultrastructural analysis using transmission electron microscopy revealed that AM mice's endometrial glandular epithelial and stromal cells had exhibited swollen, deformed, and reduced mitochondria along with an increase in the number of lysosomes and mitochondrial autophagosomes. The protein levels of PINK1, Parkin, OPTIN, P62, and NDP52 in uterine tissue from AM mice were noticeably increased, accompanied by a considerable upregulation of ROS levels compared to the control group. In addition, cells in the AM group showed remarkably elevated mitophagy and invasion potentials compared to the control group. In contrast, the cell invasion ability decreased following PINK1 knockdown using the RNA interference technique.
    Conclusion: The high levels of PINK1-mediated mitophagy have been found in AM. The upregulation in mitophagy contributes to mitochondrial damage, which may result in the abnormal invasion characteristic of AM.
    Keywords:  Adenomyosis; Mitophagy; PINK1
    DOI:  https://doi.org/10.7717/peerj.16497
  2. J Obes Metab Syndr. 2023 Dec 05.
      Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, is characterized by hepatic steatosis and metabolic dysfunction and is often associated with obesity and insulin resistance. Recent research indicates a rapid escalation in MASLD cases, with projections suggesting a doubling in the United States by 2030. This review focuses on the central role of mitochondria in the pathogenesis of MASLD and explores potential therapeutic interventions. Mitochondria are dynamic organelles that orchestrate hepatic energy production and metabolism and are critically involved in MASLD. Dysfunctional mitochondria contribute to lipid accumulation, inflammation, and liver fibrosis. Genetic associations further underscore the relationship between mitochondrial dynamics and MASLD susceptibility. Although U.S. Food and Drug Administration-approved treatments for MASLD remain elusive, ongoing clinical trials have highlighted promising strategies that target mitochondrial dysfunction, including vitamin E, metformin, and glucagon-like peptide-1 receptor agonists. In preclinical studies, novel therapeutics, including nicotinamide adenine dinucleotide+ precursors, urolithin A, spermidine, and mitoquinone, have shown beneficial effects, such as improving mitochondrial quality control, reducing oxidative stress, and ameliorating hepatic steatosis and inflammation. In conclusion, mitochondrial dysfunction is central to MASLD pathogenesis. The innovative mitochondria-targeted approaches discussed in this review offer a promising avenue for reducing the burden of MASLD and improving global quality of life.
    Keywords:  Metabolic dysfunction-associated steatotic liver disease; Mitochondria; Mitochondrial quality control
    DOI:  https://doi.org/10.7570/jomes23054