Environ Sci Pollut Res Int. 2022 Nov 15.
Analytical method for three natural estrogens (NEs) and their sulfate and glucuronide conjugates in waste and river waters using solid-phase extraction (SPE) coupled with ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) has been available, but problems including poor recovery exist. In order to solve these, some optimizations have been performed in this work. For sample preparation, both rinse and elution solutions were optimized, in which 6 mL of MeOH/water (1:9, v/v), MeOH/Ace/water (10:2:88, v/v/v), and MeOH/NH4OH/water (10:2:88, v/v/v) were determined as the rinse solution, while 6 mL of 2.0% NH4OH/MeOH was determined as the elution solution for conjugated NEs (C-NEs). For mobile phase, addition of NH4F could obviously enhance the signal response of the nine target compounds, and the optimized addition concentration was 0.5 mmol/L. The developed efficient method was validated and showed excellent linearity for each target compound (R2 > 0.998), low limit of quantifications (LOQs, 0.07-1.29 ng/L) in four different water matrices, and excellent recovery efficiencies of 81.0-116.1% in influent, effluent, ultra-pure, and river water samples with low relative standard deviations (RSDs, 0.6-13.6%). The optimized method was successfully applied to influent, effluent, and Pearl River water, among which three NEs were all detected, while five C-NEs were found in the influent, three C-NEs were detected in the effluent, and two C-NEs were found in the Pearl River water, indicating the wide distribution of NEs and C-NEs in different water environments. This work provided a reliable and efficient analytical method for simultaneous trace determination of NEs and C-NEs, which had satisfactory absolute recoveries with low RSDs, low LOQs, and time-saving for both analysis and nitrogen drying.
Keywords: Conjugated natural estrogens; Municipal wastewater; River water; Sensitivity; UPLC-MS/MS