bims-stacyt Biomed News
on Metabolism and the paracrine crosstalk between cancer and the organism
Issue of 2023–03–26
eight papers selected by
Cristina Muñoz Pinedo, L’Institut d’Investigació Biomèdica de Bellvitge



  1. bioRxiv. 2023 Mar 10. pii: 2023.03.09.531964. [Epub ahead of print]
      In brown adipose tissue (BAT), short-term cold exposure induces the integrated stress response (ISR) main effector, activating transcription factor 4 (ATF4), and its downstream target fibroblast growth factor 21 (FGF21). We recently demonstrated that induction of ATF4 in BAT in response to mitochondrial stress is required for thermoregulation, at least in part, via induction of FGF21. In the present study, we tested the hypothesis that Atf4 and Fgf21 induction in BAT are both required for BAT thermogenesis by generating mice selectively lacking either Atf4 (ATF4 BKO) or Fgf21 (FGF21 BKO) in UCP1-expressing adipocytes. After 3 days of cold exposure, core body temperature was significantly reduced in ad-libitum -fed ATF4 BKO mice, which correlated with Fgf21 downregulation in brown and beige adipocytes, and impaired browning of white adipose tissue (WAT). Conversely, although Fgf21 deletion in thermogenic adipocytes also reduced cold-induced browning of WAT, ad libitum -fed FGF21 BKO mice had preserved core body temperature after cold exposure. When cold-exposed under fasting conditions, both ATF4 BKO and FGF21 BKO mice had reduced cold tolerance. Mechanistically, ATF4 downregulation in thermogenic adipocytes decreased amino acid import and metabolism in BAT, likely contributing to impaired brown adipocyte thermogenic capacity under ad libitum-fed conditions. Thus, Atf4 regulates Fgf21 expression in thermogenic adipocytes during cold stress, which is required to mediate cold-induced browning of iWAT but is dispensable for thermoregulation in the fed state. In contrast, in the fasted state, both Atf4 and Fgf21 expression in thermogenic adipocytes are required for thermoregulation in mice.
    DOI:  https://doi.org/10.1101/2023.03.09.531964
  2. J Clin Invest. 2023 Mar 21. pii: e163799. [Epub ahead of print]
      Plasma IL-6 is elevated after myocardial infarction (MI) and is associated with increased morbidity and mortality. Which cardiac cell type preferentially contributes to IL-6 and how its production is regulated is largely unknown. Here, we studied the cellular source and purinergic regulation of IL-6 formation in a murine MI model. IL-6, measured in various cell types in post MI hearts by qPCR, RNAscope and at protein level, was preferentially formed by fibroblasts (CFs). scRNAseq in infarcted mouse and human hearts confirmed this finding. Adenosine stimulated fibroblast IL-6 formation via A2bR in a Gq-dependent manner. CFs highly expressed Adora2b, rapidly degraded extracellular ATP to AMP but lacked CD73. In mice and humans Adora2B was also mainly expressed by fibroblasts (scRNAseq). Global IL-6 formation was assessed in isolated hearts in mice lacking CD73 on T-cells (CD4CD73-/-) a condition known to be associated with adverse cardiac remodeling. The ischemia-induced release of IL-6 was strongly attenuated in CD4CD73-/- mice, suggesting adenosine-mediated modulation. Together this demonstrates that post-MI IL-6 is mainly derived from activated CFs and is controlled by T-cell derived adenosine. Purinergic metabolic cooperation between CFs and T-cells is a novel mechanism with therapeutic potential which modulates IL6 formation by the heart.
    Keywords:  Cardiology; Cytokines; Inflammation
    DOI:  https://doi.org/10.1172/JCI163799
  3. Med Oncol. 2023 Mar 24. 40(5): 128
      Extracellular vesicles (EVs) are emerging as key mediators of cell-to-cell communications and signal transporters between tumor and stroma, and hypoxia is a critical characteristic of tumor microenvironment (TME) in solid cancers. Hypoxia stimulates tumor cells to generate and secrete more EVs, and the EVs shed from cancer transfer biological information to boost hypoxia and hypoxia inducible factor (HIF) functionality. Hypoxia alters EV secretome profile to carry pro-tumorigenic factors for promoting numerous tumor-related processes including increased cancer cell proliferation and survival, immune escape, aberrant angiogenesis, and invasion and metastasis. Exosomal hypoxia inducible factor (HIF)-1α is an essential driver of epithelial-mesenchymal transition (EMT) and stemness profile in cancer. Hypoxic cancer-derived EVs are also contributed to therapy resistance. In fact, EVs are messengers of hypoxic tolerance in cancer, which enable adaptation of tumor cells to changes occurring within TME for their further resistance and metastasis. Tracing EVs shed from hypoxic tumor cells into plasma provide important information about the genomic signature of cancer. In this review, we aimed to discuss about key tumorigenic events promoted by inter-connections between hypoxia and EVs, mainly exosomes, secreted into tumor area focusing on key hallmarks of cancer.
    Keywords:  Epithelial-mesenchymal transition (EMT); Exosome; Extracellular vesicle (EV); Hypoxia; Hypoxia inducible factor (HIF); Resistance; Tumor microenvironment (TME)
    DOI:  https://doi.org/10.1007/s12032-023-01995-x
  4. Ann N Y Acad Sci. 2023 Mar 24.
      Immunometabolism considers the relationship between metabolism and immunity. Typically, researchers focus on either the metabolic pathways within immune cells that affect their function or the impact of immune cells on systemic metabolism. A more holistic approach that considers both these viewpoints is needed. On September 5-8, 2022, experts in the field of immunometabolism met for the Keystone symposium "Immunometabolism at the Crossroads of Obesity and Cancer" to present recent research across the field of immunometabolism, with the setting of obesity and cancer as an ideal example of the complex interplay between metabolism, immunity, and cancer. Speakers highlighted new insights on the metabolic links between tumor cells and immune cells, with a focus on leveraging unique metabolic vulnerabilities of different cell types in the tumor microenvironment as therapeutic targets and demonstrated the effects of diet, the microbiome, and obesity on immune system function and cancer pathogenesis and therapy. Finally, speakers presented new technologies to interrogate the immune system and uncover novel metabolic pathways important for immunity.
    Keywords:  cancer; immunity; immunometabolism; immunotherapy; metabolism; obesity
    DOI:  https://doi.org/10.1111/nyas.14976
  5. bioRxiv. 2023 Mar 10. pii: 2023.03.08.531740. [Epub ahead of print]
      Epithelial Ovarian Cancer (EOC) is the most lethal gynecologic cancer with limited genetic alterations identified that can be therapeutically targeted. In tumor bearing mice, short-term fasting, fasting mimicking diet and calorie restriction enhance the activity of antineoplastic treatment by modulating systemic metabolism and boosting anti-tumor immunity. We tested the outcome of sixteen-hour intermittent fasting (IF) on mouse EOC progression with focus on fasting driven antitumor immune responses. IF resulted in consistent decrease of tumor promoting metabolic growth factors and cytokines, recapitulating changes that creates a tumor antagonizing environment. Immune profiling revealed that IF profoundly reshapes anti-cancer immunity by inducing increase in CD4 + and CD8 + cells, paralleled by enhanced antitumor Th1 and cytotoxic responses, by enhancing their metabolic fitness. Metabolic studies revealed that IF generated bioactive metabolite BHB which can be a potential substitute for simulating the antitumor benefits of IF. However, in a direct comparison, IF surpassed exogenous BHB therapy in improving survival and activating anti-tumor immune response. Thus, our data provides strong evidence for IF and its metabolic mediator BHB for ameliorating EOC progression and as a viable approach in maintaining and sustaining an effective anti-tumor T cell response.
    DOI:  https://doi.org/10.1101/2023.03.08.531740
  6. Proc Natl Acad Sci U S A. 2023 Mar 28. 120(13): e2216796120
      Programmed-death ligand 1 (PD-L1) and its receptor programmed cell death 1 (PD-1) mediate T cell-dependent immunity against tumors. The abundance of cell surface PD-L1 is a key determinant of the efficacy of immune checkpoint blockade therapy targeting PD-L1. However, the regulation of cell surface PD-L1 is still poorly understood. Here, we show that lysosomal degradation of PD-L1 is regulated by O-linked N-acetylglucosamine (O-GlcNAc) during the intracellular trafficking pathway. O-GlcNAc modifies the hepatocyte growth factor-regulated tyrosine kinase substrate (HGS), a key component of the endosomal sorting machinery, and subsequently inhibits its interaction with intracellular PD-L1, leading to impaired lysosomal degradation of PD-L1. O-GlcNAc inhibition activates T cell-mediated antitumor immunity in vitro and in immune-competent mice in a manner dependent on HGS glycosylation. Combination of O-GlcNAc inhibition with PD-L1 antibody synergistically promotes antitumor immune response. We also designed a competitive peptide inhibitor of HGS glycosylation that decreases PD-L1 expression and enhances T cell-mediated immunity against tumor cells. Collectively, our study reveals a link between O-GlcNAc and tumor immune evasion, and suggests strategies for improving PD-L1-mediated immune checkpoint blockade therapy.
    Keywords:  O-GlcNAcylation; PD-L1; cancer immune evasion; intracellular trafficking
    DOI:  https://doi.org/10.1073/pnas.2216796120
  7. Cell Rep. 2023 Mar 22. pii: S2211-1247(23)00314-5. [Epub ahead of print]42(4): 112303
      Oncogenes destabilize STING in epithelial cell-derived cancer cells, such as head and neck squamous cell carcinomas (HNSCCs), to promote immune escape. Despite the abundance of tumor-infiltrating myeloid cells, HNSCC presents notable resistance to STING stimulation. Here, we show how saturated fatty acids in the microenvironment dampen tumor response to STING stimulation. Using single-cell analysis, we found that obesity creates an IFN-I-deprived tumor microenvironment with a massive expansion of suppressive myeloid cell clusters and contraction of effector T cells. Saturated fatty acids, but not unsaturated fatty acids, potently inhibit the STING-IFN-I pathway in HNSCC cells. Myeloid cells from obese mice show dampened responses to STING stimulation and are more suppressive of T cell activation. In agreement, obese hosts exhibited increased tumor burden and lower responsiveness to STING agonist. As a mechanism, saturated fatty acids induce the expression of NLRC3, depletion of which results in a T cell inflamed tumor microenvironment and IFN-I-dependent tumor control.
    Keywords:  CP: Cancer; CP: Immunology; NLRC3; STING; head and neck cancer; immunogenicity; innate immunity; metabolism; obesity; saturated fatty acids; type-I interferon
    DOI:  https://doi.org/10.1016/j.celrep.2023.112303
  8. PNAS Nexus. 2023 Mar;2(3): pgad050
      Patients' suffering from large or deep wounds caused by traumatic and/or thermal injuries have significantly lower chances of recapitulating lost skin function through natural healing. We tested whether enhanced unfolded protein response (UPR) by expression of a UPR transcriptional activator, X-box-binding protein 1 (XBP1) can significantly promote wound repair through stimulating growth factor production and promoting angiogenesis. In mouse models of a second-degree thermal wound, a full-thickness traumatic wound, and a full-thickness diabetic wound, the topical gene transfer of the activated form of XBP1 (spliced XBP1, XBP1s) can significantly enhance re-epithelialization and increase angiogenesis, leading to rapid, nearly complete wound closure with intact regenerated epidermis and dermis. Overexpression of XBP1s stimulated the transcription of growth factors in fibroblasts critical to proliferation and remodeling during wound repair, including platelet-derived growth factor BB, basic fibroblast growth factor, and transforming growth factor beta 3. Meanwhile, the overexpression of XBP1s boosted the migration and tube formation of dermal microvascular endothelial cells in vitro. Our functional and mechanistic investigations of XBP1-mediated regulation of wound healing processes provide novel insights into the previously undermined physiological role of the UPR in skin injuries. The finding opens an avenue to developing potential XBP1-based therapeutic strategies in clinical wound care protocols.
    Keywords:  X-box-binding protein 1; gene transfer; growth factors; unfolded protein response; wound healing
    DOI:  https://doi.org/10.1093/pnasnexus/pgad050