bims-stacyt Biomed News
on Metabolism and the paracrine crosstalk between cancer and the organism
Issue of 2023–02–19
three papers selected by
Cristina Muñoz Pinedo, L’Institut d’Investigació Biomèdica de Bellvitge



  1. Eur J Immunol. 2023 Feb 14. e2250258
      Glucose limitation and increased lactic acid levels are consequences of the elevated glycolytic activity of tumor cells, and constitute a metabolic barrier for the function of tumor infiltrating effector immune cells. The immune-suppressive function of regulatory T cells (Tregs) are unobstructed in lactic-acid rich environments. However, the impact of lactic acid on the induction of Tregs remains unknown. We observed increased TGFβ-mediated induction of FoxP3+ cells in the presence of extracellular lactic acid, in a glycolysis-independent, acidity-dependent manner. These CD4+ FoxP3+ cells expressed Treg-associated markers, including increased expression of CD39, and were capable of exerting suppressive functions. Corroborating these results in vivo, we observed that neutralizing the tumor pH by systemic administration of sodium bicarbonate decreased Treg abundance. We conclude that acidity augments Treg induction and propose that therapeutic targeting of acidity in the tumor microenvironment might reduce Treg-mediated immune suppression within tumors. This article is protected by copyright. All rights reserved.
    Keywords:  Lactic acid; Regulatory T cells; Treg metabolism; Tumor microenvironment
    DOI:  https://doi.org/10.1002/eji.202250258
  2. Cancer Sci. 2023 Feb 15.
      Tumor associated macrophages (TAMs) are one of the most abundant immunosuppressive cells in the tumor microenvironment and possess crucial functions in facilitating tumor progression. Emerging evidences indicate that altered metabolic properties in cancer cell support the tumorigenic functions of TAMs. However, mechanisms and mediators underly crosstalk between cancer cell and TAMs remain largely unknown. In present study, we revealed that high Solute Carrier Family 3 Member 2 (SLC3A2) expression in lung cancer patients were associated with TAMs and poor prognosis. Knockdown of SLC3A2 in lung adenocarcinoma cells impaired M2 polarization of macrophages in co-culture system. By using metabolome analysis, we identified that knockdown SLC3A2 altered metabolism of lung cancer cells and changed multiple metabolites including arachidonic acid in the tumor microenvironment. More importantly, we demonstrated that arachidonic acid was responsible for SLC3A2 mediated macrophage polarization in the tumor microenvironment to differentiate into M2 type both in vitro and in vivo. Our data illustrate previously undescribed mechanisms responsible for TAMs polarization and suggest that SLC3A2 acts as a metabolic switch on lung adenocarcinoma cells to induce macrophage phenotypic reprogramming via arachidonic acid.
    Keywords:  Arachidonic acid; Lung adenocarcinoma; Macrophage polarization; SLC3A2; Tumor associated macrophage
    DOI:  https://doi.org/10.1111/cas.15760
  3. Biochem Biophys Res Commun. 2023 Feb 07. pii: S0006-291X(23)00181-X. [Epub ahead of print]651 20-29
      Pericytes are multifunctional cells wrapped around capillary endothelia, essential for vascular health, development, and blood flow regulation, although their role in human placental chorionic villi has not been fully explored. The second half of normal pregnancy is characterized by a progressive decline in placental and fetal oxygen levels which, by term, comprises a substantial degree of hypoxia. We hypothesized this hypoxia would stimulate pericyte regulation of chorionic villous capillary function. This study's objective was to investigate the role of hypoxia on normal term placental pericytes (PLVP) and their signaling to endothelial cells. First, we confirmed fetoplacental hypoxia at term by a new analysis of umbilical arterial blood oxygen tension of 3,010 healthy singleton neonates sampled at caesarean section and before labor. We then measured the release of cytokines, chemokines, and small extracellular vesicles (PLVPsv), from PLVP cultured at 20%, 8% and 1% O2. As O2 levels decreased, secreted cytokines and chemokines [interleukin-6 (IL-6), interleukin-1α (IL-1α) and vascular endothelial growth factor (VEGF)], and small extracellular vesicle markers, (Alix, Syntenin and CD9) increased significantly in the culture supernatants. When primary human umbilical vein endothelial cells (HUVEC) were cultured with PLVPsv, polygon formation, number, and tube formation length was significantly increased compared to cells not treated with PLVPsv, indicating PLVPsv stimulated angiogenesis. We conclude that adding PLVPsv stimulates angiogenesis and vessel stabilization on neighboring endothelial cells in response to hypoxia in term pregnancy compared to no addition of PLVPsv. Our finding that PLVP can release angiogenic molecules via extracellular vesicles in response to hypoxia may apply to other organ systems.
    Keywords:  Angiogenesis; Hypoxia; Placental pericytes; Small extracellular vesicles
    DOI:  https://doi.org/10.1016/j.bbrc.2023.02.015