bims-stacyt Biomed News
on Metabolism and the paracrine crosstalk between cancer and the organism
Issue of 2022–07–17
four papers selected by
Cristina Muñoz Pinedo, L’Institut d’Investigació Biomèdica de Bellvitge



  1. Trends Cancer. 2022 Jul 08. pii: S2405-8033(22)00134-0. [Epub ahead of print]
      The tumor microenvironment (TME) provokes endoplasmic reticulum (ER) stress in malignant cells and infiltrating immune populations. Sensing and responding to ER stress is coordinated by the unfolded protein response (UPR), an integrated signaling pathway governed by three ER stress sensors: activating transcription factor (ATF6), inositol-requiring enzyme 1α (IRE1α), and protein kinase R (PKR)-like ER kinase (PERK). Persistent UPR activation modulates malignant progression, tumor growth, metastasis, and protective antitumor immunity. Hence, therapies targeting ER stress signaling can be harnessed to elicit direct tumor killing and concomitant anticancer immunity. We highlight recent findings on the role of the ER stress responses in onco-immunology, with an emphasis on genetic vulnerabilities that render tumors highly sensitive to therapeutic UPR modulation.
    Keywords:  ER stress; cancer therapy; immune cells; tumor microenvironment; unfolded protein response
    DOI:  https://doi.org/10.1016/j.trecan.2022.06.006
  2. Cell Metab. 2022 Jul 07. pii: S1550-4131(22)00228-5. [Epub ahead of print]
      The tumor microenvironment (TME) is a unique metabolic niche that can inhibit T cell metabolism and cytotoxicity. To dissect the metabolic interplay between tumors and T cells, we establish an in vitro system that recapitulates the metabolic niche of the TME and allows us to define cell-specific metabolism. We identify tumor-derived lactate as an inhibitor of CD8+ T cell cytotoxicity, revealing an unexpected metabolic shunt in the TCA cycle. Metabolically fit cytotoxic T cells shunt succinate out of the TCA cycle to promote autocrine signaling via the succinate receptor (SUCNR1). Cytotoxic T cells are reliant on pyruvate carboxylase (PC) to replenish TCA cycle intermediates. By contrast, lactate reduces PC-mediated anaplerosis. The inhibition of pyruvate dehydrogenase (PDH) is sufficient to restore PC activity, succinate secretion, and the activation of SUCNR1. These studies identify PDH as a potential drug target to allow CD8+ T cells to retain cytotoxicity and overcome a lactate-enriched TME.
    Keywords:  T cells; cancer metabolism; lactate; pyruvate; succinate; tumor immunity
    DOI:  https://doi.org/10.1016/j.cmet.2022.06.008
  3. Cell Transplant. 2022 Jan-Dec;31:31 9636897221106998
      Hypoxia is a major regulator of tumor aggressiveness and metastasis in cancer progression. Exosomes (exos) play an important role in the communication between lung cancer and hypoxic microenvironment. However, the underlying mechanisms are largely undefined. Exos were isolated from A549 cells under hypoxia conditions. Transmission electron microscopy and nanoparticle tracking analysis were carried out to characterize exos. CCK-8 assay, flow cytometry, Western blot, wound healing, and transwell assays were performed to assess the proliferation, apoptosis, migration, and invasion of A549 cells, respectively. The M2 polarization of macrophages was evaluated by RT-qPCR and Western blot analysis. In vivo nude mice model was established to determine the regulatory effect of hypoxia/exos on the progression of lung cancer. Hypoxic A549 cell-derived exos (hypoxia/exos) promoted the proliferation and migration, and inhibited the apoptosis in A549 cells. The expression of PKM2 was significantly upregulated in hypoxia/exos. Hypoxic exosomal PKM2 induced M2 polarization of macrophages by activating AMPK pathway. Co-culture with hypoxia/exos-treated macrophages enhanced the migration, invasion, and epithelial-mesenchymal transition (EMT) in A549 cells. Moreover, treatment with hypoxia/exos facilitated the tumor growth and lung metastasis of A549 cells. Our findings reveal that hypoxic exosomal PKM2 induces M2 macrophage polarization via AMPK pathway, and thus exerts a simulative effect on the growth and metastasis of lung carcinoma.
    Keywords:  PKM2/AMPK; exosomes; hypoxia; lung cancer; macrophage; metastasis
    DOI:  https://doi.org/10.1177/09636897221106998
  4. J Exp Clin Cancer Res. 2022 Jul 15. 41(1): 222
      Emerging evidence has demonstrated that radiotherapy (RT) can not only cause direct damage to cancer cells but also lead to immunogenic cell death (ICD), which involves the activation of host antitumor immune response in tumor immune microenvironment (TIME). RT-induced ICD comprises the release of damage-associated molecular patterns (DAMPs) from dying cancer cells that result in the activation of tumor-specific immunity to elicit long-term antitumor efficacy in both original and abscopal tumor sites. Adenosine triphosphate (ATP), as an important DAMP released by irradiated cancer cells and an essential factor within purinergic pathway, can be further hydrolyzed to adenosine (ADO) by two key ectonucleotidases, CD39 and CD73, to further modulate the antitumor immunity in TIME through purinergic signaling via the interaction to its specific receptors such as adenosine 2A receptor (A2AR) and A2BR widely expressed on the surface of the components in TIME, including cancer cells and many immune effector cells. In this review, we first introduced key components in purinergic pathway including ATP, ADO, their receptors, and essential ectonucleotidases. Then we reviewed the regulation of ATP and ADO levels and their main mechanisms by which they promote tumor growth and broadly suppress antitumor immunity through inhibiting the pro-inflammatory response of dendritic cells, cytotoxic T lymphocytes, and natural killer cells, while improving the anti-inflammatory response of regulatory T cells, macrophages, and myeloid-derived suppressor cells in TIME, especially after irradiation. Finally, we presented an overview of dozens of promising therapeutics including pharmacological antagonists and specific antibodies targeting ADO receptors and ectonucleotidases CD39 or CD73 investigated in the clinic for cancer treatment, especially focusing on the preclinical studies and clinical trials being explored for blocking the purinergic signaling to enhance RT as a combination antitumor therapeutic strategy, which has a robust potential to be translated to the clinic in the future.
    Keywords:  Cancer; Immunogenic cell death; Immunotherapy; Purinergic pathway; Radiotherapy
    DOI:  https://doi.org/10.1186/s13046-022-02430-1