bims-stacyt Biomed News
on Metabolism and the paracrine crosstalk between cancer and the organism
Issue of 2021–12–19
three papers selected by
Cristina Muñoz Pinedo, L’Institut d’Investigació Biomèdica de Bellvitge



  1. J Appl Physiol (1985). 2021 Dec 16.
      Growth differentiating factor-15 (GDF15) is expressed, and secreted, from a wide range of tissues and serves as a marker of cellular stress. A key transcriptional regulator of this hormone is the endoplasmic reticulum stress protein, CHOP (C/EBP Homologous Protein). Exercise increases GDF15 levels but the underlying mechanisms of this are not known. To test whether CHOP regulates GDF15 during exercise we used various models of altered ER stress. We examined the effects of acute exercise on circulating GDF15 and GDF15 mRNA expression in liver, triceps skeletal muscle, and epididymal white adipose tissue and examined the GDF15 response to acute exercise in lean and high-fat diet-induced obese mice, sedentary and exercise trained mice, and CHOP deficient mice. We found that obesity augments exercise-induced circulating GDF15 although ER stress markers were similar in lean and obese mice. Exercise-induced GDF15 was increased in trained and sedentary mice that ran at the same relative exercise intensity, despite trained mice being protected against increased markers of ER stress. Finally, exercise-induced increases in GDF15 at the tissue and whole-body level were intact in CHOP deficient mice. Together, these results provide evidence that exercise-induced GDF15 expression and secretion occurs independent of ER stress/CHOP.
    Keywords:  CHOP; ER Stress; Exercise; GDF15; Obesity
    DOI:  https://doi.org/10.1152/japplphysiol.00698.2021
  2. J Bone Miner Res. 2021 Dec 13.
      Tumor- and bone-derived soluble factors have been proposed to participate in the alterations of skeletal muscle size and function in cachexia. We previously showed that mice bearing ovarian cancer (OvCa) exhibit cachexia associated with marked bone loss, whereas bone-targeting agents, such as bisphosphonates, are able to preserve muscle mass in animals exposed to anticancer drugs. De-identified CT images and plasma samples from female patients affected with OvCa were used for body composition assessment and quantification of circulating cross-linked C-telopeptide type I (CTX-I) and receptor activator of NF-kB ligand (RANKL), respectively. Female mice bearing ES-2 tumors were used to characterize cancer- and RANKL-associated effects on muscle and bone. Murine C2C12 and human HSMM myotube cultures were used to determine the OvCa- and RANKL-dependent effects on myofiber size. To the extent of isolating new regulators of bone and muscle in cachexia, here we demonstrate that subjects affected with OvCa display evidence of cachexia and increased bone turnover. Similarly, mice carrying OvCa present high RANKL levels. By using in vitro and in vivo experimental models, we found that elevated circulating RANKL is sufficient to cause skeletal muscle atrophy and bone resorption, whereas bone preservation by means of antiresorptive and anti-RANKL treatments concurrently benefit muscle mass and function in cancer cachexia. Altogether, our data contribute to identifying RANKL as a novel therapeutic target for the treatment of musculoskeletal complications associated with RANKL-expressing non-metastatic cancers. © 2021 American Society for Bone and Mineral Research (ASBMR).
    Keywords:  ANTIRESORPTIVE TREATMENTS; BONE; CACHEXIA; CANCER; MUSCLE; RANKL
    DOI:  https://doi.org/10.1002/jbmr.4480
  3. Front Endocrinol (Lausanne). 2021 ;12 773975
      FGF21 is a potent metabolic regulator of energy balance, body composition, lipid metabolism, and glucose homeostasis. Initial studies reported that it was increased by fasting and the associated increase in ketones, but more recent work points to the importance of dietary protein and sensing of essential amino acids in FGF21 regulation. For example, dietary restriction of methionine produces a rapid transcriptional activation of hepatic FGF21 that results in a persistent 5- to 10-fold increase in serum FGF21. Although FGF21 is a component of a complex transcriptional program activated by methionine restriction (MR), loss-of-function studies show that FGF21 is an essential mediator of the resulting effects of the MR diet on energy balance, remodeling of adipose tissue, and enhancement of insulin sensitivity. These studies also show that FGF21 signaling in the brain is required for the MR diet-induced increase in energy expenditure (EE) and reduction of adiposity. Collectively, the evidence supports the view that the liver functions as a sentinel to detect and respond to changes in dietary amino acid composition, and that the resulting mobilization of hepatic FGF21 is a key element of the homeostatic response. These findings raise the interesting possibility that therapeutic diets could be developed that produce sustained, biologically effective increases in FGF21 by nutritionally modulating its transcription and release.
    Keywords:  energy expenditure; essential amino acids (EAA); methionine restriction; nutrient sensing mechanisms; protein restriction
    DOI:  https://doi.org/10.3389/fendo.2021.773975