bims-stacyt Biomed News
on Metabolism and the paracrine crosstalk between cancer and the organism
Issue of 2021–07–18
six papers selected by
Cristina Muñoz Pinedo, L’Institut d’Investigació Biomèdica de Bellvitge



  1. Front Physiol. 2021 ;12 690496
       Background: Hypoxia contributes to a cascade of inflammatory response mechanisms in kidneys that result in the development of renal interstitial fibrosis and subsequent chronic renal failure. Nonetheless, the kidney possesses a self-protection mechanism under a certain degree of hypoxia and this mechanism its adaptation to hypoxia. As the hypoxia-inducible factor (HIF)-vascular endothelial growth factor (VEGF) axis is a key pathway for neovascularization, the activation of this axis is a target for renal hypoxia therapies.
    Methods: Sprague-Dawley rats were exposed to normobaric hypoxia and subdivided into three groups, namely group A (21% O2), group B (10% O2), and group C (7% O2). Renal tissue samples were processed and analyzed to determine pathological morphological changes, the expression of HIF, VEGF, inflammation factor and vascular density.
    Results: We found that as the duration of hypoxia increased, destructive changes in the kidney tissues became more severe in group C (7% O2). In contrast, the increased duration of hypoxia did not exacerbate kidney damage in group B (10% O2). As the hypoxia was prolonged and the degree of hypoxia increased, the expression of HIF-1α increased gradually. As hypoxia time increased, the expression of VEGF increased gradually, but VEGF expression in group B (10% O2) was the highest. Group C (7% O2) had higher levels of IL-6, IL-10, and TNF-alpha. Additionally, the highest vascular density was observed in group B.
    Conclusion: These findings suggest that activating the HIF-VEGF signaling pathway to regulate angiogenesis after infliction of hypoxic kidney injury may provide clues for the development of novel CKD treatments.
    Keywords:  HIF-1; VEGF; chronic hypoxia; kidney injury; vascularization
    DOI:  https://doi.org/10.3389/fphys.2021.690496
  2. Exp Cell Res. 2021 Jul 12. pii: S0014-4827(21)00266-4. [Epub ahead of print] 112734
      Chemotherapy is the preferred clinical treatment for advanced stage gastric cancer (GC) patients, of which efficacy could be markedly impaired due to the development of chemoresistance. Alternatively activated or M2-type tumor associated macrophages (TAMs) are recruited under chemotherapy and are highly implicated in the chemoresistance development, but underlying molecular mechanism for TAM activation is largely unknown. Here, we present that tumor-derived Leukemia inhibitory factor (LIF) induced by chemo drugs represses the chemo sensitivity of gastric tumor cells in a TAM-dependent manner. Mechanistically, cisplatin-induced HIF1α signaling activation directly drive the transcription of LIF, which promotes the resistance of gastric tumors to chemo drug. Further study revealed that tumor cell-derived LIF stimulates macrophages into tumor-supporting M2-type phenotype via activating STAT3 signaling pathway. Therapeutically, blocking LIF efficiently elevates chemo sensitivity of tumor cells and further represses the growth rates of tumors under chemotherapy. Therefore, our study reveals a novel insight in understanding the cross talking between tumor cells and immune cells and provides new therapeutic targets for gastric cancer.
    Keywords:  Chemoresistance; Gastric cancer; HIF1α; Leukemia inhibitory factor; Tumor associated macrophage
    DOI:  https://doi.org/10.1016/j.yexcr.2021.112734
  3. Oxid Med Cell Longev. 2021 ;2021 5549047
      Current studies on tumor progression focus on the roles of cytokines in the tumor microenvironment (TME), and recent research shows that transforming growth factor-β1 (TGF-β1) released from TME plays a pivotal role in tumor development and malignant transformation. The alteration in cellular metabolism is a hallmark of cancer, which not only provides cancer cells with ATP for fuel cellular reactions, but also generates metabolic intermediates for the synthesis of essential cellular ingredients, to support cell proliferation, migration, and invasion. Interestingly, we found a distinct metabolic change during TGF-β1-induced epithelial-mesenchymal transition (EMT) in glioblastoma cells. Indeed, TGF-β1 participates in metabolic reprogramming, and the molecular basis is still not well understood. NADPH oxidases 4 (NOX4), a member of the Nox family, also plays a key role in the biological effects of glioblastoma. However, the relationship between NOX4, TGF-β1, and cellular metabolic changes during EMT in glioblastoma remains obscure. Here, our findings demonstrated that TGF-β1 upregulated NOX4 expression accompanied by reactive oxygen species (ROS) through Smad-dependent signaling and then induced hypoxia-inducible factor 1α (HIF-1α) overexpression and nuclear accumulation resulting in metabolic reprogramming and promoting EMT. Besides, inhibition of glycolysis reversed EMT suggesting a causal relationship between TGF-β1-induced metabolic changes and tumorigenesis. Moreover, TGF-β1-induced metabolic reprogramming and EMT which modulated by NOX4/ROS were blocked when the phosphoinositide3-kinase (PI3K)/AKT/HIF-1α signaling pathways were inhibited. In conclusion, these suggest that NOX4/ROS induction by TGF-β1 can be one of the main mechanisms mediating the metabolic reprogramming during EMT of glioblastoma cells and provide promising strategies for cancer therapy.
    DOI:  https://doi.org/10.1155/2021/5549047
  4. Cancer Cell. 2021 Jul 12. pii: S1535-6108(21)00327-5. [Epub ahead of print]39(7): 907-909
      Tumor cells undergo rapid aerobic glycolysis to fuel growth and proliferation. A recent finding in Nature reveals that tumor-infiltrating myeloid cells demonstrate greater capacity for glucose uptake than tumor cells and consume significant amounts within the tumor milieu. Unexpectedly, tumor cells account for the highest glutamine utilization in the tumor microenvironment.
    DOI:  https://doi.org/10.1016/j.ccell.2021.06.006
  5. Sleep Breath. 2021 Jul 12.
       PURPOSE: Intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), compromises immune surveillance through the upregulation of programmed cell death-1 ligand (PD-L1). Tumor-released extracellular vesicles (EVs) have been reported to modulate immunosuppressive activities. We investigated whether or not EVs derived from intermittent hypoxic lung cancer cells can alter the expression of PD-L1 in macrophages.
    METHODS: The expression of PD-L1+monocytes from 40 patients with newly diagnosed non-small-cell lung cancer (NSCLC) and with (n=21) or without (n=19) OSA were detected. Plasma EVs isolated from NSCLC patients with moderate-severe OSA (n=4) and without OSA (n=4) were co-cultured with macrophages. A549 cells were exposed to normoxia or IH (48 cycles of 5 min of 1% O2 hypoxia, followed by 5 min of normoxia). EVs were isolated from cell supernatant and were co-cultured with macrophages differentiated from THP-1. PD-L1 and hypoxia-inducible factor-1 α (HIF-1α) expressions were measured by flow cytometry, immunofluorescence, and Western blot analysis.
    RESULTS: PD-L1+monocytes were elevated in NSCLC patients with OSA and increased with the severity of OSA and nocturnal desaturation. PD-L1+ macrophages were induced by EVs from NSCLC patients with OSA and positively correlated with HIF-1α expressions. EVs from IH-treated A549 can promote PD-L1 and HIF-1α expression in macrophages and the upregulation of PD-L1 expression was reversed by specific HIF-1α inhibitor.
    CONCLUSION: IH can enhance the function of EVs derived from lung cancer cells to aggravate immunosuppressive status in macrophages. HIF-1α may play an important role in this process.
    Keywords:  Extracellular vesicle; Macrophage; Non-small-cell lung cancer; Obstructive sleep apnea; Programmed cell death-1 ligand
    DOI:  https://doi.org/10.1007/s11325-021-02369-1
  6. EMBO Rep. 2021 Jul 14. e51981
      Glutaminolysis is known to correlate with ovarian cancer aggressiveness and invasion. However, how this affects the tumor microenvironment is elusive. Here, we show that ovarian cancer cells become addicted to extracellular glutamine when silenced for glutamine synthetase (GS), similar to naturally occurring GS-low, glutaminolysis-high ovarian cancer cells. Glutamine addiction elicits a crosstalk mechanism whereby cancer cells release N-acetylaspartate (NAA) which, through the inhibition of the NMDA receptor, and synergistically with IL-10, enforces GS expression in macrophages. In turn, GS-high macrophages acquire M2-like, tumorigenic features. Supporting this in␣vitro model, in silico data and the analysis of ascitic fluid isolated from ovarian cancer patients prove that an M2-like macrophage phenotype, IL-10 release, and NAA levels positively correlate with disease stage. Our study uncovers the unprecedented role of glutamine metabolism in modulating macrophage polarization in highly invasive ovarian cancer and highlights the anti-inflammatory, protumoral function of NAA.
    Keywords:  IL-10; N-acetylaspartate; TAMs; metabolism; ovarian cancer
    DOI:  https://doi.org/10.15252/embr.202051981