bims-stacyt Biomed News
on Metabolism and the paracrine crosstalk between cancer and the organism
Issue of 2021–05–02
nine papers selected by
Cristina Muñoz Pinedo, L’Institut d’Investigació Biomèdica de Bellvitge



  1. Mol Cancer Res. 2021 Apr 30. pii: molcanres.0633.2020. [Epub ahead of print]
      Pancreatic cancer is characterized by aberrant activity of oncogenic KRAS, which is mutated in 90% of pancreatic adenocarcinomas. Since KRAS itself is a challenging therapeutic target, we focused on understanding key signaling pathways driven by KRAS as a way to reveal dependencies that are amenable to therapeutic intervention. Analyses in primary human pancreatic cancers and model systems revealed that the receptor for the cytokine leukemia inhibitory factor (LIF) is down-regulated by mutant KRAS. Furthermore, down-regulation of the LIF receptor (LIFR) is necessary for KRAS-mediated neoplastic transformation. We found LIFR exerts inhibitory effects on KRAS-mediated transformation by inhibiting expression of the glucose transporter GLUT1, a key mediator of the enhanced glycolysis found in KRAS-driven malignancies. Decreased LIFR expression leads to increased GLUT1 as well as increases in glycolysis and mitochondrial respiration. The repression of GLUT1 by LIFR is mediated by the transcription factor STAT3, indicating a tumor suppressive role for STAT3 within cancer cells with mutated KRAS. Finally, reflecting a clinically important tumor suppressive role of LIFR, decreased LIFR expression correlates with shorter survival in pancreatic cancer patients with mutated KRAS. Similar findings were found in non-small cell lung cancers driven by mutated KRAS, suggesting that silencing LIFR is a generalized mechanism of KRAS-mediated cellular transformation. These results indicate that the LIFR/STAT3 pathway may mediate either tumor promoting or tumor suppressive signaling pathways depending on the genetic background of tumor cells, and may play diverse roles within other cells in the tumor microenvironment. Implications: Mutant KRAS drives downregulation of the receptor for leukemia inhibitory factor, thereby allowing an increase in expression of the glucose transporter GLUT1 and increases in glycolysis and mitochondrial respiration.
    DOI:  https://doi.org/10.1158/1541-7786.MCR-20-0633
  2. FASEB J. 2021 May;35(5): e21517
      Myocardial infarction (MI) activates the epicardium to form epicardial stromal cells (EpiSC) that reside in the epicardial hypoxic microenvironment. Paracrine factors secreted by EpiSC were shown to modulate the injury response of the post-MI heart and improve cardiac function. We have previously reported that the expression of the angiogenic cytokines vascular endothelial growth factor A (VEGFA) and IL-6 is strongly upregulated in EpiSC by adenosine acting via the A2B receptor (A2B R). Since tissue hypoxia is well known to be a potent stimulus for the generation of extracellular adenosine, the present study explored the crosstalk of A2B R activation and hypoxia-hypoxia-inducible factor 1 alpha (HIF-1α) signaling in cultured EpiSC, isolated from rat hearts 5 days after MI. We found substantial nuclear accumulation of HIF-1α after A2B R activation even in the absence of hypoxia. This normoxic HIF-1α induction was PKC-dependent and involved upregulation of HIF-1α mRNA expression. While the influence of hypoxia on adenosine generation and A2B R signaling was only minor, hypoxia and A2B R activation cumulatively increased VEGFA expression. Normoxic A2B R activation triggered an HIF-1α-associated cell-protective metabolic switch and reduced oxygen consumption. HIF-1α targets and negative regulators PHD2 and PHD3 were only weakly induced by A2B R signaling, which may result in a sustained HIF-1α activity. The A2B R-mediated normoxic HIF-1α induction was also observed in cardiac fibroblasts from healthy mouse hearts, suggesting that this mechanism is also functional in other A2B R-expressing cell types. Altogether, we identified A2B R-mediated HIF-1α induction as novel aspect in the HIF-1α-adenosine crosstalk, which modulates EpiSC activity and can amplify HIF-1α-mediated cardioprotection.
    Keywords:  A2B receptor; HIF-1α; cardioprotection; hypoxia; myocardial infarction
    DOI:  https://doi.org/10.1096/fj.202002545R
  3. Immunometabolism. 2021 ;pii: e210018. [Epub ahead of print]3(2):
      Macrophages are instrumental for the repair of organs that become injured due to ischemia, yet their potential for healing is sensitive to the availability of metabolites from the surrounding milieu. This sensitivity extends beyond anabolic and catabolic reactions, as metabolites are also leveraged to control production of secreted factors that direct intercellular crosstalk. In response to limiting extracellular oxygen, acute-phase macrophages activate hypoxia-inducible transcription factors that repurpose cellular metabolism. Subsequent repair-phase macrophages secrete cytokines to activate stromal cells, the latter which contribute to matrix deposition and scarring. As we now appreciate, these distinct functions are calibrated by directing flux of carbons and cofactors into specific metabolic shunts. This occurs through glycolysis, the pentose phosphate shunt, the tricarboxylic acid cycle, oxidative phosphorylation, nicotinamide adenine dinucleotides, lipids, amino acids, and through lesser understood pathways. The integration of metabolism with macrophage function is particularly important during injury to the ischemic heart, as glucose and lipid imbalance lead to inefficient repair and permanent loss of non-regenerative muscle. Here we review macrophage metabolic signaling under ischemic stress with implications for cardiac repair.
    Keywords:  cardiac repair; macrophage; metabolism
    DOI:  https://doi.org/10.20900/immunometab20210018
  4. Biomed Res Int. 2021 ;2021 6655225
      Recent studies have suggested that exosomes exert similar therapeutic effects to those of mesenchymal stem cells (MSCs) in regenerative medicine and MSCs-derived exosomes exhibit therapeutic effects on steroid-induced osteonecrosis of the femoral head (ONFH). Furthermore, reparative functions of exosomes from MSCs are enhanced by hypoxia treatment of the cells. However, there are no related reports about whether exosomes derived from hypoxia-preconditioned MSCs could show better therapeutic effects on steroid-induced ONFH. In vitro, we investigated the effects of hypoxia precondition on exosomes derived from bone marrow mesenchymal stem cells (BMMSCs) from rats and the proangiogenic ability of exosomes derived from hypoxia-preconditioned BMMSCs. In vivo, we investigated the role of exosomes from hypoxia-preconditioned BMMSCs on angiogenesis and protecting osteonecrosis in a rat ONFH model. We found that the potential of the proangiogenic ability of exosomes derived from hypoxia-preconditioned BMMSCs was higher than exosomes derived from BMMSCs cultured under normoxia. Exosomes derived from hypoxia-preconditioned BMMSCs significantly promoted proliferation, migration, vascular endothelial growth factor (VEGF) expression, and tube formation of human umbilical vein endothelial cells (HUVECs) compared with exosomes derived from BMMSCs cultured under normoxia. Administration of exosomes derived from hypoxia-preconditioned BMMSCs significantly prevented bone loss and increased vessel volume in the femoral head compared with exosomes derived from BMMSCs cultured under normoxia. Taken together, our data suggest that exosomes derived from hypoxia-preconditioned BMMSCs exert better therapeutic effects on steroid-induced ONFH by promoting angiogenesis and preventing bone loss.
    DOI:  https://doi.org/10.1155/2021/6655225
  5. Endocr Relat Cancer. 2021 Apr 01. pii: ERC-21-0092. [Epub ahead of print]
      The existence of molecular links that facilitate colorectal cancer (CRC) development in the population with type 2 diabetes (T2D) is supported by substantial epidemiological evidence. This review summarizes how the systemic metabolic and hormonal imbalances from T2D alter CRC cell metabolism, signaling and gene expression as well as their reciprocal meshing, with an overview of CRC molecular subtypes and animal models to study the diabetes-CRC cancer links. Metabolic and growth factor checkpoints ensure a physiological cell proliferation rate compatible with limited nutrient supply. Hyperinsulinemia and hyperleptinemia in prediabetes and excess circulating glucose and lipids in T2D, overcome formidable barriers for tumor development. Increased nutrient availability favours metabolic reprogramming, alters signaling and generate mutations and epigenetic modifications, through increased reactive oxygen species and oncometabolites. The reciprocal control between metabolism and hormone signaling is lost in diabetes. Excess adipose tissue at the origin of T2D, unbalances adipokine (leptin / adiponectin) secretion ratios and function and disrupts the Insulin/IGF axes. Leptin/adiponectin imbalances in T2D are believed to promote proliferation and invasion of CRC cancer cells and contribute to inflammation, an important component of CRC tumorigenesis. Disruption of the Insulin/IGF axes in T2D targets systemic and CRC cell metabolic reprogramming, survival and proliferation. Future research to clarify the molecular diabetes-CRC links will help to prevent CRC and reduce its incidence in the diabetic population and must guide therapeutic decisions.
    DOI:  https://doi.org/10.1530/ERC-21-0092
  6. Front Immunol. 2021 ;12 653605
      Dynamic, coordinated changes in metabolic pathway activity underpin the protective and inflammatory activity of T cells, through provision of energy and biosynthetic precursors for effector functions, as well as direct effects of metabolic enzymes, intermediates and end-products on signaling pathways and transcriptional mechanisms. Consequently, it has become increasingly clear that the metabolic status of the tissue microenvironment directly influences T cell activity, with changes in nutrient and/or metabolite abundance leading to dysfunctional T cell metabolism and interlinked immune function. Emerging evidence now indicates that additional signals are integrated by T cells to determine their overall metabolic phenotype, including those arising from interaction with cytokines and hormones in their environment. The impact of these on T cell metabolism, the mechanisms involved and the pathological implications are discussed in this review article.
    Keywords:  T cell; cytokine; glycolysis; hormone; metabolism; mitochdonrion
    DOI:  https://doi.org/10.3389/fimmu.2021.653605
  7. Nat Rev Immunol. 2021 Apr 29.
      Several non-redundant features of the tumour microenvironment facilitate immunosuppression and limit anticancer immune responses. These include physical barriers to immune infiltration, the recruitment of suppressive immune cells and the upregulation of ligands on tumour cells that bind to inhibitory receptors on immune cells. Recent insights into the importance of the metabolic restrictions imposed by the tumour microenvironment on antitumour T cells have begun to inform immunotherapeutic anticancer strategies. Therapeutics that target metabolic restrictions, such as low glucose levels, a low pH, hypoxia and the generation of suppressive metabolites, have shown promise as combination therapies for different types of cancer. In this Review, we discuss the metabolic aspects of the antitumour T cell response in the context of immune checkpoint blockade, adoptive cell therapy and treatment with oncolytic viruses, and discuss emerging combination strategies.
    DOI:  https://doi.org/10.1038/s41577-021-00541-y
  8. Exp Biol Med (Maywood). 2021 Apr 25. 15353702211009213
      Cancer-induced muscle wasting, i.e. cachexia, is associated with different types of cancer such as pancreatic, colorectal, lung, liver, gastric and esophageal. Cachexia affects prognosis and survival in cancer, and it is estimated that it will be the ultimate cause of death for up to 30% of cancer patients. Musculoskeletal alterations are known hallmarks of cancer cachexia, with skeletal muscle atrophy and weakness as the most studied. Recent evidence has shed light on the presence of bone loss in cachectic patients, even in the absence of bone-metastatic disease. In particular, we and others have shown that muscle and bone communicate by exchanging paracrine and endocrine factors, known as myokines and osteokines. This review will focus on describing the role of the most studied myokines, such as myostatin, irisin, the muscle metabolite β-aminoisobutyric acid, BAIBA, and IL-6, and osteokines, including TGF-β, osteocalcin, sclerostin, RANKL, PTHrP, FGF23, and the lipid mediator, PGE2 during cancer-induced cachexia. The interplay of muscle and bone factors, together with tumor-derived soluble factors, characterizes a complex clinical scenario in which musculoskeletal alterations are amongst the most debilitating features. Understanding and targeting the "secretome" of cachectic patients will likely represent a promising strategy to preserve bone and muscle during cancer cachexia thereby enhancing recovery.
    Keywords:  Muscle; bone; cachexia; cancer; myokines; osteokines
    DOI:  https://doi.org/10.1177/15353702211009213
  9. Metabolites. 2021 Apr 01. pii: 215. [Epub ahead of print]11(4):
      Extracellular vesicles (EVs) released from cancer cells contribute to various malignant phenotypes of cancer, including metastasis, cachexia, and angiogenesis. Although DNA, mRNAs, miRNAs, and proteins contained in EVs have been extensively studied, the function of metabolites in EVs remains unclear. In this study, we performed a comprehensive metabolomic analysis of pancreatic cancer cells, PANC-1, cultured under different oxygen concentrations, and small EVs (sEVs) released from them, considering the fact that hypoxia contributes to the malignant behavior of cells in pancreatic cancer, which is a poorly diagnosed cancer. sEVs were collected by ultracentrifugation, and hydrophilic metabolites were analyzed using capillary ion chromatography-mass spectrometry and liquid chromatography-mass spectrometry, and lipids were analyzed by supercritical fluid chromatography-tandem mass spectrometry. A total of 140 hydrophilic metabolites and 494 lipids were detected in sEVs, and their profiles were different from those in cells. In addition, the metabolomic profile of sEVs was observed to change under hypoxic stress, and an increase in metabolites involved in angiogenesis was also detected. We reveal the hallmark of the metabolites contained in sEVs and the effect of tumor hypoxia on their profiles, which may help in understanding EV-mediated cancer malignancy.
    Keywords:  capillary ion chromatography-mass spectrometry; hypoxia; liquid chromatography-mass spectrometry; metabolome analysis; pancreatic cancer; small extracellular vesicles; supercritical fluid chromatography-tandem mass spectrometry
    DOI:  https://doi.org/10.3390/metabo11040215