bims-stacyt Biomed News
on Metabolism and the paracrine crosstalk between cancer and the organism
Issue of 2018–10–21
three papers selected by
Cristina Muñoz Pinedo, L’Institut d’Investigació Biomèdica de Bellvitge



  1. Cell Physiol Biochem. 2018 Oct 12. 50(2): 783-797
       BACKGROUND/AIMS: Peri-operative cerebral ischemia reperfusion injury is one of the most serious peri-operative complications that can be aggravated in patients with diabetes. A previous study showed that microglia NOX2 (a NADPH oxidase enzyme) may play an important role in this process. Here, we investigated whether increased microglial derived gp91phox, also known as NOX2, reduced oxygen glucose deprivation (OGD) after induction of hyperglycemia (HG).
    METHODS: A rat neuronal-microglial in vitro co-culture model was used to determine the effects of gp91phox knockdown on OGD after HG using six treatment groups: A rat microglia and neuron co-culture model was established and divided into the following six groups: high glucose + scrambled siRNA transfection (HG, n = 5); HG + gp91phoxsiRNA transfection (HG-gp91siRNA, n = 5); oxygen glucose deprivation + scrambled siRNA transfection (OGD, n = 5); OGD + gp91phoxsiRNA transfection (OGD-gp91siRNA, n = 5); HG + OGD + scrambled siRNA transfection (HG-OGD, n = 5); and HG + OGD + gp91phoxsiRNA transfection (HG-OGD-gp91siRNA, n = 5). The neuronal survival rate was measured by the MTT assay, while western blotting was used to determine gp91phox expression. Microglial derived ROS and neuronal apoptosis rates were analyzed by flow cytometry. Finally, the secretion of cytokines, including IL-6, IL-8, TNF-α, and 8-iso-PGF2α was determined using an ELISA kit.
    RESULTS: Neuronal survival rates were significantly decreased by HG and OGD, while knockdown of gp91phox reversed these rates. ROS production and cytokine secretion were also significantly increased by HG and OGD but were significantly inhibited by knockdown of gp91phoxsiRNA.
    CONCLUSION: Knockdown of gp91phoxsiRNA significantly reduced oxidative stress and the inflammatory response, and alleviated neuronal damage after HG and OGD treatment in a rat neuronal-microglial co-culture model.
    Keywords:  Gp91phoxsiRNA; Hyperglycemia; Oxygen glucose deprivation
    DOI:  https://doi.org/10.1159/000494243
  2. Int J Cardiol. 2018 Aug 10. pii: S0167-5273(18)31966-1. [Epub ahead of print]
       AIMS: The impaired angiogenesis is the major cause of diabetic delayed wound healing. The molecular insight remains unknown. Previous study has shown that high glucose (HG) activates Na+/H+ exchanger 1 (NHE1) and induces intracellular alkalinization, resulting in endothelial dysfunction. The aim of this study is to investigate whether activation of NHE1 in endothelial cells by HG damages the angiogenesis in vitro and in vivo.
    METHODS AND RESULTS: We used western blot to detect the phosphorylations of both Akt and Girdin, and pH-sensitive BCECF fluorescence to assay NHE1 activity and pHi value, respectively. The angiogenesis was evaluated by measuring the number of tube formation in vitro, and blood perfusion by laser doppler and neovascularization by staining CD31 in vivo. Our results indicated that induction of intracellular acidosis (IA) increased p-Akt and p-Girdin in human umbilical vein endothelial cells (HUVEC). HG activated NHE1 and increased pHi value in a time-dependent manner, associated with the decreased phosphorylations of both Akt and Gridin, while inhibition of NHE1 by amiloride abolished the HG-induced reductions of p-Akt and p-Girdin. However, silence of Akt by siRNA transfection or pharmacological inhibitors (wortmannin and LY294002) bypassed IA-induced Girdin phosphorylation. Overexpression of constitutively active Akt abolished HG-reduced Girdin phosphorylation. In addition, upregulation of Akt or inhibition of NHE1 remarkably attenuated HG-impaired tube formation in HUVEC. In vivo study revealed that amiloride dramatically rescued hyperglycemia-delayed blood perfusion and neovascularization by augmenting ischemia-induced angiogenesis.
    CONCLUSION: IA promotes ischemia-induced angiogenesis via Akt-dependent Girdin phosphorylation in diabetic mice.
    Keywords:  Akt; Angiogenesis; Diabetes; Na(+)/H(+) exchanger 1; pH value
    DOI:  https://doi.org/10.1016/j.ijcard.2018.08.028
  3. Cell Physiol Biochem. 2018 Oct 12. 50(2): 597-611
       BACKGROUND/AIMS: Hyperglycemia has been shown to increase the incidence and metastasis in various types of cancers. However, the correlation between hyperglycemia and lymphatic metastasis in prostate cancer (PCa) remains unclear. Our previous study demonstrated that lysophosphatidic acid (LPA) enhances vascular endothelial growth factor-C (VEGF-C) expression, a lymphangiogenic factor, through activating it receptors LPA1/3 in prostate cancer (PCa) cells. Moreover, hyperglycemia up-regulates autotaxin (ATX) expression, a LPA-generating enzyme. Therefore, we propose that high glucose promotes VEGF-C expression through LPA signaling in PCa cells.
    METHODS: Pharmacological inhibitors and siRNAs were utilized to investigate the molecular mechanism of high glucose-induced VEGF-C expression. Real-time PCR and Western blot were used to determine the mRNA and protein expressions, respectively. Cellular bioenergetics analysis was performed to determine the glycolysis levels.
    RESULTS: We demonstrated that the expressions of VEGF-C, ATX, and calreticulin were increased upon high glucose treatments in PC-3 cells. Moreover, high glucose-induced VEGF-C expression was mediated through the LPA1/3, PLC, Akt, ROS and LEDGF-dependent pathways. Additionally, high glucose enhanced the aerobic glycolysis via LPA1/3.
    CONCLUSION: These results indicated that hyperglycemia leads to LPA synthesis, and subsequent promoting pathological consequence of PCa. These novel findings could potentially provide new strategies for PCa treatments.
    Keywords:  Hyperglycemia; Lymphangiogenesis; Lysophosphatidic acid; Prostate cancer; Vascular endothelial growth factor-C
    DOI:  https://doi.org/10.1159/000494177