bims-smemid Biomed News
on Stress metabolism in mitochondrial dysfunction
Issue of 2025–09–21
two papers selected by
Deepti Mudartha, The International Institute of Molecular Mechanisms and Machines



  1. Biol Chem. 2025 Sep 15.
      Mitochondria are essential for cellular metabolism, serving as the primary source of adenosine triphosphate (ATP). This energy is generated by the oxidative phosphorylation (OXPHOS) system located in the inner mitochondrial membrane. Impairments in this machinery are linked to serious human diseases, especially in tissues with high energy demands. Assembly of the OXPHOS system requires the coordinated expression of genes encoded by both the nuclear and mitochondrial genomes. The mitochondrial DNA encodes for 13 protein components, which are synthesized by mitochondrial ribosomes and inserted into the inner membrane during translation. Despite progress, key aspects of how mitochondrial gene expression is regulated remain elusive, largely due to the organelle's limited genetic accessibility. However, emerging technologies now offer new tools to manipulate various stages of this process. In this review, we explore recent strategies that expand our ability to target mitochondria genetically.
    Keywords:  RNA; gene expression; genetic tools; mitochondria
    DOI:  https://doi.org/10.1515/hsz-2025-0170
  2. PLoS One. 2025 ;20(9): e0332065
      The mitochondrial oxidative phosphorylation (OXPHOS) system plays a pivotal role in the cell's energy conversion. The enzymes involved in OXPHOS are arranged in five protein-lipid complexes. The first four complexes (I-IV) form the mitochondrial respiratory chain, while Complex V is an F1Fo-ATP synthase. Mutations in genes involved in the biosynthesis of the OXPHOS complexes are an important cause of metabolic diseases. Blue-native polyacrylamide gel electrophoresis (BN-PAGE), originally developed by Hermann Schägger in the 1990s, has become instrumental in gaining insights into structure/function relationships of the OXPHOS system, including: (1) the assembly pathways of the complexes, (2) the composition of higher-order respiratory chain supercomplexes and (3) pathologic mechanisms in patients with a monogenetic OXPHOS disorder. We have used BN-PAGE for >20 years and validate here our recently published step-by-step laboratory protocol. This protocol describes the manual casting of native mini-gels and sample preparation for the resolution of individual OXPHOS complexes or respiratory chain supercomplexes. In addition to BN-PAGE, we explain the closely related clear-native (CN)-PAGE and two-dimensional BN/denaturing-PAGE techniques. Downstream applications include western blot analysis and in-gel enzyme activity staining for Complexes I, II, IV and V. Limitations of the technique are the comparative insensitivity of in-gel Complex IV activity staining and the lack of in-gel Complex III activity staining. Compared to other published BN-PAGE protocols, our protocol contains a shortened sample extraction procedure, advises when to use BN-PAGE and when to use CN-PAGE, and suggests a simple enhancement step for in-gel Complex V activity staining that markedly improves sensitivity. Our protocol is adaptable and yields robust, semi-quantitative and reproducible results.
    DOI:  https://doi.org/10.1371/journal.pone.0332065