bims-smemid Biomed News
on Stress metabolism in mitochondrial dysfunction
Issue of 2025–08–17
three papers selected by
Deepti Mudartha, The International Institute of Molecular Mechanisms and Machines



  1. Science. 2025 Aug 14. 389(6761): eadr6326
      As major consumers of cellular metabolites, mitochondria are poised to compete with invading microbes for the nutrients that they need to grow. Whether cells exploit mitochondrial metabolism to protect from infection is unclear. In this work, we found that the activating transcription factor 4 (ATF4) activates a mitochondrial defense based on the essential B vitamin folate. During infection of cultured mammalian cells with the intracellular pathogen Toxoplasma gondii, ATF4 increased mitochondrial DNA levels by driving the one-carbon metabolism processes that use folate in mitochondria. Triggered by host detection of mitochondrial stress induced by parasite effectors, ATF4 limited Toxoplasma access to folates required for deoxythymidine monophosphate synthesis, thereby restricting parasite growth. Thus, ATF4 rewires mitochondrial metabolism to mount a folate-based metabolic defense against Toxoplasma.
    DOI:  https://doi.org/10.1126/science.adr6326
  2. Sci Adv. 2025 Aug 15. 11(33): eadr6012
      During acute oxidative phosphorylation (OXPHOS) dysfunction, reversal of succinate dehydrogenase (complex II) maintains the redox state of the Coenzyme Q (Q)-pool by using fumarate as terminal electron acceptor in certain tissues and cell lines. We identified the action of SDHAF2 protein, a complex II assembly factor, as critical for metabolic adaptation during complex III dysfunction in HEK293T cells. SDHAF2 loss during complex III inhibition led to a net reductive TCA cycle from loss of succinate oxidation, loss of SDHA active site-derived reactive oxygen species (ROS) signaling, insufficient glycolytic adaptation, and a severe growth impairment. Glycolysis adapted cells, however, did not accumulate SDHAF2 upon Q-pool stress, exhibited a net reductive TCA cycle and mild growth phenotypes regardless of SDHAF2 presence. Thus, our study reveals how complex II assembly controls a balance between dynamics of TCA cycle directionality, protection from Q-pool stress, and an ability to use ROS-meditated signaling to overcome acute OXPHOS dysfunction in cells reliant on mitochondrial respiration.
    DOI:  https://doi.org/10.1126/sciadv.adr6012
  3. bioRxiv. 2025 Aug 06. pii: 2025.08.04.667739. [Epub ahead of print]
      Brown adipose tissue (BAT) plays a central role in thermogenesis by coupling fatty acid oxidation to heat production. Efficient BAT thermogenic activity requires enhanced glycolytic flux, which in turn depends on continuous regeneration of cytosolic NAD⁺ to sustain glyceraldehyde-3-phosphate dehydrogenase activity. This regeneration is mediated by three main pathways: lactate dehydrogenase, the glycerol-3-phosphate shuttle, and the malate-aspartate shuttle (MASh). We previously showed that inhibition of the mitochondrial pyruvate carrier increases energy expenditure in brown adipocytes via MASh activation. However, the specific contribution of MASh to BAT energy metabolism remains poorly defined. Here, we show that MASh is functional and directly regulates lipid metabolism in BAT. Enzymatic activities of cytosolic and mitochondrial malate dehydrogenases and glutamic-oxaloacetic transaminases in BAT were comparable to those in the liver. Using a reconstituted system of isolated BAT mitochondria and cytosolic MASh enzymes, we demonstrated that extra-mitochondrial NADH is efficiently reoxidized in a glutamate-dependent manner via MASh. Genetic silencing of the mitochondrial carriers critical to MASh-namely the oxoglutarate carrier (OGC1) and aspartate-glutamate carrier (Aralar1) had no apparent effects on respiratory rates. However, silencing either OGC1 or Aralar1 led to the accumulation of small lipid droplets and impaired norepinephrine-induced lipolysis. Taken together, our data indicate a novel role of MASh in regulating BAT lipid homeostasis with potential implications to body energy expenditure and thermogenesis.
    DOI:  https://doi.org/10.1101/2025.08.04.667739