J Lipid Res. 2024 May 17. pii: S0022-2275(24)00068-3. [Epub ahead of print] 100563
Andrea Castellaneta,
Ilario Losito,
Vito Porcelli,
Serena Barile,
Alessandra Maresca,
Valentina Del Dotto,
Valentina Losacco,
Ludovica Sofia Guadalupi,
Cosima Damiana Calvano,
David C Chan,
Valerio Carelli,
Luigi Palmieri,
Tommaso R I Cataldi.
Depletion or mutations of key proteins for mitochondrial fusion, like optic atrophy 1 (OPA1) and Mitofusins 1 and 2 (Mfn 1 and 2), are known to significantly impact the mitochondrial ultrastructure, suggesting alterations of their membranes' lipid profiles. In order to make an insight into this issue, we used hydrophilic interaction liquid chromatography (HILIC) coupled with electrospray ionization-high resolution mass spectrometry to investigate the mitochondrial phospholipid (PL) profile of mouse embryonic fibroblasts (MEFs) knocked out for OPA1 and Mfn1/2 genes. 167 different sum compositions were recognized for the four major PL classes of mitochondria, namely phosphatidylcholines (PC, 63), phosphatidylethanolamines (PE, 55), phosphatidylinositols (PI, 21) and cardiolipins (CL, 28). A slight decrease in the CL/PC ratio was found for Mfn1/2-knock out mitochondria. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were subsequently used to further process HILIC-ESI-MS data. A progressive decrease in the incidence of alk(en)yl/acyl species in PC and PE classes and a general increase in the incidence of unsaturated acyl chains across all the investigated PL classes was inferred in OPA1 and Mfn1/2 knockouts compared to wild-type MEFs. These findings suggest a reshaping of the PL profile consistent with the changes observed in the mitochondrial ultrastructure when fusion proteins are absent. Based on the existing knowledge on the metabolism of mitochondrial phospholipids, we propose that fusion proteins, especially mitofusins, might influence the PL transfer between the mitochondria and the endoplasmic reticulum, likely in the context of mitochondria-associated membranes (MAMs).
Keywords: OPA1; glycerophospholipids; high resolution mass spectrometry; hydrophilic interaction liquid chromatography; lipidomics; mitochondria; mitofusins; mouse embryonic fibroblasts; phospholipids; phospholipids/biosynthesis