bims-smemid Biomed News
on Stress metabolism in mitochondrial dysfunction
Issue of 2023–11–19
two papers selected by
Deepti Mudartha, The International Institute of Molecular Mechanisms and Machines



  1. Life Sci Alliance. 2024 Feb;pii: e202302386. [Epub ahead of print]7(2):
      Cristae membranes have been recently shown to undergo intramitochondrial merging and splitting events. Yet, the metabolic and bioenergetic factors regulating them are unclear. Here, we investigated whether and how cristae morphology and dynamics are dependent on oxidative phosphorylation (OXPHOS) complexes, the mitochondrial membrane potential (ΔΨm), and the ADP/ATP nucleotide translocator. Advanced live-cell STED nanoscopy combined with in-depth quantification were employed to analyse cristae morphology and dynamics after treatment of mammalian cells with rotenone, antimycin A, oligomycin A, and CCCP. This led to formation of enlarged mitochondria along with reduced cristae density but did not impair cristae dynamics. CCCP treatment leading to ΔΨm abrogation even enhanced cristae dynamics showing its ΔΨm-independent nature. Inhibition of OXPHOS complexes was accompanied by reduced ATP levels but did not affect cristae dynamics. However, inhibition of ADP/ATP exchange led to aberrant cristae morphology and impaired cristae dynamics in a mitochondrial subset. In sum, we provide quantitative data of cristae membrane remodelling under different conditions supporting an important interplay between OXPHOS, metabolite exchange, and cristae membrane dynamics.
    DOI:  https://doi.org/10.26508/lsa.202302386
  2. Am J Physiol Cell Physiol. 2023 Nov 13.
      Fibroblasts are the main producers of extracellular matrix (ECM) responsible for ECM maintenance and repair, a process often disrupted in chronic lung diseases. The accompanying mechanical changes adversely affect resident cells and overall lung function. Numerous models have been used to elucidate fibroblast behavior which are now evolving towards complex 3D models incorporating ECM, aiming to replicate the cells' native environment. Little is known about the cellular changes that occur when moving from 2D to 3D cell culture. This study compared gene expression profiles of primary human lung fibroblasts from 7 subjects with normal lung function, cultured for 24 hours on 2D collagen I-coated tissue culture plastic and in 3D collagen I hydrogels, which are commonly used to mimic ECM in various models, from contraction assays to organ-on-a-chip models. Comparing 3D to 2D cell culture, 6,771 differentially expressed genes (2,896 up, 3,875 down) were found; enriched gene sets within the downregulated genes, identified through Gene Set Enrichment Analysis and Ingenuity pathway analysis, were involved in the initiation of DNA replication which implied downregulation of fibroblast proliferation in 3D. Observation of cells for 72 hours in 2D and 3D environments confirmed the reduced progression through the cell cycle in 3D. A focused analysis examining the Hippo pathway and ECM-associated genes, showed differential patterns of gene expression in the 3D versus 2D culture. Altogether, the transcriptional response of fibroblasts cultured in 3D indicated inhibition of proliferation, and alterations in Hippo and ECM pathways indicating a complete switch from proliferation to ECM remodeling.
    Keywords:  3D culture; Extracellular matrix; Proliferation; RNA-seq; fibroblasts
    DOI:  https://doi.org/10.1152/ajpcell.00374.2023