bims-smemid Biomed News
on Stress metabolism in mitochondrial dysfunction
Issue of 2023–09–24
two papers selected by
Deepti Mudartha, The International Institute of Molecular Mechanisms and Machines



  1. Front Cell Dev Biol. 2023 ;11 1257651
      The mitochondrion is a major hub of cellular metabolism and involved directly or indirectly in almost all biological processes of the cell. In mitochondrial diseases, compromised respiratory electron transfer and oxidative phosphorylation (OXPHOS) lead to compensatory rewiring of metabolism with resemblance to the Warburg-like metabolic state of cancer cells. The transcription factor MYC (or c-MYC) is a major regulator of metabolic rewiring in cancer, stimulating glycolysis, nucleotide biosynthesis, and glutamine utilization, which are known or predicted to be affected also in mitochondrial diseases. Albeit not widely acknowledged thus far, several cell and mouse models of mitochondrial disease show upregulation of MYC and/or its typical transcriptional signatures. Moreover, gene expression and metabolite-level changes associated with mitochondrial integrated stress response (mt-ISR) show remarkable overlap with those of MYC overexpression. In addition to being a metabolic regulator, MYC promotes cellular proliferation and modifies the cell cycle kinetics and, especially at high expression levels, promotes replication stress and genomic instability, and sensitizes cells to apoptosis. Because cell proliferation requires energy and doubling of the cellular biomass, replicating cells should be particularly sensitive to defective OXPHOS. On the other hand, OXPHOS-defective replicating cells are predicted to be especially vulnerable to high levels of MYC as it facilitates evasion of metabolic checkpoints and accelerates cell cycle progression. Indeed, a few recent studies demonstrate cell cycle defects and nuclear DNA damage in OXPHOS deficiency. Here, we give an overview of key mitochondria-dependent metabolic pathways known to be regulated by MYC, review the current literature on MYC expression in mitochondrial diseases, and speculate how its upregulation may be triggered by OXPHOS deficiency and what implications this has for the pathogenesis of these diseases.
    Keywords:  Warburg effect; cellular senescence; electron transport chain; mitochondrial integrated stress response; oxidative phosphorylation; respiratory complex III
    DOI:  https://doi.org/10.3389/fcell.2023.1257651
  2. Sci Adv. 2023 Sep 22. 9(38): eadh8228
      Breakdown of mitochondrial proteostasis activates quality control pathways including the mitochondrial unfolded protein response (UPRmt) and PINK1/Parkin mitophagy. However, beyond the up-regulation of chaperones and proteases, we have a limited understanding of how the UPRmt remodels and restores damaged mitochondrial proteomes. Here, we have developed a functional proteomics framework, termed MitoPQ (Mitochondrial Proteostasis Quantification), to dissect the UPRmt's role in maintaining proteostasis during stress. We find essential roles for the UPRmt in both protecting and repairing proteostasis, with oxidative phosphorylation metabolism being a central target of the UPRmt. Transcriptome analyses together with MitoPQ reveal that UPRmt transcription factors drive independent signaling arms that act in concert to maintain proteostasis. Unidirectional interplay between the UPRmt and PINK1/Parkin mitophagy was found to promote oxidative phosphorylation recovery when the UPRmt failed. Collectively, this study defines the network of proteostasis mediated by the UPRmt and highlights the value of functional proteomics in decoding stressed proteomes.
    DOI:  https://doi.org/10.1126/sciadv.adh8228