bims-sikglu Biomed News
on Salt inducible kinases in glucose metabolism
Issue of 2024–06–23
two papers selected by
Dipsikha Biswas, Københavns Universitet and Maria Madrazo i Montoya, Københavns Universitet



  1. Int J Mol Sci. 2024 Jun 05. pii: 6213. [Epub ahead of print]25(11):
      Circulating low-density lipoprotein (LDL) levels are a major risk factor for cardiovascular diseases (CVD), and even though current treatment strategies focusing on lowering lipid levels are effective, CVD remains the primary cause of death worldwide. Atherosclerosis is the major cause of CVD and is a chronic inflammatory condition in which various cell types and protein kinases play a crucial role. However, the underlying mechanisms of atherosclerosis are not entirely understood yet. Notably, protein kinases are highly druggable targets and represent, therefore, a novel way to target atherosclerosis. In this review, the potential role of the calcium/calmodulin-dependent protein kinase-like (CaMKL) family and its role in atherosclerosis will be discussed. This family consists of 12 subfamilies, among which are the well-described and conserved liver kinase B1 (LKB1) and 5' adenosine monophosphate-activated protein kinase (AMPK) subfamilies. Interestingly, LKB1 plays a key role and is considered a master kinase within the CaMKL family. It has been shown that LKB1 signaling leads to atheroprotective effects, while, for example, members of the microtubule affinity-regulating kinase (MARK) subfamily have been described to aggravate atherosclerosis development. These observations highlight the importance of studying kinases and their signaling pathways in atherosclerosis, bringing us a step closer to unraveling the underlying mechanisms of atherosclerosis.
    Keywords:  CAMKL family; atherosclerosis; inflammation; kinases
    DOI:  https://doi.org/10.3390/ijms25116213
  2. iScience. 2024 Jun 21. 27(6): 109900
      Type 2 diabetes mellitus (T2DM) represents a common complication during pregnancy that affects fetoplacental development. We demonstrated the existence of impaired trophoblast syncytialization under hyperglycemic conditions. However, the exact mechanism remains unknown. RNA N6-methyladenosine (m6A) is an emerging regulatory mechanism of mRNA and participates in various biological processes. We described the global m6A modification pattern in T2DM placenta by the combined analysis of methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and RNA sequencing (RNA-Seq). Both the m6A modification and expression of SIK1, which is critical for syncytialization, were significantly decreased in trophoblast exposed to hyperglycemic conditions. In addition, the m6A demethylase fat mass and obesity-associated protein (FTO) affects the expression and mRNA stability of SIK1 by binding to its 3'-untranslated region (UTR) m6A site. This work reveals that the FTO-m6A-SIK1 axis plays critical roles in regulating syncytialization in the placenta.
    Keywords:  Cell biology; Molecular mechanism of gene regulation; Physiology
    DOI:  https://doi.org/10.1016/j.isci.2024.109900