bims-senagi Biomed News
on Senescence and aging
Issue of 2022‒07‒31
forty-five papers selected by
Maria Grazia Vizioli
Mayo Clinic


  1. FEBS J. 2022 Jul 29.
      Cellular senescence, an evolutionarily conserved mechanism that prevents the proliferation of damaged cells, is a very relevant cellular response involved in both physiological and pathological conditions. Even though senescent cells are stably growth-arrested, they exhibit a complex and poorly understood secretory phenotype, known as SASP, composed of soluble proteins and extracellular vesicles (EVs). EVs were initially described as a waste management mechanism to remove damaged components of cellular metabolism, but increasing evidence shows that EVs could also play important roles in intercellular communication. Recently, some studies showed that EVs could have fundamental functions during cellular senescence. Our purpose in this review is to clarify the increasing literature on the role of EVs in cellular senescence as key mediators in cell-to-cell communication.
    Keywords:  Cellular senescence; EVs; extracellular vesicles; intercellular communication
    DOI:  https://doi.org/10.1111/febs.16585
  2. Biology (Basel). 2022 Jul 27. pii: 1121. [Epub ahead of print]11(8):
      This review introduces the subject of senescence, aging, and the formation of senescent multinucleated giant cells. We define senescence and aging and describe how molecular and cellular senescence leads to organismal senescence. We review the latest information on senescent cells' cellular and molecular phenotypes. We describe molecular and cellular features of aging and senescence and the role of multinucleated giant cells in aging-related conditions and cancer. We explain how multinucleated giant cells form and their role in aging arteries and gonads. We also describe how multinucleated giant cells and the reversibility of senescence initiate cancer and lead to cancer progression and metastasis. We also describe molecules and pathways regulating aging and senescence in model systems and their applicability to clinical therapies in age-related diseases.
    Keywords:  SASP; aging; arteries; cell fusion; giant cells; macrophages; multinucleation; senescence; senescence-associated secretory phenotype
    DOI:  https://doi.org/10.3390/biology11081121
  3. Front Cell Dev Biol. 2022 ;10 853688
      Senolytics are a class of drugs that selectively eliminate senescent cells and ameliorate senescence-associated disease. Studies have demonstrated the accumulation of senescent disc cells and the production of senescence-associated secretory phenotype decrease the number of functional cells in degenerative tissue. It has been determined that clearance of senescent cell by senolytics rejuvenates various cell types in several human organs, including the largest avascular structure, intervertebral disc (IVD). The microvasculature in the marrow space of bony endplate (BEP) are the structural foundation of nutrient exchange in the IVD, but to date, the anti-senescence effects of senolytics on senescent vascular endothelial cells in the endplate subchondral vasculature remains unclear. In this study, the relationships between endothelial cellular senescence in the marrow space of the BEP and IVD degeneration were investigated using the aged mice model. Immunofluorescence staining was used to evaluate the protein expression of P16, P21, and EMCN in vascular endothelial cells. Senescence-associated β-galactosidase staining was used to investigate the senescence of vascular endothelial cells. Meanwhile, the effects of senolytics on cellular senescence of human umbilical vein endothelial cells were investigated using a cell culture model. Preliminary results showed that senolytics alleviate endothelial cellular senescence in the marrow space of BEP as evidenced by reduced senescence-associated secretory phenotype. In the aged mice model, we found decreased height of IVD accompanied by vertebral bone mass loss and obvious changes to the endplate subchondral vasculature, which may lead to the decrease in nutrition transport into IVD. These findings may provide evidence that senolytics can eliminate the senescent cells and facilitate microvascular formation in the marrow space of the BEP. Targeting senescent cellular clearance mechanism to increase nutrient supply to the avascular disc suggests a potential treatment value of senolytics for IVD degenerative diseases.
    Keywords:  aging; bony endplate; intervertebral disc degeneration; senescence; senolytics
    DOI:  https://doi.org/10.3389/fcell.2022.853688
  4. Biology (Basel). 2022 Jul 25. pii: 1108. [Epub ahead of print]11(8):
      Cellular senescence, one of the hallmarks of aging, refers to permanent cell cycle arrest and is accelerated during the aging process. Black ginseng (BG), prepared by a repeated steaming and drying process nine times from fresh ginseng (Panax ginseng C.A. Meyer), is garnering attention for herbal medicine due to its physiological benefits against reactive oxygen species (ROS), inflammation, and oncogenesis, which are common cues to induce aging. However, which key nodules in the cellular senescence process are regulated by BG supplementation has not been elucidated yet. In this study, we investigated the effects of BG on cellular senescence using in vitro and aged mouse models. BG-treated primary mouse embryonic fibroblasts (MEFs) in which senescence was triggered by ionizing radiation (IR) expressed less senescence-associated β-galactosidase (SA-β-gal)-positive stained cells. In our aged mice (18 months old) study, BG supplementation (300 mg/kg) for 4 weeks altered hepatic genes involved in the aging process. Furthermore, we found BG supplementation downregulated age-related inflammatory genes, especially in the complement system. Based on this observation, we demonstrated that BG supplementation led to less activation of the canonical senescence pathway, p53-dependent p21 and p16, in multiple metabolic organs such as liver, skeletal muscle and white adipose tissue. Thus, we suggest that BG is a potential senolytic candidate that retards cellular senescence.
    Keywords:  black ginseng; cellular senescence; complement C1q; p16; p21; p53; senolytics; β-catenin
    DOI:  https://doi.org/10.3390/biology11081108
  5. Oxid Med Cell Longev. 2022 ;2022 5961123
      Senescent cells have been demonstrated to have lower cellular NAD+ levels and are involved in the development of various age-related diseases, including age-related macular degeneration (AMD). Sodium iodate (NaIO3) has been primarily used as an oxidant to establish a model of dry AMD. Results of previous studies have showed that NaIO3 induced retinal tissue senescence in vivo. However, the role of NaIO3 and the mechanism by which it induces retinal pigment epithelium (RPE) senescence remains unknown. In this study, RPE cell senescence was confirmed to be potentially induced by NaIO3. The results showed that the number of senescence-associated-β-galactosidase (SA-β-gal-)-positive cells and the protein levels of p16 and p21 increased after NaIO3 treatment. Additionally, the senescent RPE cells underwent oxidative stress and NAD+ depletion. Furthermore, significant DNA damage and mitochondrial dysfunction were also detected in senescent RPE cells. The antioxidant N-acetylcysteine (NAC) could alleviate cellular senescence only by a minimal degree, whereas supplementation with nicotinamide mononucleotide (NMN) strongly ameliorated RPE senescence through the alleviation of DNA damage and the maintenance of mitochondrial function. The protective effects of NMN were demonstrated to rely on undisturbed Sirt1 signaling. Moreover, both the expression of senescence markers of RPE and subretinal inflammatory cell infiltration were decreased by NMN treatment in vivo. Our results indicate that RPE senescence induced by NaIO3 acquired several key features of AMD. More importantly, NMN may potentially be used to treat RPE senescence and senescence-associated pre-AMD changes by restoring the NAD+ levels in cells and tissues.
    DOI:  https://doi.org/10.1155/2022/5961123
  6. AIDS Rev. 2022 ;25(2): 79-86
      Aging, a time-dependent loss of physiological function, and its drivers are turning into a significant topic of researchas the population's mean age increases. Epigenetic alterations, telomere shortening or dysfunction, mitogenic stress,oxidative stress, or accumulation of DNA damage can drive the cell to senescence a permanent cell cycle arrest sometimes associated with a secretory phenotype and inflammatory consequences in the surrounding tissue. The amount of senescent cellsgrows over time in older organisms and may induce tissue inflammation and threaten overall tissue homeostasis, favoring aging. Senolytic and senomorphic therapeuticsare an emerging approach to eliminate senescent cells or to block their secretoryphenotypes respectively. Given that people living with HIV suffer non-AIDS comorbidities in a higher prevalence than the general population, aging is accentuated among them. Inflammation biomarkers may be helpful to assess prognosis or act as surrogate endpoints for studies of strategies focused on reversal of HIV-associated accelerated aging. This review summarizes the latest findings in aging and its major drivers, under the light of HIV infection. Since the number of older PLWH is currently rising, it will be of great importance to address and treat their age-related conditions, as well as to better decipher their biological mechanisms.
    Keywords:  Aging; Cellular senescence; Genomic instability; HIV infection; Senolytics; Telomeres
    DOI:  https://doi.org/10.24875/AIDSRev.21000085
  7. Tissue Barriers. 2022 Jul 26. 2103353
      Accumulation of senescent cells in cerebrovasculature is thought to play an important role in age-related disruption of blood-brain barrier (BBB). Using an in vitro model of human BBB, composed of brain microvascular endothelial cells (BMECs), astrocytes and pericytes, this study explored the so-called correlative link between BMEC senescence and the BBB dysfunction in the absence or presence of functionally distinct senotherapeutics. Replicative senescence was deemed present at passage ≥19 where BMECs displayed shortened telomere length, reduced proliferative and tubulogenic potentials and increased NADPH oxidase activity, superoxide anion production (markers of oxidative stress), S-β-galactosidase activity and γ-H2AX staining. Significant impairments observed in integrity and function of a model of BBB established with senescent BMECs, ascertained successively by decreases in transendothelial electrical resistance and increases in paracellular flux, revealed a close correlation between endothelial cell senescence and BBB dysfunction. Disruptions in the localization or expression of tight junction proteins, zonula occludens-1, occludin, and claudin-5 in senescent BMECs somewhat explained this dysfunction. Indeed, treatment of relatively old BMEC (passage 16) with a cocktail of senolytics (dasatinib and quercetin) or senomorphics targeting transcription factor NF-κB (QNZ), p38MAPK signaling pathway (BIRB-796) or pro-oxidant enzyme NADPH oxidase (VAS2870) until passage 20 rendered these cells more resistant to senescence and totally preserved BBB characteristics by restoring subcellular localization and expression of tight junction proteins. In conclusion, attempts that effectively mitigate accumulation of senescent endothelial cells in cerebrovasculature may prevent age-related BBB dysfunction and may be of prophylactic or therapeutic value to extend lifelong health and wellbeing.
    Keywords:  Endothelial cells; blood-brain barrier; p38MAPK; senescence; senolytics; senomorphics
    DOI:  https://doi.org/10.1080/21688370.2022.2103353
  8. Mol Metab. 2022 Jul 21. pii: S2212-8778(22)00127-2. [Epub ahead of print] 101558
      OBJECTIVE: Cellular senescence, an irreversible proliferative cell arrest, is caused by excessive intracellular or extracellular stress/damage. Increased senescent cells have been identified in multiple tissues in different metabolic and other aging-related diseases. Recently, several human and mouse studies emphasized the involvement of senescence in development and progression of NAFLD. Hyperinsulinemia, seen in obesity, metabolic syndrome, and other conditions of insulin resistance, has been linked to senescence in adipocytes and neurons. Here, we investigate the possible direct role of chronic hyperinsulinemia in the development of senescence in human hepatocytes.METHODS: Using fluorescence microscopy, immunoblotting, and gene expression, we tested senescence markers in human hepatocytes subjected to chronic hyperinsulinemia in vitro and validated the data in vivo by using liver-specific insulin receptor knockout (LIRKO) mice. The consequences of hyperinsulinemia were also studied in senescent hepatocytes following doxorubicin as a model of stress-induced senescence. Furthermore, the effects of senolytic agents in insulin- and doxorubicin-treated cells were analyzed.
    RESULTS: Results showed that exposing the hepatocytes to prolonged hyperinsulinemia promotes the onset of senescence by increasing the expression of p53 and p21. It also further enhanced the senescent phenotype in already senescent hepatocytes. Addition of insulin signaling pathway inhibitors prevented the increase in cell senescence, supporting the direct contribution of insulin. Furthermore, LIRKO mice, in which insulin signaling in the liver is abolished due to deletion of the insulin receptor gene, showed no differences in senescence compared to their wild-type counterparts despite having marked hyperinsulinemia indicating these are receptor-mediated effects. In contrast, the persistent hyperinsulinemia in LIRKO mice enhanced senescence in white adipose tissue. In vitro, senolytic agents dasatinib and quercetin reduced the prosenescent effects of hyperinsulinemia in hepatocytes.
    CONCLUSION: Our findings demonstrate a direct link between chronic hyperinsulinemia and hepatocyte senescence. This effect can be blocked by reducing the levels of insulin receptors or administration of senolytic drugs, such as dasatinib and quercetin.
    Keywords:  Dasatinib; Hepatocytes; Hyperinsulinemia; NAFLD; Quercetin; Senescence
    DOI:  https://doi.org/10.1016/j.molmet.2022.101558
  9. Evid Based Complement Alternat Med. 2022 ;2022 2990843
      Oxidative stress and impaired autophagy are the hallmarks of cardiac aging. However, there are no specific drugs available to prevent cardiac aging. Curcumin is a natural polyphenolic drug with antioxidant, antiaging, and autophagy-promoting effects. Here, we describe the preventive role of Curcumin in cardiac aging through the induction of autophagy and the restoration of autophagy via the SIRT1/AMPK/mTOR pathway. The number of cells positive for senescence-associated β-galactosidase, P53, P16, and intracellular ROS increased significantly in senescent cardiomyocytes, stimulated using D-galactose. Curcumin reversed this effect in a dose-dependent manner. Curcumin-induced autophagy increased the expression of SIRT1and phosphorylated AMPK and decreased phosphorylated mTOR in a dose-dependent manner. SIRT1-siRNA-mediated knockdown inhibited the antioxidation, antiaging, the promotion of autophagy, and the SIRT1/AMPK/mTOR pathway activation effect of curcumin. Therefore, curcumin could be an effective anticardiac aging drug.
    DOI:  https://doi.org/10.1155/2022/2990843
  10. Geroscience. 2022 Jul 28.
      Atherosclerosis, a common age-related disease, is characterized by intense immunological activity. Atherosclerotic plaque is composed of endothelial cells, vascular smooth muscle cells (VSMCs), lipids and immune cells infiltrating from the blood. During progression of the disease, VSMCs undergo senescence within the plaque and secrete SASP (senescence-associated secretory phenotype) factors that can actively modulate plaque microenvironment. We demonstrated that senescent VSMCs secrete increased number of extracellular vesicles (senEVs). Based on unbiased proteomic analysis of VMSC-derived EVs and of the soluble fraction of SASP (sSASP), more than 900 proteins were identified in each of SASP compartments. Comparison of the composition of VMSC-derived EVs with the SASP atlas revealed several proteins, including Serpin Family F Member 1 (SERPINF1) and Thrombospondin 1 (THBS1), as commonly upregulated components of EVs secreted by senescent VSMCs and fibroblasts. Among soluble SASP factors, only Growth Differentiation Factor 15 (GDF15) was universally increased in the secretome of senescent VSMCs, fibroblasts, and epithelial cells. Bioinformatics analysis of EV proteins distinguished functionally organized protein networks involved in immune cell function regulation. Accordingly, EVs released by senescent VSMCs induced secretion of IL-17, INFγ, and IL-10 by T cells and of TNFα produced by monocytes. Moreover senEVs influenced differentiation of monocytes favoring mix M1/M2 polarization with proinflammatory characteristics. Altogether, our studies provide a complex, unbiased analysis of VSMC SASP and prove that EVs derived from senescent VSMCs influence the cytokine milieu by modulating immune cell activity. Our results strengthen the role of senescent cells as an important inducer of inflammation in atherosclerosis.
    Keywords:  Exosomes; Extracellular vesicles; Human smooth muscle cells; Immune cells; Secretome; Senescence
    DOI:  https://doi.org/10.1007/s11357-022-00625-0
  11. Nat Metab. 2022 Jul 28.
      ABSTACT: Ageing is the largest risk factor for many chronic diseases. Studies of heterochronic parabiosis, substantiated by blood exchange and old plasma dilution, show that old-age-related factors are systemically propagated and have pro-geronic effects in young mice. However, the underlying mechanisms how bloodborne factors promote ageing remain largely unknown. Here, using heterochronic blood exchange in male mice, we show that aged mouse blood induces cell and tissue senescence in young animals after one single exchange. This induction of senescence is abrogated if old animals are treated with senolytic drugs before blood exchange, therefore attenuating the pro-geronic influence of old blood on young mice. Hence, cellular senescence is neither simply a response to stress and damage that increases with age, nor a chronological cell-intrinsic phenomenon. Instead, senescence quickly and robustly spreads to young mice from old blood. Clearing senescence cells that accumulate with age rejuvenates old circulating blood and improves the health of multiple tissues.
    DOI:  https://doi.org/10.1038/s42255-022-00609-6
  12. Int J Mol Sci. 2022 Jul 25. pii: 8165. [Epub ahead of print]23(15):
      As the global aging process continues to lengthen, aging-related diseases (e.g., chronic obstructive pulmonary disease (COPD), heart failure) continue to plague the elderly population. Aging is a complex biological process involving multiple tissues and organs and is involved in the development and progression of multiple aging-related diseases. At the same time, some of these aging-related diseases are often accompanied by hypoxia, chronic inflammation, oxidative stress, and the increased secretion of the senescence-associated secretory phenotype (SASP). Hypoxia seems to play an important role in the process of inflammation and aging, but is often neglected in advanced clinical research studies. Therefore, we have attempted to elucidate the role played by different degrees and types of hypoxia in aging and aging-related diseases and their possible pathways, and propose rational treatment options based on such mechanisms for reference.
    Keywords:  aging; aging-related diseases; hypoxia; oxidative stress; therapeutic strategies
    DOI:  https://doi.org/10.3390/ijms23158165
  13. Aging Cell. 2022 Jul 30. e13680
      Determining the mechanism of senescence-associated pulmonary fibrosis is crucial for designing more effective treatments for chronic lung diseases. This study aimed to determine the following: whether Sirt1 and serum vitamin D decreased with physiological aging, promoting senescence-associated pulmonary fibrosis by activating TGF-β1/IL-11/MEK/ERK signaling, whether Sirt1 overexpression prevented TGF-β1/IL-11/MEK/ERK signaling-mediated senescence-associated pulmonary fibrosis in vitamin D-deficient (Cyp27b1-/- ) mice, and whether Sirt1 downregulated IL-11 expression transcribed by TGF-β1/Smad2 signaling through deacetylating histone at the IL-11 promoter in pulmonary fibroblasts. Bioinformatics analysis with RNA sequencing data from pulmonary fibroblasts of physiologically aged mice was conducted for correlation analysis. Lungs from young and physiologically aged wild-type (WT) mice were examined for cell senescence, fibrosis markers, and TGF-β1/IL-11/MEK/ERK signaling proteins, and 1,25(OH)2 D3 and IL-11 levels were detected in serum. Nine-week-old WT, Sirt1 mesenchymal transgene (Sirt1Tg ), Cyp27b1-/- , and Sirt1Tg Cyp27b1-/- mice were observed the pulmonary function, aging, and senescence-associated secretory phenotype and TGF-β1/IL-11/MEK/ERK signaling. We found that pulmonary Sirt1 and serum vitamin D decreased with physiological aging, activating TGF-β1/IL-11/MEK/ERK signaling, and promoting senescence-associated pulmonary fibrosis. Sirt1 overexpression improved pulmonary dysfunction, aging, DNA damage, senescence-associated secretory phenotype, and fibrosis through downregulating TGF-β1/IL-11/MEK/ERK signaling in Cyp27b1-/- mice. Sirt1 negatively regulated IL-11 expression through deacetylating H3K9/14ac mainly at the region from -871 to -724 of IL-11 promoter, also the major binding region of Smad2 which regulated IL-11 expression at the transcriptional level, and subsequently inhibiting TGF-β1/IL-11/MEK/ERK signaling in pulmonary fibroblasts. This signaling in aging fibroblasts could be a therapeutic target for preventing senescence-associated pulmonary fibrosis induced by vitamin D deficiency.
    Keywords:  IL-11; Sirt1; Smad2; cell senescence; pulmonary fibroblasts; pulmonary fibrosis; senescence-associated secretory phenotype; vitamin D
    DOI:  https://doi.org/10.1111/acel.13680
  14. Front Aging. 2022 ;3 935220
      Aging is one of the largest risk factors for cancer, type 2 diabetes, osteoarthritis, cardiovascular diseases, and other age-related pathologies. Here, we give a detailed description of the interplay of chronic age-related pathologies with the remodeling of the extracellular matrix during disease development and progression. Longevity-promoting signaling pathways slow or prevent age-related diseases. In particular, we focus on the mTOR signaling pathway, sirtuins, and canonical longevity-promoting transcription factors, such as FOXO, NF-κB, and Nrf2. We extend our analysis using chromatin immunoprecipitation (ChIP) sequencing and transcriptomic data and report that many established and emerging longevity-promoting transcription factors, such as CREB1, FOXO1,3, GATA1,2,3,4, HIF1A, JUN, KLF4, MYC, NFE2L2/Nrf2, RELA/NF-κB, REST, STAT3,5A, and TP53/p53, directly regulate many extracellular matrix genes and remodelers. We propose that modulation of these pathways increases lifespan and protects from age-related diseases in part due to their effects on extracellular matrix remodeling. Therefore, to successfully treat age-related diseases, it is necessary to better understand the connection between extracellular matrix components and longevity pathways.
    Keywords:  FOXO transcription factors; NF-κB transcription factor; Nrf2 transcription factor; collagen; extracellular matrix; healthy aging; mTOR signaling pathway; matrisome
    DOI:  https://doi.org/10.3389/fragi.2022.935220
  15. Biomedicines. 2022 Jun 21. pii: 1468. [Epub ahead of print]10(7):
      The worldwide incidence of neuropathic pain is around 7-8% and is associated with significant and disabling comorbidities (sleep disturbances, depression, anxiety). It is now known that cellular ageing of microglia contributes to neurodegenerative diseases, mood disorders, and, even if with less evidence, chronic pain. The aim of this work was to investigate in vitro and in vivo the senolytic activity of rosmarinic acid (RA) to be exploited for the management of NP symptoms. BV2 cells were stimulated with LPS 500 ng/mL for 24 h. Treatment with RA 1 µM improved cell viability and reduced IL-1ß release leading to an attenuation of neuroinflammation. We then moved on to test the efficacy of RA in reducing microglial senescence. In our model, BV2 cells were stimulated with LPS 500 ng/mL every 72 h for 4 h/day, over a period of 10 days. RA 1 µM reduced the expression of the β-galactosidase enzyme, reduced the release of senescence-associated secretory phenotype (SASP) factors, increased cell viability, and reduced the presence of nuclear foci of senescence (SAHF), well-known cellular senescence markers. In the Spared Nerve Injury (SNI) model, 28 days from surgery, repeated oral administration of RA 5 mg/kg reduced hyperalgesia and NP-associated symptoms, such as anxiety and depression. A reduction of senescence markers was detected on both hippocampal and spinal samples of SNI-treated mice. This study represents a starting point for investigating the role of microglial senescence as a possible pharmacological target in controlling symptoms related to the more advanced stages of peripheral neuropathy.
    Keywords:  microglia; neuropathic pain; polyphenols; rosmarinic acid; senescence
    DOI:  https://doi.org/10.3390/biomedicines10071468
  16. Cells. 2022 Jul 16. pii: 2213. [Epub ahead of print]11(14):
      Vascular aging is based on the development of endothelial dysfunction, which is thought to be promoted by senescent cells accumulating in aged tissues and is possibly affected by their environment via inflammatory mediators and oxidative stress. Senescence appears to be closely interlinked with changes in cell metabolism. Here, we describe an upregulation of both glycolytic and oxidative glucose metabolism in replicative senescent endothelial cells compared to young endothelial cells by employing metabolic profiling and glucose flux measurements and by analyzing the expression of key metabolic enzymes. Senescent cells exhibit higher glycolytic activity and lactate production together with an enhanced expression of lactate dehydrogenase A as well as increases in tricarboxylic acid cycle activity and mitochondrial respiration. The latter is likely due to the reduced expression of pyruvate dehydrogenase kinases (PDHKs) in senescent cells, which may lead to increased activity of the pyruvate dehydrogenase complex. Cellular and mitochondrial ATP production were elevated despite signs of mitochondrial dysfunction, such as an increased production of reactive oxygen species and extended mitochondrial mass. A shift from glycolytic to oxidative glucose metabolism induced by pharmacological inhibition of PDHKs in young endothelial cells resulted in premature senescence, suggesting that alterations in cellular glucose metabolism may act as a driving force for senescence in endothelial cells.
    Keywords:  aging; dichloroacetate; endothelial cell; glucose metabolism; lactate; lactate dehydrogenase; pyruvate dehydrogenase kinase; replicative senescence
    DOI:  https://doi.org/10.3390/cells11142213
  17. J Cardiovasc Aging. 2022 Jul;pii: 30. [Epub ahead of print]2(3):
      Introduction: Mutations in the LMNA gene, encoding Lamin A/C (LMNA), are established causes of dilated cardiomyopathy (DCM). The phenotype is typically characterized by progressive cardiac conduction defects, arrhythmias, heart failure, and premature death. DCM is primarily considered a disease of cardiac myocytes. However, LMNA is also expressed in other cardiac cell types, including fibroblasts.Aim: The purpose of the study was to determine the contribution of the fibroblasts to DCM caused by LMNA deficiency.
    Methods and Results: The Lmna gene was deleted by crossing the platelet-derived growth factor receptor α-Cre recombinase (Pdgfra-Cre) and floxed Lmna (Lmna F/F) mice. The LMNA protein was nearly absent in ~80% of the cardiac fibroblasts and ~25% of cardiac myocytes in the Pdgfra-Cre:Lmna F/F mice. The Pdgfra-Cre:Lmna F/F mice showed an early phenotype characterized by cardiac conduction defects, arrhythmias, cardiac dysfunction, myocardial fibrosis, apoptosis, and premature death within the first six weeks of life. The Pdgfra-Cre:Lmna wild type/F (Lmna W/F) mice also showed a similar but slowly evolving phenotype that was expressed within one year of age. RNA sequencing of LMNA-deficient and wild-type cardiac fibroblasts identified differential expression of ~410 genes, which predicted activation of the TP53 and TNFA/NFκB and suppression of the cell cycle pathways. In agreement with these findings, levels of phospho-H2AFX, ATM, phospho-TP53, and CDKN1A, markers of the DNA damage response (DDR) pathway, were increased in the Pdgfra-Cre:Lmna F/F mouse hearts. Moreover, expression of senescence-associated beta-galactosidase was induced and levels of the senescence-associated secretory phenotype (SASP) proteins TGFβ1, CTGF (CCN2), and LGLAS3 were increased as well as the transcript levels of additional genes encoding SASP proteins in the Pdgfra-Cre:Lmna F/F mouse hearts. Finally, expression of pH2AFX, a bonafide marker of the double-stranded DNA breaks, was increased in cardiac fibroblasts isolated from the Pdgfra-Cre:Lmna F/F mouse hearts.
    Conclusion: Deletion of the Lmna gene in fibroblasts partially recapitulates the phenotype of the LMNA-associated DCM, likely through induction of double-stranded DNA breaks, activation of the DDR pathway, and induction of expression of the SASP proteins. The findings indicate that the phenotype in the LMNA-associated DCM is the aggregate consequence of the LMNA deficiency in multiple cardiac cells, including cardiac fibroblasts.
    Keywords:  Fibroblasts; apoptosis; cardiomyopathy; fibrosis; heart failure; lamin A/C; senescence
    DOI:  https://doi.org/10.20517/jca.2022.14
  18. Biomedicines. 2022 Jun 29. pii: 1545. [Epub ahead of print]10(7):
      From infancy through to old age, the microbiome plays an important role in modulating the host-immune system. As we age, our immune system and our gut microbiota change significantly in composition and function, which is linked to an increased vulnerability to infectious diseases and a decrease in vaccine responses. Our microbiome remains largely stable throughout adulthood; however, aging causes a major shift in the composition and function of the gut microbiome, as well as a decrease in diversity. Considering the critical role of the gut microbiome in the host-immune system, it is important to address, prevent, and ameliorate age-related dysbiosis, which could be an effective strategy for preventing/restoring functional deficits in immune responses as we grow older. Several factors, such as the host's genetics and nutritional state, along with the gut microbiome, can influence vaccine efficacy or reaction. Emerging evidence suggests that the microbiome could be a significant determinant of vaccine immunity. Physiological mechanisms such as senescence, or the steady loss of cellular functions, which affect the aging process and vaccination responses, have yet to be comprehended. Recent studies on several COVID-19 vaccines worldwide have provided a considerable amount of data to support the hypothesis that aging plays a crucial role in modulating COVID-19 vaccination efficacy across different populations.
    Keywords:  COVID-19; aging; gut microbiome; host-immune system; pandemic; vaccine response
    DOI:  https://doi.org/10.3390/biomedicines10071545
  19. Antioxidants (Basel). 2022 Jun 22. pii: 1224. [Epub ahead of print]11(7):
      Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
    Keywords:  aging; antioxidants; flavonoids; minerals; oxidative stress; reactive oxygen species; senescence; vitamins
    DOI:  https://doi.org/10.3390/antiox11071224
  20. J Ovarian Res. 2022 Jul 26. 15(1): 87
      BACKGROUND: Clinical outcomes of cancer cell senescence are still elusive. Here, we reveal and compare pro-cancerous activity of spontaneously and drug-inducible senescent ovarian cancer cells. Experiments were performed on tumors and tumor-derived primary epithelial ovarian cancer cells (pEOCs) that were obtained from chemotherapy-naïve patients and from patients who received carboplatin (CPT) and paclitaxel (PCT) before cytoreduction.RESULTS: The analysis of tumors showed that senescent cancer cells are present in patients from both groups, albeit most frequently and covering a greater area in tissues from chemotherapy-positive women. This in vivo senescence of pEOCs translated to an expression of senescence markers in early-passage cells in vitro. A conditioned medium from senescent pEOCs fueled the cancer progression, including adhesion of non-senescent pEOCs to normal peritoneal cells, and their increased proliferation, migration, invasion, and EMT. Senescent pEOCs' secretome promoted angiogenic activity of vascular endothelium, induced senescence of normal peritoneal cells, reprogrammed their secretome towards hypersecretion of cancer-promoting proteins, and stimulated motility of cancer cells subjected to a mesothelium- and fibroblast-derived medium. The most striking finding was, however, that spontaneously senescent pEOCs supported all the above pro-cancerous effects more efficiently than drug-inducible senescent cells, which was plausibly related to augmented release of several cancer spread mediators by these cells. The prevalence of spontaneously senescent pEOCs was most evident in experiments on mice when they were able, unlike the drug-inducible cells, to promote the development of drug-sensitive i.p. xenografts.
    CONCLUSIONS: Our study shows that spontaneous senescence of pEOCs should be treated as an independent pathogenetic factor of cancer progression.
    Keywords:  Drug-induced senescence; Ovarian cancer; Senescence-associated secretory phenotype; Spontaneous senescence
    DOI:  https://doi.org/10.1186/s13048-022-01023-y
  21. Cells. 2022 Jul 08. pii: 2154. [Epub ahead of print]11(14):
      Modifications in nuclear structures of cells are implicated in several diseases including cancer. They result in changes in nuclear activity, structural dynamics and cell signalling. However, the role of the nuclear lamina and related proteins in malignant melanoma is still unknown. Its molecular characterisation might lead to a deeper understanding and the development of new therapy approaches. In this study, we analysed the functional effects of dysregulated nuclear lamin B1 (LMNB1) and its nuclear receptor (LBR). According to their cellular localisation and function, we revealed that these genes are crucially involved in nuclear processes like chromatin organisation. RNA sequencing and differential gene expression analysis after knockdown of LMNB1 and LBR revealed their implication in important cellular processes driving ER stress leading to senescence and changes in chromatin state, which were also experimentally validated. We determined that melanoma cells need both molecules independently to prevent senescence. Hence, downregulation of both molecules in a BRAFV600E melanocytic senescence model as well as in etoposide-treated melanoma cells indicates both as potential senescence markers in melanoma. Our findings suggest that LMNB1 and LBR influence senescence and affect nuclear processes like chromatin condensation and thus are functionally relevant for melanoma progression.
    Keywords:  LBR; LMNB1; chromatin state; heterochromatin foci; melanoma; nuclear lamina; senescence
    DOI:  https://doi.org/10.3390/cells11142154
  22. Leukemia. 2022 Jul 25.
      Age-related immune dysfunction is primarily mediated by immunosenescence which results in ineffective clearance of infective pathogens, poor vaccine responses and increased susceptibility to multi-morbidities. Immunosenescence-related immunometabolic abnormalities are associated with accelerated aging, an inflammatory immune response (inflammaging) and ultimately frailty syndromes. In addition, several conditions can accelerate the development of immunosenescence, including cancer. This is a bi-directional interaction since inflammaging may create a permissive environment for tumour development. Multiple myeloma (MM) is a mature B-cell malignancy that presents in the older population. MM exemplifies the interaction of age- (Host Response Biology; HRB) and disease-related immunological dysfunction, contributing to the development of a frailty syndrome which impairs the therapeutic impact of recent advances in treatment strategies. Understanding the mechanisms by which accelerated immunological aging is induced and the ways in which a tumour such as MM influences this process is key to overcoming therapeutic barriers. A link between cellular mitochondrial dysfunction and the acquisition of an abnormal immune phenotype has recently been described and has widespread physiological consequence beyond the impact on the immune system. Here we outline our current understanding of normal immune aging, describe the mechanism of immunometabolic dysfunction in accelerating this process, and propose the role these processes are playing in the pathogenesis of MM.
    DOI:  https://doi.org/10.1038/s41375-022-01653-7
  23. FEBS J. 2022 Jul 26.
      5-Bromodeoxyuridine (BrdU), a thymidine analogue, is an interesting reagent that modulates various biological phenomena. BrdU, upon incorporation into DNA, causes destabilized nucleosome positioning which leads to changes in heterochromatin organization and gene expression in cells. We have previously shown that BrdU effectively induces cellular senescence, a phenomenon of irreversible growth arrest in mammalian cells. Identification of the mechanism of action of BrdU would provide a novel insight into the molecular mechanisms of cellular senescence. Here we showed that a basic domain in the histone H2B N-terminal tail, termed the HBR (histone H2B repression) domain, is involved in the action of BrdU. Notably, deletion of the HBR domain causes destabilized nucleosome positioning and derepression of gene expression, as does BrdU. We also showed that the genes up-regulated by BrdU significantly overlapped with those by deletion of the HBR domain, the result of which suggested that BrdU and deletion of the HBR domain act in a similar way. Furthermore, we showed that decreased HBR domain function induced cellular senescence or facilitated the induction of cellular senescence. These findings indicated that the HBR domain is crucially involved in the action of BrdU, and also suggested that disordered nucleosome organization may be involved in the induction of cellular senescence.
    Keywords:  5-bromodeoxyuridine; HBR; cellular senescence; histone H2B; nucleosome positioning
    DOI:  https://doi.org/10.1111/febs.16584
  24. Elife. 2022 Jul 26. pii: e79773. [Epub ahead of print]11
      Background: Metabolic syndrome-associated osteoarthritis (MetS-OA) is a distinct osteoarthritis phenotype defined by the coexistence of MetS or its individual components. Despite the high prevalence of MetS-OA, its pathogenic mechanisms are unclear. The aim of this study was to determine the role of cellular senescence in the development of MetS-OA.Methods: Analysis of the human osteoarthritis initiative (OAI) dataset was conducted to investigate the MRI subchondral bone features of MetS-human OA participants. Joint phenotype and senescent cells were evaluated in two MetS-OA mouse models: high-fat diet (HFD)-challenged mice and STR/Ort mice. In addition, the molecular mechanisms by which preosteoclasts become senescent as well as how the senescent preosteoclasts impair subchondral bone microenvironment were characterized using in vitro preosteoclast culture system.
    Results: Humans and mice with MetS are more likely to develop osteoarthritis-related subchondral bone alterations than those without MetS. MetS-OA mice exhibited a rapid increase in joint subchondral bone plate and trabecular thickness before articular cartilage degeneration. Subchondral preosteoclasts undergo senescence at the pre- or early-osteoarthritis stage and acquire a unique secretome to stimulate osteoblast differentiation and inhibit osteoclast differentiation. Antagonizing preosteoclast senescence markedly mitigates pathological subchondral alterations and osteoarthritis progression in MetS-OA mice. At the molecular level, preosteoclast secretome activates COX2-PGE2, resulting in stimulated differentiation of osteoblast progenitors for subchondral bone formation. Administration of a selective COX2 inhibitor attenuated subchondral bone alteration and osteoarthritis progression in MetS-OA mice. Longitudinal analyses of the human Osteoarthritis Initiative (OAI) cohort dataset also revealed that COX2 inhibitor use, relative to non-selective nonsteroidal anti-inflammatory drug use, is associated with less progression of osteoarthritis and subchondral bone marrow lesion worsening in participants with MetS-OA.
    Conclusions: Our findings suggest a central role of a senescent preosteoclast secretome-COX2/PGE2 axis in the pathogenesis of MetS-OA, in which selective COX2 inhibitors may have disease-modifying potential.
    Funding: This work was supported by the National Institutes of Health grant R01AG068226 and R01AG072090 to M.W., R01AR079620 to S.D., and P01AG066603 to X.C.
    Keywords:  medicine; mouse
    DOI:  https://doi.org/10.7554/eLife.79773
  25. Front Cell Dev Biol. 2022 ;10 929708
      Inflammation is a defining factor in disease progression; epigenetic modifications of this first line of defence pathway can affect many physiological and pathological conditions, like aging and tumorigenesis. Inflammageing, one of the hallmarks of aging, represents a chronic, low key but a persistent inflammatory state. Oxidative stress, alterations in mitochondrial DNA (mtDNA) copy number and mis-localized extra-mitochondrial mtDNA are suggested to directly induce various immune response pathways. This could ultimately perturb cellular homeostasis and lead to pathological consequences. Epigenetic remodelling of mtDNA by DNA methylation, post-translational modifications of mtDNA binding proteins and regulation of mitochondrial gene expression by nuclear DNA or mtDNA encoded non-coding RNAs, are suggested to directly correlate with the onset and progression of various types of cancer. Mitochondria are also capable of regulating immune response to various infections and tissue damage by producing pro- or anti-inflammatory signals. This occurs by altering the levels of mitochondrial metabolites and reactive oxygen species (ROS) levels. Since mitochondria are known as the guardians of the inflammatory response, it is plausible that mitochondrial epigenetics might play a pivotal role in inflammation. Hence, this review focuses on the intricate dynamics of epigenetic alterations of inflammation, with emphasis on mitochondria in cancer and aging.
    Keywords:  aging; cancer; epigenetic modifications; inflammation; mitochondria
    DOI:  https://doi.org/10.3389/fcell.2022.929708
  26. FASEB J. 2022 Aug;36(8): e22475
      Recent findings suggest that extracellular heat shock protein 90α (eHSP90α) promotes pulmonary fibrosis, but the underlying mechanisms are not well understood. Aging, especially cellular senescence, is a critical risk factor for idiopathic pulmonary fibrosis (IPF). Here, we aim to investigate the role of eHSP90α on cellular senescence in IPF. Our results found that eHSP90α was upregulated in bleomycin (BLM)-induced mice, which correlated with the expression of senescence markers. This increase in eHSP90α mediated fibroblast senescence and facilitated mitochondrial dysfunction. eHSP90α activated TGF-β signaling through the phosphorylation of the SMAD complex. The SMAD complex binding to p53 and p21 promoters triggered their transcription. In vivo, the blockade of eHSP90α with 1G6-D7, a specific eHSP90α antibody, in old mice attenuated the BLM-induced lung fibrosis. Our findings elucidate a crucial mechanism underlying eHSP90α-induced cellular senescence, providing a framework for aging-related fibrosis interventions.
    Keywords:  HSP90 heat-shock proteins; cellular senescence; mitochondria; pulmonary fibrosis; reactive oxygen species; transforming growth factor beta
    DOI:  https://doi.org/10.1096/fj.202200406RR
  27. Aging (Albany NY). 2022 Jul 30. 14(undefined):
      Alzheimer's disease (AD) risk increases exponentially with age and is associated with multiple molecular hallmarks of aging, one of which is epigenetic alterations. Epigenetic age predictors based on 5' cytosine methylation (DNAm), or epigenetic clocks, have previously suggested that epigenetic age acceleration may occur in AD brain tissue. Epigenetic clocks are promising tools for the quantification of biological aging, yet we hypothesize that investigation of brain aging in AD will be assisted by the development of brain-specific epigenetic clocks. Therefore, we generated a novel age predictor termed PCBrainAge that was trained solely in cortical samples. This predictor utilizes a combination of principal components analysis and regularized regression, which reduces technical noise and greatly improves test-retest reliability. To characterize the scope of PCBrainAge's utility, we generated DNAm data from multiple brain regions in a sample from the Religious Orders Study and Rush Memory and Aging Project. PCBrainAge captures meaningful heterogeneity of aging: Its acceleration demonstrates stronger associations with clinical AD dementia, pathologic AD, and APOE ε4 carrier status compared to extant epigenetic age predictors. It further does so across multiple cortical and subcortical regions. Overall, PCBrainAge's increased reliability and specificity makes it a particularly promising tool for investigating heterogeneity in brain aging, as well as epigenetic alterations underlying AD risk and resilience.
    Keywords:  Alzheimer's disease; age acceleration; brain; epigenetic clocks; unsupervised machine learning
    DOI:  https://doi.org/10.18632/aging.204196
  28. Int J Mol Sci. 2022 Jul 13. pii: 7745. [Epub ahead of print]23(14):
      The retinal pigment epithelium (RPE) expresses the Serpinf1 gene to produce pigment epithelium-derived factor (PEDF), a retinoprotective protein that is downregulated with cell senescence, aging and retinal degenerations. We determined the expression of senescence-associated genes in the RPE of 3-month-old mice that lack the Serpinf1 gene and found that Serpinf1 deletion induced H2ax for histone H2AX protein, Cdkn1a for p21 protein, and Glb1 gene for β-galactosidase. Senescence-associated β-galactosidase activity increased in the Serpinf1 null RPE when compared with wild-type RPE. We evaluated the subcellular morphology of the RPE and found that ablation of Serpinf1 increased the volume of the nuclei and the nucleoli number of RPE cells, implying chromatin reorganization. Given that the RPE phagocytic function declines with aging, we assessed the expression of the Pnpla2 gene, which is required for the degradation of photoreceptor outer segments by the RPE. We found that both the Pnpla2 gene and its protein PEDF-R declined with the Serpinf1 gene ablation. Moreover, we determined the levels of phagocytosed rhodopsin and lipids in the RPE of the Serpinf1 null mice. The RPE of the Serpinf1 null mice accumulated rhodopsin and lipids compared to littermate controls, implying an association of PEDF deficiency with RPE phagocytosis dysfunction. Our findings establish PEDF loss as a cause of senescence-like changes in the RPE, highlighting PEDF as both a retinoprotective and a regulatory protein of aging-like changes associated with defective degradation of the photoreceptor outer segment in the RPE.
    Keywords:  PEDF; RPE; Serpinf1; phagocytosis; senescence
    DOI:  https://doi.org/10.3390/ijms23147745
  29. Cells. 2022 Jul 17. pii: 2221. [Epub ahead of print]11(14):
      Hepatocyte senescence is associated with liver fibrosis. However, the possibility of a direct, causal relation between hepatocyte senescence and hepatic stellate cell (HSC) activation was the subject of this study. Liver biopsy specimens obtained from 50 patients with non-alcoholic fatty liver disease and a spectrum of liver fibrosis stages were stained for p16, αSMA, and picrosirius red (PSR). Primary human HSCs were cultured in conditioned media derived from senescent or control HepG2 cells. Expression of inflammatory and fibrogenic genes in HSCs cultured in conditioned media were studied using RT-PCR. ELISAs were undertaken to measure factors known to activate HSCs in the conditioned media from senescent and control HepG2 cells and serum samples from healthy volunteers or patients with biopsy-proven cirrhosis. There was a strong association between proportion of senescent hepatocytes and hepatic stellate cell activation. Both proportion of hepatocyte senescence and hepatic stellate cell activation were closely associated with fibrosis stage. Inflammatory and fibrogenic genes were up-regulated significantly in HSCs cultured in conditioned media from senescent HepG2 cells compared with control HepG2 cells. PDGF levels were significantly higher in the conditioned media from senescent hepatocytes than control HepG2-conditioned media, and in serum samples from patients with cirrhosis than healthy volunteers. In conclusion, this 'proof of concept' study revealed activation of human HSCs by media from senescent HepG2 cells, indicating direct involvement of factors secreted by senescent hepatocytes in liver fibrosis.
    Keywords:  hepatic stellate cells; hepatocyte senescence; senescence-associated secretory phenotype (SASP) factors; smooth muscle alpha-actin (αSMA)
    DOI:  https://doi.org/10.3390/cells11142221
  30. Antioxidants (Basel). 2022 Jul 26. pii: 1450. [Epub ahead of print]11(8):
      Presbycusis or Age-related hearing loss (ARHL) is a sensorineural hearing loss that affects communication, leading to depression and social isolation. Currently, there are no effective treatments against ARHL. It is known that cocoa products have high levels of polyphenol content (mainly flavonoids), that are potent anti-inflammatory and antioxidant agents with proven benefits for health. The objective is to determine the protective effect of cocoa at the cellular and molecular levels in Presbycusis. For in vitro study, we used House Ear Institute-Organ of Corti 1 (HEI-OC1), stria vascularis (SV-k1), and organ of Corti (OC-k3) cells (derived from the auditory organ of a transgenic mouse). Each cell line was divided into a control group (CTR) and an H2O2 group (induction of senescence by an oxygen radical). Additionally, every group of every cell line was treated with the cocoa polyphenolic extract (CPE), measuring different markers of apoptosis, viability, the activity of antioxidant enzymes, and oxidative/nitrosative stress. The data show an increase of reactive oxidative and nitrogen species (ROS and RNS, respectively) in senescent cells compared to control ones. CPE treatment effectively reduced these high levels and correlated with a significant reduction in apoptosis cells by inhibiting the mitochondrial-apoptotic pathway. Furthermore, in senescence cells, the activity of antioxidant enzymes (Superoxide dismutase, SOD; Catalase, CAT; and Glutathione peroxidase, GPx) was recovered after CPE treatment. Administration of CPE also decreased oxidative DNA damage in the auditory senescent cells. In conclusion, CPE inhibits the activation of senescence-related apoptotic signaling by decreasing oxidative stress in auditory senescent cells.
    Keywords:  age-related hearing loss; antioxidant agents; apoptosis; cocoa; mitochondrial-apoptotic pathway; oxidative stress; senescence; viability
    DOI:  https://doi.org/10.3390/antiox11081450
  31. Cardiovasc Res. 2022 Jul 26. pii: cvac122. [Epub ahead of print]
      AIMS: Declining cellular functional capacity resulting from stress or aging is a primary contributor to impairment of myocardial performance. Molecular pathway regulation of biological processes in cardiac interstitial cells (CICs) is pivotal in stress and aging responses. Altered localization of the RNA binding protein Lin28A has been reported in response to environmental stress, but the role of Lin28A in response to stress in CICs has not been explored. Surface Lin28A redistribution is indicative of stress response in CIC associated with aging and senescence.METHODS AND RESULTS: Localization of Lin28A was assessed by multiple experimental analyses and treatment conditions and correlated to oxidative stress, senescence, and ploidy in adult murine CICs. Surface Lin28A expression is present on 5% of fresh CICs and maintained through passage 2, increasing to 21% in hyperoxic conditions but lowered to 14% in physiologic normoxia. Surface Lin28A is coincident with elevated senescence marker p16 and beta-galactosidase (β-gal) expression in CICs expanded in hyperoxia, and also increases with polyploidization and binucleation of CICs regardless of oxygen culture. Transcriptional profiling of CICs using single cell RNASeq reveals upregulation of pathways associated with oxidative stress in CICs exhibiting surface Lin28A. Induction of surface Lin28A by oxidative stress is blunted by treatment of cells with the antioxidant Trolox in a dose-dependent manner, with 300uM Trolox exposure maintaining characteristics of freshly isolated CICs possessing low expression of surface Lin28A and β-gal with predominantly diploid content.
    CONCLUSION: Surface Lin28A is a marker of environmental oxidative stress in CICs and antioxidant treatment antagonizes this phenotype. The biological significance of Lin28 surface expression and consequences for myocardial responses may provide important insights regarding mitigation of cardiac stress and aging.
    TRANSLATIONAL PERSPECTIVE: Cellular phenotypic changes occurring in response to oxidative stress provides critical insights into biological processes of pathological injury and aging. Surface Lin28A is novel surface marker of oxidative stress conditions that cause DNA damage and cellular senescence. Accumulation of surface Lin28A was inhibited by antioxidant treatment with lowered indices of cellular stress and senescence, revealing the potential of surface Lin28A as a diagnostic stress marker. Furthermore, therapeutic strategies targeted toward surface Lin28 expression set the stage for next generation senolytics to remove stressed or senescent cells and promote recovery from tissue injury or aging.
    Keywords:  Lin28A; oxidative stress; ploidy; senescence; surface marker
    DOI:  https://doi.org/10.1093/cvr/cvac122
  32. Proc Natl Acad Sci U S A. 2022 Aug 02. 119(31): e2119009119
      Unknown processes promote the accumulation of mitochondrial DNA (mtDNA) mutations during aging. Accumulation of defective mitochondrial genomes is thought to promote the progression of heteroplasmic mitochondrial diseases and degenerative changes with natural aging. We used a heteroplasmic Drosophila model to test 1) whether purifying selection acts to limit the abundance of deleterious mutations during development and aging, 2) whether quality control pathways contribute to purifying selection, 3) whether activation of quality control can mitigate accumulation of deleterious mutations, and 4) whether improved quality control improves health span. We show that purifying selection operates during development and growth but is ineffective during aging. Genetic manipulations suggest that a quality control process known to enforce purifying selection during oogenesis also suppresses accumulation of a deleterious mutation during growth and development. Flies with nuclear genotypes that enhance purifying selection sustained higher genome quality, retained more vigorous climbing activity, and lost fewer dopaminergic neurons. A pharmacological agent thought to enhance quality control produced similar benefits. Importantly, similar pharmacological treatment of aged mice reversed age-associated accumulation of a deleterious mtDNA mutation. Our findings reveal dynamic maintenance of mitochondrial genome fitness and reduction in the effectiveness of purifying selection during life. Importantly, we describe interventions that mitigate and even reverse age-associated genome degeneration in flies and in mice. Furthermore, mitigation of genome degeneration improved well-being in a Drosophila model of heteroplasmic mitochondrial disease.
    Keywords:  aging; heteroplasmy; mitochondria; mtDNA; mutations
    DOI:  https://doi.org/10.1073/pnas.2119009119
  33. Stem Cell Res Ther. 2022 07 26. 13(1): 358
      INTRODUCTION: Human mesenchymal stromal cells (MSCs) have immunomodulatory, anti-inflammatory, and tolerogenic effects. Long-term in vitro expansion of MSCs to generate clinical grade products results in the accumulation of senescent-functionally impaired MSCs. Markers to assess the 'senescent load' of MSC products are needed.METHODS: Early and late passage human adipose tissue (AT) MSCs from pediatric and adult donors were characterized using established senescent markers [i.e., MSC size, granularity, and autofluorescence by flow cytometry; β-galactosidase staining (SA-β-gal); CDKN2A and CDKN1A by qRT-PCR]. In gene set enrichment analysis, DPP4 (also known as adenosine deaminase complexing protein 2 or CD26) was found as a prominent dysregulated transcript that was increased in late passage MSC(AT). This was confirmed in a larger number of MSC samples by PCR, flow cytometry, Western blotting, and immunofluorescence. In vitro immunopotency assays compared the function of CD26high and CD26low MSC(AT). The effect of senolytics on the CD26high subpopulation was evaluated in senescent MSC(AT).
    RESULTS: Late passage MSC(AT) had a senescence transcriptome signature. DPP4 was the most differentially enriched gene in senescent MSCs. Late passage senescent MSC(AT) had higher CD26 surface levels and total protein abundance. Moreover, CD26 surface levels were higher in early passage MSC(AT) from adults compared to pediatric donors. CD26 abundance correlated with established senescence markers. CD26high MSC(AT) had reduced immunopotency compared to CD26low MSC(AT). Senolytic treatment induced MSC apoptosis, which decreased the frequencies of CD26high MSC(AT).
    CONCLUSIONS: DPP4 gene expression and DPP4/CD26 protein abundance are markers of replicative senescence in MSC(AT). Samples enriched in CD26high MSC(AT) have reduced immunopotency and CD26high MSCs are reduced with senolytics.
    Keywords:  Adipose tissue (AT); Aging; CD26; Dipeptidyl peptidase 4 (DPP4); Mesenchymal stromal cells (MSCs); Senescence
    DOI:  https://doi.org/10.1186/s13287-022-03026-4
  34. Biomolecules. 2022 Jun 30. pii: 921. [Epub ahead of print]12(7):
      Sirtuin 1 (SIRT) is a class III, NAD+-dependent histone deacetylase that also modulates the activity of numerous non-histone proteins through deacylation. SIRT1 plays critical roles in regulating and integrating cellular energy metabolism, response to stress, and circadian rhythm by modulating epigenetic and transcriptional regulation, mitochondrial homeostasis, proteostasis, telomere maintenance, inflammation, and the response to hypoxia. SIRT1 expression and activity decrease with aging, and enhancing its activity extends life span in various organisms, including mammals, and improves many age-related diseases, including cancer, metabolic, cardiovascular, neurodegenerative, respiratory, musculoskeletal, and renal diseases, but the opposite, that is, aggravation of various diseases, such as some cancers and neurodegenerative diseases, has also been reported. Accordingly, many natural and synthetic SIRT1 activators and inhibitors have been developed. Known SIRT1 activators of natural origin are mainly polyphenols. Nonetheless, various classes of non-polyphenolic monoterpenoids have been identified as inducers of SIRT1 expression and/or activity. This narrative review discusses current information on the evidence that supports the role of those compounds as SIRT1 activators and their potential both as tools for research and as pharmaceuticals for therapeutic application in age-related diseases.
    Keywords:  Sirtuin-1; age-related diseases; aging; iridoids; monoterpenes; monoterpenoids; secoiridoids
    DOI:  https://doi.org/10.3390/biom12070921
  35. Cancers (Basel). 2022 Jul 15. pii: 3437. [Epub ahead of print]14(14):
      Ovarian cancer is a deadly disease attributed to late-stage detection as well as recurrence and the development of chemoresistance. Ovarian cancer stem cells (OCSCs) are hypothesized to be largely responsible for the emergence of chemoresistant tumors. Although chemotherapy may initially succeed at decreasing the size and number of tumors, it leaves behind residual malignant OCSCs. In this study, we demonstrate that aldehyde dehydrogenase 1A1 (ALDH1A1) is essential for the survival of OCSCs. We identified a first-in-class ALDH1A1 inhibitor, compound 974, and used 974 as a tool to decipher the mechanism of stemness regulation by ALDH1A1. The treatment of OCSCs with 974 significantly inhibited ALDH activity, the expression of stemness genes, and spheroid and colony formation. An in vivo limiting dilution assay demonstrated that 974 significantly inhibited CSC frequency. A transcriptomic sequencing of cells treated with 974 revealed a significant downregulation of genes related to stemness and chemoresistance as well as senescence and the senescence-associated secretory phenotype (SASP). We confirmed that 974 inhibited the senescence and stemness induced by platinum-based chemotherapy in functional assays. Overall, these data establish that ALDH1A1 is essential for OCSC survival and that ALDH1A1 inhibition suppresses chemotherapy-induced senescence and stemness. Targeting ALDH1A1 using small-molecule inhibitors in combination with chemotherapy therefore presents a promising strategy to prevent ovarian cancer recurrence and has the potential for clinical translation.
    Keywords:  ALDH1A1; cancer stem cells; chemotherapy resistance; ovarian cancer; senescence
    DOI:  https://doi.org/10.3390/cancers14143437
  36. Redox Biol. 2022 Jul 16. pii: S2213-2317(22)00181-1. [Epub ahead of print]55 102409
      Both environmental exposure to vanadium pentoxide (V2O5, V+5 for its ionic counterparts) and fibroblast senescence are associated with pulmonary fibrosis, but whether V+5 causes fibroblast senescence remains unknown. We found in a dose-response study that 2-40 μM V+5 caused human lung fibroblasts (HLF) senescence with increased senescence-associated β-galactosidase activity and p16 expression, while cell death occurred at higher concentration (LC50, 82 μM V+5). Notably, measures of reactive oxygen species (ROS) production with fluorescence probes showed no association of ROS with V+5-dependent senescence. Preloading catalase (polyethylene-conjugated), a H2O2 scavenger, did not alleviate the cellular senescence induced by V+5. Analyses of the cellular glutathione (GSH) system showed that V+5 oxidized GSH, increased GSH biosynthesis, stimulated cellular GSH efflux and increased protein S-glutathionylation, and addition of N-acetyl cysteine inhibited V+5-elevated p16 expression, suggesting that thiol oxidation mediates V+5-caused senescence. Moreover, strong correlations between GSSG/GSH redox potential (Eh), protein S-glutathionylation, and cellular senescence (R2 > 0.99, p < 0.05) were present in V+5-treated cells. Studies with cell-free and enzyme-free solutions showed that V+5 directly oxidized GSH with formation of V+4 and GSSG in the absence of O2. Analyses of V+5 and V+4 in HLF and culture media showed that V+5 was reduced to V+4 in cells and that a stable V+4/V+5 ratio was rapidly achieved in extracellular media, indicating ongoing release of V+4 and reoxidation to V+5. Together, the results show that V+5-dependent fibroblast senescence is associated with a cellular/extracellular redox cycling mechanism involving the GSH system and occurring under conditions that do not cause cell death. These results establish a mechanism by which environmental vanadium from food, dietary supplements or drinking water, can cause or contribute to lung fibrosis in the absence of high-level occupational exposures and cytotoxic cell death.
    Keywords:  Environmental health; Lung fibrosis; Redox cycling; Thiol/disulfide redox; Vanadate
    DOI:  https://doi.org/10.1016/j.redox.2022.102409
  37. Int J Mol Sci. 2022 Jul 09. pii: 7602. [Epub ahead of print]23(14):
      The development and prevalence of diseases associated with aging presents a global health burden on society. One hallmark of aging is the loss of proteostasis which is caused in part by alterations to the ubiquitin-proteasome system (UPS) and lysosome-autophagy system leading to impaired function and maintenance of mass in tissues such as skeletal muscle. In the instance of skeletal muscle, the impairment of function occurs early in the aging process and is dependent on proteostatic mechanisms. The UPS plays a pivotal role in degradation of misfolded and aggregated proteins. For the purpose of this review, we will discuss the role of the UPS system in the context of age-related loss of muscle mass and function. We highlight the significant role that E3 ubiquitin ligases play in the turnover of key components (e.g., mitochondria and neuromuscular junction) essential to skeletal muscle function and the influence of aging. In addition, we will briefly discuss the contribution of the UPS system to lifespan. By understanding the UPS system as part of the proteostasis network in age-related diseases and disorders such as sarcopenia, new discoveries can be made and new interventions can be developed which will preserve muscle function and maintain quality of life with advancing age.
    Keywords:  E3 ubiquitin ligase; healthspan; protein degradation; proteostasis; sarcopenia
    DOI:  https://doi.org/10.3390/ijms23147602
  38. Front Immunol. 2022 ;13 917972
      Myeloid-derived suppressor cells (MDSC) are defined as a group of myeloid cells with potent immunoregulatory functions that have been shown to be involved in a variety of immune-related diseases including infections, autoimmune disorders, and cancer. In organ transplantation, MDSC promote tolerance by modifying adaptive immune responses. With aging, however, substantial changes occur that affect immune functions and impact alloimmunity. Since the vast majority of transplant patients are elderly, age-specific modifications of MDSC are of relevance. Furthermore, understanding age-associated changes in MDSC may lead to improved therapeutic strategies. Here, we provide a comprehensive update on the effects of aging on MDSC and discuss potential consequences on alloimmunity.
    Keywords:  MDSC; aging; alloimmunity; immunosenescence; myeloid cells; organ transplantation
    DOI:  https://doi.org/10.3389/fimmu.2022.917972
  39. Sci Rep. 2022 Jul 25. 12(1): 11855
      The coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains to spread worldwide. COVID-19 is characterized by the striking high mortality in elderly; however, its mechanistic insights remain unclear. Systemic thrombosis has been highlighted in the pathogenesis of COVID-19, and lung microangiopathy in association with endothelial cells (ECs) injury has been reported by post-mortem analysis of the lungs. Here, we experimentally investigated the SARS-CoV-2 infection in cultured human ECs, and performed a comparative analysis for post-infection molecular events using early passage and replicative senescent ECs. We found that; (1) SARS-CoV-2 infects ECs but does not replicate and disappears in 72 hours without causing severe cell damage, (2) Senescent ECs are highly susceptible to SARS-CoV-2 infection, (3) SARS-CoV-2 infection alters various genes expression, which could cause EC dysfunctions, (4) More genes expression is affected in senescent ECs by SARS-CoV-2 infection than in early passage ECs, which might causes further exacerbated dysfunction in senescent ECs. These data suggest that sustained EC dysfunctions due to SARS-CoV-2 infection may contribute to the microangiopathy in the lungs, leading to deteriorated inflammation and thrombosis in COVID-19. Our data also suggest a possible causative role of EC senescence in the aggravated disease in elder COVID-19 patients.
    DOI:  https://doi.org/10.1038/s41598-022-15976-z
  40. Int J Mol Sci. 2022 Jul 27. pii: 8267. [Epub ahead of print]23(15):
      We previously found that the disorder of soluble epoxide hydrolase (sEH)/cyclooxygenase-2 (COX-2)-mediated arachidonic acid (ARA) metabolism contributes to the pathogenesis of the non-alcoholic fatty liver disease (NAFLD) in mice. However, the exact mechanism has not been elucidated. Accumulating evidence points to the essential role of cellular senescence in NAFLD. Herein, we investigated whether restoring the balance of sEH/COX-2-mediated ARA metabolism attenuated NAFLD via hepatocyte senescence. A promised dual inhibitor of sEH and COX-2, PTUPB, was used in our study to restore the balance of sEH/COX-2-mediated ARA metabolism. In vivo, NAFLD was induced by a high-fat diet (HFD) using C57BL/6J mice. In vitro, mouse hepatocytes (AML12) and mouse hepatic astrocytes (JS1) were used to investigate the effects of PTUPB on palmitic acid (PA)-induced hepatocyte senescence and its mechanism. PTUPB alleviated liver injury, decreased collagen and lipid accumulation, restored glucose tolerance, and reduced hepatic triglyceride levels in HFD-induced NAFLD mice. Importantly, PTUPB significantly reduced the expression of liver senescence-related molecules p16, p53, and p21 in HFD mice. In vitro, the protein levels of γH2AX, p53, p21, COX-2, and sEH were increased in AML12 hepatocytes treated with PA, while Ki67 and PCNA were significantly decreased. PTUPB decreased the lipid content, the number of β-gal positive cells, and the expression of p53, p21, and γH2AX proteins in AML12 cells. Meanwhile, PTUPB reduced the activation of hepatic astrocytes JS1 by slowing the senescence of AML12 cells in a co-culture system. It was further observed that PTUPB enhanced the ratio of autophagy-related protein LC3II/I in AML12 cells, up-regulated the expression of Fundc1 protein, reduced p62 protein, and suppressed hepatocyte senescence. In addition, PTUPB enhanced hepatocyte autophagy by inhibiting the PI3K/AKT/mTOR pathway through Sirt1, contributing to the suppression of senescence. PTUPB inhibits the PI3K/AKT/mTOR pathway through Sirt1, improves autophagy, slows down the senescence of hepatocytes, and alleviates NAFLD.
    Keywords:  COX-2/sEH dual inhibitor; autophagy; non-alcoholic fatty liver disease; senescence
    DOI:  https://doi.org/10.3390/ijms23158267
  41. Exp Mol Med. 2022 Jul 26.
      Intervertebral disc degeneration (IVDD) is a major cause of low back pain (LBP), and excessive senescence and apoptosis of nucleus pulposus (NP) cells are major pathological changes in IVDD. Physical exercise could effectively delay the process of intervertebral disc degeneration; however, its mechanism is still largely unknown. Irisin is an exercise-induced myokine released upon cleavage of the membrane-bound precursor protein fibronectin type III domain-containing protein 5 (FNDC5), and its levels increase after physical exercise. Here, we show that after physical exercise, FNDC5/irisin levels increase in the circulation and NP, senescence and apoptosis are reduced, autophagy is activated in NP tissue, and the progression of IVDD is delayed. Conversely, after knocking out FNDC5, the benefits of physical exercise are compromised. Moreover, the overexpression of FNDC5 in NP tissue effectively alleviated the degeneration of the intervertebral disc (IVD) in rats. By showing that FNDC5/irisin is an important mediator of the beneficial effects of physical exercise in the IVDD model, the study proposes FNDC5/irisin as a novel agent capable of activating autophagy and protecting NP from senescence and apoptosis.
    DOI:  https://doi.org/10.1038/s12276-022-00811-2
  42. Aging Cancer. 2020 Dec;1(1-4): 30-44
      The life expectancy of the world's elderly population (65 and older) continues to reach new milestones with older individuals currently comprising greater than 8.5% (617 million) of the world's population. This percentage is predicted to approach 20% of the world's population by 2050 (representing 1.6 billion people). Despite this amazing feat, many healthcare systems are not equipped to handle the multitude of diseases that commonly manifest with age, including most types of cancers. As the world's aging population grows, cancer treatments continue to evolve. Immunotherapies are a new drug class that has revolutionized our ability to treat previously intractable cancers; however, their efficacy in patients with compromised immune systems remains unclear. In this review, we will discuss how aging-associated losses in immune homeostasis impact the efficacy and safety of immunotherapy treatment in preclinical models of aging. We will also discuss how these findings translate to elderly patients receiving immunotherapy treatment for refractory and relapsed cancers, as well as, strategies that could be explored to improve the efficacy of immunotherapies in aged patients.
    Keywords:  aging; anti-inflammatory drugs; clinical trials; immunity; immunotherapies; preclinical models
    DOI:  https://doi.org/10.1002/aac2.12014
  43. Antioxidants (Basel). 2022 Jul 16. pii: 1379. [Epub ahead of print]11(7):
      Diabetic cardiomyopathy (DCM) is a kind of heart disease that affects diabetic patients and is one of the primary causes of death. We previously demonstrated that deletion of the general control nonderepressible 2 (GCN2) kinase ameliorates cardiac dysfunction in diabetic mice. The aim of this study was to investigate the protective effect of GCN2iB, a GCN2 inhibitor, in type 2 diabetic (T2D) mice induced by a high-fat diet (HFD) plus low-dose streptozotocin (STZ) treatments or deletion of the leptin receptor (db/db). GCN2iB (3 mg/kg/every other day) treatment for 6 weeks resulted in significant decreases in fasting blood glucose levels and body weight and increases in the left ventricular ejection fraction. GCN2iB treatment also attenuated myocardial fibrosis, lipid accumulation and oxidative stress in the hearts of T2D mice, which was associated with decreases in lipid metabolism-related genes and increases in antioxidative genes. Untargeted metabolomics and RNA sequencing analysis revealed that GCN2iB profoundly affected myocardial metabolomic profiles and gene expression profiles. In particular, GCN2iB increased myocardial phosphocreatine and taurine levels and upregulated genes involved in oxidative phosphorylation. In conclusion, the data provide evidence that GCN2iB effectively protects against cardiac dysfunction in T2D mice. Our findings suggest that GCN2iB might be a novel drug candidate for DCM therapy.
    Keywords:  GCN2iB; diabetic cardiomyopathy; lipid accumulation; oxidative stress
    DOI:  https://doi.org/10.3390/antiox11071379
  44. Nat Commun. 2022 Jul 25. 13(1): 4170
      Vascular dysfunction is a hallmark of chronic diseases in elderly. The contribution of the vasculature to lung repair and fibrosis is not fully understood. Here, we performed an epigenetic and transcriptional analysis of lung endothelial cells (ECs) from young and aged mice during the resolution or progression of bleomycin-induced lung fibrosis. We identified the transcription factor ETS-related gene (ERG) as putative orchestrator of lung capillary homeostasis and repair, and whose function is dysregulated in aging. ERG dysregulation is associated with reduced chromatin accessibility and maladaptive transcriptional responses to injury. Loss of endothelial ERG enhances paracrine fibroblast activation in vitro, and impairs lung fibrosis resolution in young mice in vivo. scRNA-seq of ERG deficient mouse lungs reveales transcriptional and fibrogenic abnormalities resembling those associated with aging and human lung fibrosis, including reduced number of general capillary (gCap) ECs. Our findings demonstrate that lung endothelial chromatin remodeling deteriorates with aging leading to abnormal transcription, vascular dysrepair, and persistent fibrosis following injury.
    DOI:  https://doi.org/10.1038/s41467-022-31890-4
  45. Nat Rev Immunol. 2022 Jul 25.
      Numerous mitochondrial constituents and metabolic products can function as damage-associated molecular patterns (DAMPs) and promote inflammation when released into the cytosol or extracellular milieu. Several safeguards are normally in place to prevent mitochondria from eliciting detrimental inflammatory reactions, including the autophagic disposal of permeabilized mitochondria. However, when the homeostatic capacity of such systems is exceeded or when such systems are defective, inflammatory reactions elicited by mitochondria can become pathogenic and contribute to the aetiology of human disorders linked to autoreactivity. In addition, inefficient inflammatory pathways induced by mitochondrial DAMPs can be pathogenic as they enable the establishment or progression of infectious and neoplastic disorders. Here we discuss the molecular mechanisms through which mitochondria control inflammatory responses, the cellular pathways that are in place to control mitochondria-driven inflammation and the pathological consequences of dysregulated inflammatory reactions elicited by mitochondrial DAMPs.
    DOI:  https://doi.org/10.1038/s41577-022-00760-x