bims-senagi Biomed News
on Senescence and aging
Issue of 2021‒10‒17
thirty-six papers selected by
Maria Grazia Vizioli
Mayo Clinic


  1. Mech Ageing Dev. 2021 Oct 07. pii: S0047-6374(21)00157-3. [Epub ahead of print] 111585
      Cellular senescence is a potential tumor-suppressive mechanism that generally results in an irreversible cell cycle arrest. Senescent cells accumulate with age and actively secrete soluble factors, collectively termed the 'senescence-associated secretory phenotype' (SASP), which has both beneficial and detrimental effects. Although the contribution of senescent cells to age-related pathologies has been well-established outside the brain, emerging evidence indicates that brain cells also undergo cellular senescence and contribute to neuronal loss in the context of age-related neurodegenerative diseases. Contribution of senescent cells in the pathogenesis of neurological disorders has led to the possibility of eliminating senescence cells via pharmacological compounds called senolytics. Recently several senolytics have been demonstrated to elicit improved cognitive performance and healthspan in mouse models of neurodegeneration. However, their translation for use in the clinic still holds several potential challenges. This review summarizes available senolytics, their purported mode of action, and possible off-target effects. We also discuss possible alternative strategies that may help minimize potential side-effects associated with the senolytics approach.
    Keywords:  Aging; Immune surveillance; Neurodegeneration; Senescence; Senescence-associated secretory phenotype; Senolytic; neurodegenerative diseases
    DOI:  https://doi.org/10.1016/j.mad.2021.111585
  2. Exp Gerontol. 2021 Oct 09. pii: S0531-5565(21)00370-3. [Epub ahead of print] 111588
      Senescent cells play an important role in mammalian ageing and in the etiology of age-related diseases. Treatment of mice with senolytics - drugs that selectively remove senescent cells - causes an extension of median lifespan but has little effect on maximum lifespan. Postponement of some mortality to later ages, without a corresponding increase in maximum mortality, can be termed 'compression of mortality'. When we fit the standard Gompertz mortality model to the survival data following senolytic treatment, we find an increase in the slope parameter, commonly described as the 'actuarial ageing rate'. These observations raise important questions about the actions of senolytic treatments and their effects on health and survival, which are not yet sufficiently understood. To explore how the survival data from senolytics experiments might be explained, we combine a recent exploration of the evolutionary basis of cellular senescence with theoretical consideration of the molecular processes that might be involved. We perform numerical simulations of senescent cell accumulation and senolytic treatment in an ageing population. The simulations suggest that while senolytics diminish the burden of senescent cells, they may also impair the general repair capacity of the organism, leading to a faster accumulation post-treatment of new senescent cells. Our results suggest a framework to address the benefits and possible side effects of senolytic therapies, with the potential to aid in the design of optimal treatment regimens.
    Keywords:  Ageing; Cellular senescence; Computer simulation; Mathematical modelling; Senolytics
    DOI:  https://doi.org/10.1016/j.exger.2021.111588
  3. Respir Investig. 2021 Oct 11. pii: S2212-5345(21)00158-1. [Epub ahead of print]
      Chronic obstructive pulmonary disease (COPD),1 a representative aging-related pulmonary disorder, is mainly caused by cigarette smoke (CS) exposure. Age is one of the most important risk factors for COPD development, and increased cellular senescence in tissues and organs is a component of aging. CS exposure can induce cellular senescence, as characterized by irreversible growth arrest and aberrant cytokine secretion of the senescence-associated secretory phenotype; thus, accumulation of senescent cells is widely implicated in COPD pathogenesis. CS-induced oxidative modifications to cellular components may be causally linked to accelerated cellular senescence, especially during accumulation of damaged macromolecules. Autophagy is a conserved mechanism whereby cytoplasmic components are sent for lysosomal degradation to maintain proteostasis. Autophagy diminishes with age, and loss of proteostasis is one of the hallmarks of aging. We have reported the involvement of insufficient autophagy in regulating CS-induced cellular senescence with respect to COPD pathogenesis. However, the role of autophagy in COPD pathogenesis can vary based on levels of cell stress and type of selective autophagy because excessive activation of autophagy can be responsible for inducing regulated cell death. Senotherapies targeting cellular senescence may be effective COPD treatments. Autophagy activation could be a promising sonotherapeutic approach, but the optimal modality of autophagy activation should be examined in future studies.
    Keywords:  Autophagy; Chronic obstructive pulmonary disease; Lysosome; Senescence; Senotherapy
    DOI:  https://doi.org/10.1016/j.resinv.2021.09.003
  4. J Bone Miner Res. 2021 Oct 11.
      Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease caused by mutations in Activin A receptor type I/Activin-like kinase 2 (ACVR1/ALK2), a bone morphogenetic protein (BMP) type I receptor, resulting in the formation of extra-skeletal or heterotopic ossification (HO) and others features consistent with premature aging. During the first decade of life, episodic bouts of inflammatory swellings (flare-ups) occur which are typically triggered by soft tissue trauma. Through an endochondral process, these exacerbations ultimately result in skeletal muscles, tendons, ligaments, fascia, and aponeuroses transforming into ectopic bone, rendering movement impossible. We have previously shown that soft tissue injury causes early FOP lesions characterized by cellular hypoxia, cellular damage, and local inflammation. Here we demonstrate that muscle injury in FOP also results in senescent cell accumulation, and that senescence promotes tissue reprogramming toward a chondrogenic fate in FOP muscle but not wild-type muscle. Using a combination of senolytic drugs we show that senescent cell clearance and reduction in the senescence associated secretory phenotype (SASP) ameliorates HO in mouse models of FOP. We conclude that injury-induced senescent cell burden and the SASP contribute to FOP lesion formation and that tissue reprogramming in FOP is mediated by cellular senescence, altering myogenic cell fate toward a chondrogenic cell fate. Furthermore, pharmacological removal of senescent cells abrogates tissue reprogramming and HO formation. Here we provide proof-of-principle evidence for senolytic drugs as a future therapeutic strategy in FOP. This article is protected by copyright. All rights reserved.
    Keywords:  cellular senescence; fibrodysplasia ossificans progressiva; heterotopic ossification; muscle injury; senolytics
    DOI:  https://doi.org/10.1002/jbmr.4458
  5. Mech Ageing Dev. 2021 Oct 09. pii: S0047-6374(21)00155-X. [Epub ahead of print] 111583
      Despite continued increases in human life expectancy, the factors determining the rate of human biological aging remain unknown. Without understanding the molecular mechanisms underlying aging, efforts to prevent aging are unlikely to succeed. The tumor suppression theory of aging introduced here proposes somatic mutation as the proximal cause of aging, but postulates that oncogenic transformation and clonal expansion, not functional impairment, are the relevant consequences of somatic mutation. Obesity and caloric restriction accelerate and decelerate aging due to their effect on cell proliferation, during which most mutations arise. Most phenotypes of aging are merely tumor-suppressive mechanisms that evolved to limit malignant growth, the dominant age-related cause of death in early and middle life. Cancer limits life span for most long-lived mammals, a phenomenon known as Peto's paradox. Its conservation across species demonstrates that mutation is a fundamental but hard limit on mammalian longevity. Cell senescence and apoptosis and differentiation induced by oncogenes, telomere shortening or DNA damage evolved as a second line of defense to limit the tumorigenic potential of clonally expanding cells, but accumulating senescent cells, senescence-associated secretory phenotypes and stem cell exhaustion eventually cause tissue dysfunction and the majority, if not most, phenotypes of aging.
    Keywords:  aging; cancer; cell senescence; somatic mutation; tumor suppression
    DOI:  https://doi.org/10.1016/j.mad.2021.111583
  6. Int J Mol Sci. 2021 Sep 23. pii: 10215. [Epub ahead of print]22(19):
      Cellular senescence is more than a proliferative arrest in response to various stimuli. Senescent cells (SC) participate in several physiological processes, and their adequate removal is essential to maintain tissue and organism homeostasis. However, SC accumulation in aging and age-related diseases alters the tissue microenvironment leading to deterioration. The immune system clears the SC, but the specific scenarios and mechanisms related to recognizing and eliminating them are unknown. Hence, we aimed to evaluate the existence of three regulatory signals of phagocytic function, CD47, major histocompatibility complex class I (MHC-I), and calreticulin, present in the membrane of SC. Therefore, primary fibroblasts were isolated from CD1 female mice lungs, and stress-induced premature senescence (SIPS) was induced with hydrogen peroxide. Replicative senescence (RS) was used as a second senescent model. Our results revealed a considerable increment of CD47 and MHC-I in RS and SIPS fibroblasts. At the same time, no significant changes were found in calreticulin, suggesting that those signals might be associated with evading immune system recognition and thus averting senescent cells clearance.
    Keywords:  CD47; MHC class I; calreticulin; senescent cell clearance regulation
    DOI:  https://doi.org/10.3390/ijms221910215
  7. Expert Opin Ther Targets. 2021 Oct 09.
      INTRODUCTION: New insights indicate a causative link between cellular senescence and liver fibrosis. Senescent hepatic stellate cells (HSCs) can facilitate fibrosis resolution, while senescence in hepatocytes and cholangiocytes acts as a potent mechanism driving liver fibrogenesis. In many clinical studies, telomeres and mitochondrial DNA contents, which are both ageing biomarkers, were reportedly associated with a degree of liver fibrosis in patients with chronic liver diseases (CLDs); this highlights their potential as biomarkers for liver fibrogenesis. A deeper understanding of mechanisms underlying multi-step progression of senescence may yield new therapeutic strategies for age-related chronic liver pathologies.AREAS COVERED: This review examines the recent findings from preclinical and clinical studies on mechanisms of senescence in liver fibrogenesis and its involvement in liver fibrosis. A comprehensive literature search in electronic databases consisting of PubMed and Scopus from inception to August 31, 2021 was performed.
    EXPERT OPINION: Cellular senescence has diagnostic, prognostic, and therapeutic potential in progressive liver complications, especially liver fibrosis. Stimulating or reinforcing the immune response against senescent cells may be a promising and forthright biotherapeutic strategy. This approach will need a deeper understanding of the immune system's ability to eliminate senescent cells as well as the molecular and cellular mechanisms underlying this process.
    Keywords:  Cellular senescence; age-related chronic liver diseases; liver fibrosis; mitochondrial dysfunction; telomere shortening
    DOI:  https://doi.org/10.1080/14728222.2021.1992385
  8. Sci Rep. 2021 Oct 13. 11(1): 20358
      A wide range of diseases have been shown to be influenced by the accumulation of senescent cells, from fibrosis to diabetes, cancer, Alzheimer's and other age-related pathologies. Consistent with this, clearance of senescent cells can prolong healthspan and lifespan in in vivo models. This provided a rationale for developing a new class of drugs, called senolytics, designed to selectively eliminate senescent cells in human tissues. The senolytics tested so far lack specificity and have significant off-target effects, suggesting that a targeted approach could be more clinically relevant. Here, we propose to use an extracellular epitope of B2M, a recently identified membrane marker of senescence, as a target for the specific delivery of toxic drugs into senescent cells. We show that an antibody-drug conjugate (ADC) against B2M clears senescent cells by releasing duocarmycin into them, while an isotype control ADC was not toxic for these cells. This effect was dependent on p53 expression and therefore more evident in stress-induced senescence. Non-senescent cells were not affected by either antibody, confirming the specificity of the treatment. Our results provide a proof-of-principle assessment of a novel approach for the specific elimination of senescent cells using a second generation targeted senolytic against proteins of their surfaceome, which could have clinical applications in pathological ageing and associated diseases.
    DOI:  https://doi.org/10.1038/s41598-021-99852-2
  9. Front Aging Neurosci. 2021 ;13 742632
      Mild traumatic brain injury (mTBI) can lead to long-term neurological dysfunction and increase one's risk of neurodegenerative disease. Several repercussions of mTBI have been identified and well-studied, including neuroinflammation, gliosis, microgliosis, excitotoxicity, and proteinopathy - however the pathophysiological mechanisms activating these pathways after mTBI remains controversial and unclear. Emerging research suggests DNA damage-induced cellular senescence as a possible driver of mTBI-related sequalae. Cellular senescence is a state of chronic cell-cycle arrest and inflammation associated with physiological aging, mood disorders, dementia, and various neurodegenerative pathologies. This narrative review evaluates the existing studies which identify DNA damage or cellular senescence after TBI (including mild, moderate, and severe TBI) in both experimental animal models and human studies, and outlines how cellular senescence may functionally explain both the molecular and clinical manifestations of TBI. Studies on this subject clearly show accumulation of various forms of DNA damage (including oxidative damage, single-strand breaks, and double-strand breaks) and senescent cells after TBI, and indicate that cellular senescence may be an early event after TBI. Further studies are required to understand the role of sex, cell-type specific mechanisms, and temporal patterns, as senescence may be a pathway of interest to target for therapeutic purposes including prognosis and treatment.
    Keywords:  brain trauma; cellular senescence; chronic traumatic encephalopathy; concussion; mild traumatic brain injury
    DOI:  https://doi.org/10.3389/fnagi.2021.742632
  10. J Proteome Res. 2021 Oct 12.
      Senescence is a permanent cell cycle arrest that occurs in response to cellular stress and promotes age-related disease. Because senescence differs greatly depending on cell type and senescence inducer, continued progress in the characterization of senescent cells is needed. Here, we analyzed primary human mammary epithelial cells (HMECs), a model system for aging and cancer, using mass spectrometry-based proteomics. By integrating data from replicative senescence, immortalization by telomerase reactivation, and quiescence, we identified a robust proteomic signature of HMEC senescence consisting of 34 upregulated and 10 downregulated proteins. This approach identified known senescence biomarkers including β-galactosidase (GLB1) as well as novel senescence biomarkers including catechol O-methyltransferase (COMT), synaptic vesicle membrane protein VAT-1 homolog (VAT1), and plastin-1/3 (PLS1/PLS3). Gene ontology enrichment analysis demonstrated that senescent HMECs upregulated lysosomal proteins and downregulated RNA metabolic processes. In addition, a classification model based on our proteomic signature successfully discriminated proliferating and senescent HMECs at the transcriptional level. Finally, we found that the HMEC senescence signature was positively and negatively correlated with proteomic alterations in HMEC aging and breast cancer, respectively. Taken together, our results demonstrate the power of proteomics to identify cell type-specific signatures of senescence and advance the understanding of senescence in HMECs.
    Keywords:  aging; breast cancer; data integration; mammary epithelial cell; proteomics; replicative senescence
    DOI:  https://doi.org/10.1021/acs.jproteome.1c00659
  11. Proc Natl Acad Sci U S A. 2021 Oct 19. pii: e2015666118. [Epub ahead of print]118(42):
      In an aging population, intense interest has shifted toward prolonging health span. Mounting evidence suggests that cellular reactive species are propagators of cell damage, inflammation, and cellular senescence. Thus, such species have emerged as putative provocateurs and targets for senolysis, and a clearer understanding of their molecular origin and regulation is of paramount importance. In an inquiry into signaling triggered by aging and proxy instigator, hyperglycemia, we show that NADPH Oxidase (NOX) drives cell DNA damage and alters nuclear envelope integrity, inflammation, tissue dysfunction, and cellular senescence in mice and humans with similar causality. Most notably, selective NOX1 inhibition rescues age-impaired blood flow and angiogenesis, vasodilation, and the endothelial cell wound response. Indeed, NOX1i delivery in vivo completely reversed age-impaired hind-limb blood flow and angiogenesis while disrupting a NOX1-IL-6 senescence-associated secretory phenotype (SASP) proinflammatory signaling loop. Relevant to its comorbidity with age, clinical samples from diabetic versus nondiabetic subjects reveal as operant this NOX1-mediated vascular senescence and inflammation in humans. On a mechanistic level, our findings support a previously unidentified role for IL-6 in this feedforward inflammatory loop and peroxisome proliferator-activated receptor gamma (PPARγ) down-regulation as inversely modulating p65-mediated NOX1 transcription. Targeting this previously unidentified NOX1-SASP signaling axis in aging is predicted to be an effective strategy for mitigating senescence in the vasculature and other organ systems.
    Keywords:  IL-6; NADPH oxidase; aging; endothelium; senescence
    DOI:  https://doi.org/10.1073/pnas.2015666118
  12. FEBS J. 2021 Oct 15.
      Cellular senescence in cancer development is known to have tumor-suppressive and tumor-promoting roles. Recent studies have revealed numerous molecular mechanisms of senescence followed by SASP induction and showed the significance of senescence on both sides. Cellular senescence in stromal cells is one of the reasons for therapeutic resistance in advanced cancer; thus, it is an inevitable phenomenon to address while seeking an effective cancer treatment strategy. This review summarizes the molecular mechanisms regarding cellular senescence, focusing on the dual roles played by senescence, and offers some direction toward successful treatments targeting harmful senescent cells.
    Keywords:  CAFs; SASP; epigenome; senescence; senolytic drug
    DOI:  https://doi.org/10.1111/febs.16231
  13. FASEB Bioadv. 2021 Oct;3(10): 787-801
      Extracellular vesicles (EVs) are released by many different cell types throughout the body and play a role in a diverse range of biological processes. EVs circulating in blood as well as in other body fluids undergo dramatic alterations over an organism's lifespan that are only beginning to be elucidated. The exact nature of these changes is an area of active and intense investigation, but lacks clear consensus due to the substantial heterogeneity in EV subpopulations and insufficiencies in current technologies. Nonetheless, emerging evidence suggests that EVs regulate systemic aging as well as the pathophysiology of age-related diseases. Here, we review the current literature investigating EVs and aging with an emphasis on consequences for the maintenance of human healthspan. Intriguingly, the biological utility of EVs both in vitro and in vivo and across contexts depends on the states of the source cells or tissues. As such, EVs secreted by cells in an aged or pathological state may impose detrimental consequences on recipient cells, while EVs secreted by youthful or healthy cells may promote functional improvement. Thus, it is critical to understand both functions of EVs and tip the balance toward their beneficial effects as an antiaging intervention.
    Keywords:  NAD+ metabolism; ageing; aging; exosome; extracellular vesicle; longevity
    DOI:  https://doi.org/10.1096/fba.2021-00077
  14. Mod Pathol. 2021 Oct 13.
      Focal nodular hyperplasia (FNH) is a polyclonal tumour-like hepatic lesion characterised by parenchymal nodules, connective tissue septa without interlobular bile ducts, pronounced ductular reaction and inflammation. It may represent a response to local arterial hyperperfusion and hyperoxygenation resulting in oxidative stress. We aimed at obtaining closer insight into the pathogenesis of FNH with its characteristic morphologic features. Immunohistochemistry and immunofluorescence microscopy was performed on FNH specimens using antibodies against keratins (K) 7 and 19, neural cell adhesion molecule (NCAM), lamin B1, senescence markers (CDK inhibitor 1/p21Cip1, CDK inhibitor /p16Ink4a, senescence-associated (SA) β- galactosidase activity), proliferation markers (Ki-67, proliferating-cell nuclear antigen (PCNA)), and the abnormally phosphorylated histone γ-H2AX, indicating DNA double strand breaks; moreover SA β- galactosidase activity was determined histochemically. Ductular metaplasia of hepatocytes indicated by K7 expression in the absence of K19 plays a major role in the development of ductular reaction in FNH. Moreover, the expression of senescence markers (p21Cip1, p16Ink4a, γ-H2AX, SA β-galactosidase activity) in hepatocytes and cholangiocytes suggests that stress-induced cellular senescence contributes to fibrosis and inflammation via production of components of the senescence-associated secretory phenotype. Expression of proliferation markers (Ki-67, PCNA) was not enhanced in hepatocytes and biliary cells. Senescence and ductular metaplasia of hepatocytes may thus be involved in inflammation, fibrosis and apoptosis resistance. Hence, fibrosis, inflammation and reduced apoptotic cell death, rather than proliferation (hyperplasia) may be responsible for increased tissue mass and tumour-like appearance of FNH.
    DOI:  https://doi.org/10.1038/s41379-021-00940-5
  15. Sci Rep. 2021 Oct 11. 11(1): 20168
      High prevalence of non-healing chronic wounds contributes to a huge healthcare burden across the world. Early treatment interventions for non-healing wounds are vital. It was previously shown that accumulation of 15% or more of senescent cells in a chronic wound edge is an indicator that the wound is unlikely to heal. However, determining the presence of senescent cells would require invasive procedures such as tissue biopsies to be taken. In this study, we found a strong correlation between decreased collagen area and presence of senescent cells in human chronic wounds i.e. venous leg ulcer (VLU), diabetic foot ulcer (DFU) and pressure ulcer (PRU). We also report that the lowest collagen levels were found in VLU patients less than 60 years of age, with a persistent wound of > 24 months. Elevated levels of senescent cells were also found in VLU of males. Second harmonic imaging of collagen at the edge of chronic wounds with a handheld multiphoton device could be used to predict the number of senescent cells, indicating if the wound is on a healing trajectory or not. Our data support the use of collagen imaging in cutaneous wound assessment for a faster and non-invasive method to predict cellular senescence and determining wound trajectory of healing.
    DOI:  https://doi.org/10.1038/s41598-021-99643-9
  16. Cell Rep. 2021 Oct 12. pii: S2211-1247(21)01277-8. [Epub ahead of print]37(2): 109813
      A heterozygous missense mutation of the islet β cell-enriched MAFA transcription factor (p.Ser64Phe [S64F]) is found in patients with adult-onset β cell dysfunction (diabetes or insulinomatosis), with men more prone to diabetes than women. This mutation engenders increased stability to the unstable MAFA protein. Here, we develop a S64F MafA mouse model to determine how β cell function is affected and find sex-dependent phenotypes. Heterozygous mutant males (MafAS64F/+) display impaired glucose tolerance, while females are slightly hypoglycemic with improved blood glucose clearance. Only MafAS64F/+ males show transiently higher MafA protein levels preceding glucose intolerance and sex-dependent changes to genes involved in Ca2+ signaling, DNA damage, aging, and senescence. MAFAS64F production in male human β cells also accelerate cellular senescence and increase senescence-associated secretory proteins compared to cells expressing MAFAWT. These results implicate a conserved mechanism of accelerated islet aging and senescence in promoting diabetes in MAFAS64F carriers in a sex-biased manner.
    Keywords:  MAFA; beta cell; cellular senescence; diabetes; islet biology; sexual dimorphism
    DOI:  https://doi.org/10.1016/j.celrep.2021.109813
  17. Front Cell Dev Biol. 2021 ;9 716610
      Hedgehog (HH) signaling plays a critical role in osteoarthritis (OA) pathogenesis, but the molecular mechanism remains to be elucidated. We show here that Sonic Hedgehog (SHH) gene expression is initiated in human normal cartilage stromal cells (NCSC) and increased in OA cartilage mesenchymal stromal cells (OA-MSCs) during aging. Manifesting a reciprocal cellular distribution pattern, the SHH receptors PTCH1 and SMO and transcription factors GLI2 and GLI3 are expressed by chondrocytes (OAC) in OA cartilage. SHH autocrine treatment of osteoarthritis MSC stimulates proliferation, chondrogenesis, hypertrophy, and replicative senescence with elevated SASP gene expression including IL1B, IL6, CXCL1, and CXCL8. SHH paracrine treatment of OAC suppresses COL2A1, stimulates MMP13, and induces chondrocyte apoptosis. The OA-MSC conditioned medium recapitulates the stimulatory effects of SHH on OAC catabolism and apoptosis. SHH knock-down in OA-MSC not only inhibits catabolic and senescence marker expression in OA-MSC, but also abolishes the effect of the OA-MSC conditioned medium on OAC catabolism and apoptosis. We propose that SHH is a key mediator between OA-MSC and OA chondrocytes interaction in human OA cartilage via two mechanisms: (1) SHH mediates MSC growth and aging by activating not only its proliferation and chondrogenesis, but also low-grade inflammation and replicative senescence, and (2) SHH mediates OA-MSC-induced OAC catabolism and apoptosis by creating a pro-inflammatory microenvironment favoring tissue degeneration during OA pathogenesis.
    Keywords:  cartilage; chondrocyte; mesenchymal stromal (stem) cell (MSC); osteoarthritis; senescence associated secretory phenotype (SASP); sonic hedgehog (SHH)
    DOI:  https://doi.org/10.3389/fcell.2021.716610
  18. J Neuroinflammation. 2021 Oct 13. 18(1): 228
      BACKGROUND: Immune involvement is well-described in Parkinson's disease (PD), including an adaptive T lymphocyte response. Given the increasing prevalence of Parkinson's disease in older age, age-related dysregulation of T lymphocytes may be relevant in this disorder, and we have previously observed changes in age-associated CD8+ T cell subsets in mid-stage PD. This study aimed to further characterise T cell immunosenescence in newly diagnosed PD patients, including shifts in CD4+ and CD8+ subpopulations, and changes in markers of cellular ageing in CD8+ T lymphocytes.METHODS: Peripheral blood mononuclear cells were extracted from the blood of 61 newly diagnosed PD patients and 63 age- and sex-matched controls. Flow cytometric analysis was used for immunophenotyping of CD8+ and CD4+ lymphocyte subsets, and analysis of recent thymic emigrant cells. Telomere length within CD8+ T lymphocytes was assessed, as well as the expression of the telomerase reverse transcriptase enzyme (hTERT), and the cell-ageing markers p16INK4a and p21CIP1/Waf1.
    RESULTS: The number of CD8+ TEMRA T cells was found to be significantly reduced in PD patients compared to controls. The expression of p16INK4a in CD8+ lymphocytes was also lower in patients versus controls. Chronic latent CMV infection was associated with increased senescent CD8+ lymphocytes in healthy controls, but this shift was less apparent in PD patients.
    CONCLUSIONS: Taken together, our data demonstrate a reduction in CD8+ T cell replicative senescence which is present at the earliest stages of Parkinson's disease.
    Keywords:  Ageing markers; Immunosenescence; Parkinson’s disease; T lymphocytes
    DOI:  https://doi.org/10.1186/s12974-021-02287-9
  19. Aging Dis. 2021 Oct;12(7): 1713-1728
      FoxOs and their post-translational modification by phosphorylation, acetylation, and methylation can affect epigenetic modifications and promote the expression of downstream target genes. Therefore, they ultimately affect cellular and biological functions during aging or occurrence of age-related diseases including cancer, diabetes, and kidney diseases. As known for its key role in aging, FoxOs play various biological roles in the aging process by regulating reactive oxygen species, lipid accumulation, and inflammation. FoxOs regulated by PI3K/Akt pathway modulate the expression of various target genes encoding MnSOD, catalases, PPARγ, and IL-1β during aging, which are associated with age-related diseases. This review highlights the age-dependent differential regulatory mechanism of Akt/FoxOs axis in metabolic and non-metabolic organs. We demonstrated that age-dependent suppression of Akt increases the activity of FoxOs (Akt/FoxOs axis upregulation) in metabolic organs such as liver and muscle. This Akt/FoxOs axis could be modulated and reversed by antiaging paradigm calorie restriction (CR). In contrast, hyperinsulinemia-mediated PI3K/Akt activation inhibited FoxOs activity (Akt/FoxOs axis downregulation) leading to decrease of antioxidant genes expression in non-metabolic organs such as kidneys and lungs during aging. These phenomena are reversed by CR. The results of studies on the process of aging and CR indicate that the Akt/FoxOs axis plays a critical role in regulating metabolic homeostasis, redox stress, and inflammation in various organs during aging process. The benefical actions of CR on the Akt/FoxOs axis in metabolic and non-metabolic organs provide further insights into the molecular mechanisms of organ-differential roles of Akt/FoxOs axis during aging.
    Keywords:  Aging; Akt/FoxOs axis; CR; inflammation; metabolic organs; non-metabolic organs
    DOI:  https://doi.org/10.14336/AD.2021.0225
  20. Aging Dis. 2021 Oct;12(7): 1693-1712
      Owing to the growing elderly population, age-related problems are gaining increasing attention from the scientific community. With senescence, the intestine undergoes a spectrum of changes and infirmities that are likely the causes of overall aging. Therefore, identification of the aged intestine and the search for novel strategies to rescue it, are required. Although progress has been made in research on some components of the aged intestine, such as intestinal stem cells, the comprehensive understanding of intestinal aging is still limited, and this restricts the in-depth search for efficient strategies. In this concise review, we discuss several aspects of intestinal aging. More emphasis is placed on the appraisal of current and potential strategies to alleviate intestinal aging, as well as future targets to rejuvenate the aged intestine.
    Keywords:  aging; bile acids; intestinal microbiota; intestine; short-chain fatty acids
    DOI:  https://doi.org/10.14336/AD.2021.0202
  21. Mol Omics. 2021 Oct 11. 17(5): 725-739
      Paradoxically, oncogenes that drive cell cycle progression may also trigger pathways leading to senescence, thereby inhibiting the growth of tumorigenic cells. Knowledge of how these pathways operate, and how tumor cells may evade these pathways, is important for understanding tumorigenesis. The Y1 cell line, which harbors an amplification of the proto-oncogene Ras, rapidly senesces in response to the mitogen fibroblast growth factor-2 (FGF-2). To gain a more complete picture of how FGF-2 promotes senescence, we employed a multi-omics approach to analyze histone modifications, mRNA and protein expression, and protein phosphorylation in Y1 cells treated with FGF-2. Compared to control cells treated with serum alone, FGF-2 caused a delayed accumulation of acetylation on histone H4 and higher levels of H3K27me3. Sequencing analysis revealed decreased expression of cell cycle-related genes with concomitant loss of H3K27ac. At the same time, FGF-2 promoted the expression of p21, various cytokines, and MAPK-related genes. Nuclear envelope proteins, particularly lamin B1, displayed increased phosphorylation in response to FGF-2. Proteome analysis suggested alterations in cellular metabolism, as evident by modulated expression of enzymes involved in purine biosynthesis, tRNA aminoacylation, and the TCA cycle. We propose that Y1 cells senesce due to an inability to progress through the cell cycle, which may stem from DNA damage or TGFb signaling. Altogether, the phenotype of Y1 cells is consistent with rapidly established oncogene-induced senescence, demonstrating the synergy between growth factors and oncogenes in driving senescence and bringing additional insight into this tumor suppressor mechanism.
    DOI:  https://doi.org/10.1039/d1mo00019e
  22. Cell Biol Int. 2021 Oct 13.
      Deletion and mutation of phosphatase and tensin homolog deleted on chromosome10 (PTEN) are closely associated with the occurrence of tumors. Tumor suppressor gene PTEN mutation plays an important role in the pathogenesis of ovarian cancer. However, it has been unclear whether it can regulate the senescence of ovarian cancer cells. We speculated that PTEN might inhibit the occurrence and development of ovarian cancer by promoting the expression of P21. We found that the expression of TRIM39 in human ovarian cancer was significantly diminished. In SKOV3 cells treated with naringin, the expression of TRIM39, which binds P21 and inhibits P21 degradation, was significantly elevated. Real-time PCR, western blot and immunofluorescence were used to detected the expression of PTEN, p21 and TRIM39, β-galactosidase Staining was used to detect cell senescence, Ki67 staining was used to observe cell proliferation, Trim39 interference or overexpression assay was used to detect its function. We speculated that PTEN might promote SKOV3 cell senescence by increasing TRIM39 expression and decreasing P21 degradation. Furthermore, by interfering with TRIM39 in SKOV3 cells, we found that the expression of P21 was downregulated, and the number of senescent SKOV3 cells decreased. With overexpression of TRIM39 in SKOV3 cells, the expression of P21 was upregulated, and the number of senescent SKOV3 cells increased. When naringin, a PTEN agonist, was added to SKOV3 cells in which TRIM39 protein was interfered with, the expression of P21 was significantly lower than that in the control group, and the number of senescent ovarian cancer cells was significantly diminished. Our results indicated that PTEN maintained the stability of P21 and decreased the degradation of P21 by increasing TRIM39 expression, thus promoting the senescence of SKOV3 cells, and PTEN maintained the stability of p21 and promoted the aging of SKOV3 cells might be a novel therapeutic target for Ovarian Cancer. This article is protected by copyright. All rights reserved.
    Keywords:  P21; PTEN; TRIM39; aging; ovarian cancer; β-galactosidase Staining
    DOI:  https://doi.org/10.1002/cbin.11709
  23. FEBS J. 2021 Oct 15.
      In depth analysis of SARS-CoV-2 biology and pathogenesis is rapidly unravelling the mechanisms through which the virus induces all aspects of COVID-19 pathology. Emergence of hundreds of variants and several important variants of concern has focused research on the mechanistic elucidation of virus mutagenesis. RNA viruses evolve quickly either through the error prone polymerase or the RNA-editing machinery of the cell. In this review we are discussing the links between cellular senescence, a natural aging process that has been recently linked to SARS-CoV-2 infection, and virus mutagenesis through the RNA-editing enzymes APOBEC. The action of APOBEC, enhanced by cellular senescence, is hypothesized to assist the emergence of novel variants, called quasispecies, within a cell or organism. These variants when introduced to the community may lead to the generation of a variant of concern, depending on fitness and transmissibility of the new genome. Such a mechanism of virus evolution may highlight the importance of inhibitors of cellular senescence during SARS-CoV-2 clinical treatment.
    Keywords:  COVID-19; SARS-CoV-2 quasispecies; cellular senescence
    DOI:  https://doi.org/10.1111/febs.16230
  24. Int J Mol Sci. 2021 Sep 24. pii: 10274. [Epub ahead of print]22(19):
      Inflammation is the body's means of defense against harmful stimuli, with the ultimate aim being to restore homeostasis. Controlled acute inflammation transiently activates an immune response and can be beneficial as protection against infection or injury. However, dysregulated inflammatory responses, including chronic inflammation, disrupt the immune system's ability to maintain homeostatic balance, leading to increased susceptibility to infection, continuous tissue damage, and dysfunction. Aging is a risk factor for chronic inflammation; their coincidence is termed "inflammaging". Metabolic disorders including obesity, neurodegenerative diseases, and atherosclerosis are often encountered in old age. Therefore, it is important to understand the mechanistic relationship between aging, chronic inflammation, and metabolism. It has been established that the expression of inflammatory mediators is transcriptionally and translationally regulated. In addition, the post-translational modification of the mediators plays a crucial role in the response to inflammatory signaling. Chromatin regulation responds to metabolic status and controls homeostasis. However, chromatin structure is also changed by aging. In this review, we discuss the functional contributions of chromatin regulation to inflammaging.
    Keywords:  aging; chromatin; chronic inflammation; histone modifications; inflammaging; metabolism; pro-inflammation; transcription
    DOI:  https://doi.org/10.3390/ijms221910274
  25. PLoS Pathog. 2021 Oct;17(10): e1009841
      In general, in mammalian cells, cytosolic DNA viruses are sensed by cyclic GMP-AMP synthase (cGAS), and RNA viruses are recognized by retinoic acid-inducible gene I (RIG-I)-like receptors, triggering a series of downstream innate antiviral signaling steps in the host. We previously reported that measles virus (MeV), which possesses an RNA genome, induces rapid antiviral responses, followed by comprehensive downregulation of host gene expression in epithelial cells. Interestingly, gene ontology analysis indicated that genes encoding mitochondrial proteins are enriched among the list of downregulated genes. To evaluate mitochondrial stress after MeV infection, we first observed the mitochondrial morphology of infected cells and found that significantly elongated mitochondrial networks with a hyperfused phenotype were formed. In addition, an increased amount of mitochondrial DNA (mtDNA) in the cytosol was detected during progression of infection. Based on these results, we show that cytosolic mtDNA released from hyperfused mitochondria during MeV infection is captured by cGAS and causes consequent priming of the DNA sensing pathway in addition to canonical RNA sensing. We also ascertained the contribution of cGAS to the in vivo pathogenicity of MeV. In addition, we found that other viruses that induce downregulation of mitochondrial biogenesis as seen for MeV cause similar mitochondrial hyperfusion and cytosolic mtDNA-priming antiviral responses. These findings indicate that the mtDNA-activated cGAS pathway is critical for full innate control of certain viruses, including RNA viruses that cause mitochondrial stress.
    DOI:  https://doi.org/10.1371/journal.ppat.1009841
  26. Aging Dis. 2021 Oct;12(7): 1658-1674
      Cytosolic nucleic acid sensors contribute to the initiation of innate immune responses by playing a critical role in the detection of pathogens and endogenous nucleic acids. The cytosolic DNA sensor cyclic-GMP-AMP synthase (cGAS) and its downstream effector, stimulator of interferon genes (STING), mediate innate immune signaling by promoting the release of type I interferons (IFNs) and other inflammatory cytokines. These biomolecules are suggested to play critical roles in host defense, senescence, and tumor immunity. Recent studies have demonstrated that cGAS-STING signaling is strongly implicated in the pathogenesis of central nervous system (CNS) diseases which are underscored by neuroinflammatory-driven disease progression. Understanding and regulating the interactions between cGAS-STING signaling and the nervous system may thus provide an effective approach to prevent or delay late-onset CNS disorders. Here, we present a review of recent advances in the literature on cGAS-STING signaling and provide a comprehensive overview of the modulatory patterns of the cGAS-STING pathway in CNS disorders.
    Keywords:  CNS disorders; STING; cGAS; cGAS-STING
    DOI:  https://doi.org/10.14336/AD.2021.0304
  27. Commun Biol. 2021 Oct 11. 4(1): 1175
      DNA damage is increased in Alzheimer's disease (AD), while the underlying mechanisms are unknown. Here, we employ comprehensive phosphoproteome analysis, and identify abnormal phosphorylation of 70 kDa subunit of Ku antigen (Ku70) at Ser77/78, which prevents Ku70-DNA interaction, in human AD postmortem brains. The abnormal phosphorylation inhibits accumulation of Ku70 to the foci of DNA double strand break (DSB), impairs DNA damage repair and eventually causes transcriptional repression-induced atypical cell death (TRIAD). Cells under TRIAD necrosis reveal senescence phenotypes. Extracellular high mobility group box 1 (HMGB1) protein, which is released from necrotic or hyper-activated neurons in AD, binds to toll-like receptor 4 (TLR4) of neighboring neurons, and activates protein kinase C alpha (PKCα) that executes Ku70 phosphorylation at Ser77/78. Administration of human monoclonal anti-HMGB1 antibody to post-symptomatic AD model mice decreases neuronal DSBs, suppresses secondary TRIAD necrosis of neurons, prevents escalation of neurodegeneration, and ameliorates cognitive symptoms. TRIAD shares multiple features with senescence. These results discover the HMGB1-Ku70 axis that accounts for the increase of neuronal DNA damage and secondary enhancement of TRIAD, the cell death phenotype of senescence, in AD.
    DOI:  https://doi.org/10.1038/s42003-021-02671-4
  28. Ageing Res Rev. 2021 Oct 08. pii: S1568-1637(21)00232-4. [Epub ahead of print] 101485
      Involvement of extracellular matrix (ECM) components in aging and age-related neurodegeneration is not well understood. The role of hyaluronan (HA), a major extracellular matrix glycosaminoglycan, in malignancy and inflammation is gaining new understanding. In particular, the differential biological effects of high molecular weight (HMW-HA) and low molecular weight hyaluronan (LMW-HA), and the mechanism behind such differences are being uncovered. Tightly regulated in the brain, HA can have diverse effects on cellular development, growth and degeneration. In this review, we summarize the homeostasis and signaling of HA in healthy tissue, discuss its distribution and ontogeny in the central nervous system (CNS), summarize evidence for its involvement in age-related neurodegeneration and Alzheimer Disease (AD), and assess the potential of HA as a therapeutic target in the CNS.
    Keywords:  CNS aging; HA; HA therapeutics; aging; hyaluronan; hyaluronic acid; neurodegeneration
    DOI:  https://doi.org/10.1016/j.arr.2021.101485
  29. Int J Mol Sci. 2021 Sep 24. pii: 10283. [Epub ahead of print]22(19):
      Cellular identity is determined through complex patterns of gene expression. Chromatin, the dynamic structure containing genetic information, is regulated through epigenetic modulators, mainly by the histone code. One of the main challenges for the cell is maintaining functionality and identity, despite the accumulation of DNA damage throughout the aging process. Replicative cells can remain in a senescent state or develop a malign cancer phenotype. In contrast, post-mitotic cells such as pyramidal neurons maintain extraordinary functionality despite advanced age, but they lose their identity. This review focuses on tau, a protein that protects DNA, organizes chromatin, and plays a crucial role in genomic stability. In contrast, tau cytosolic aggregates are considered hallmarks of Alzheimer´s disease (AD) and other neurodegenerative disorders called tauopathies. Here, we explain AD as a phenomenon of chromatin dysregulation directly involving the epigenetic histone code and a progressive destabilization of the tau-chromatin interaction, leading to the consequent dysregulation of gene expression. Although this destabilization could be lethal for post-mitotic neurons, tau protein mediates profound cellular transformations that allow for their temporal survival.
    Keywords:  Alzheimer’s disease; aging; cell nucleus; chromatin architecture; epigenetic marks; euchromatin; heterochromatin; histone code; nuclear lamin; tau protein
    DOI:  https://doi.org/10.3390/ijms221910283
  30. Int J Mol Sci. 2021 Sep 23. pii: 10251. [Epub ahead of print]22(19):
      Aging is associated with a decline in cognitive function, which can partly be explained by the accumulation of damage to the brain cells over time. Neurons and glia undergo morphological and ultrastructure changes during aging. Over the past several years, it has become evident that at the cellular level, various hallmarks of an aging brain are closely related to mitophagy. The importance of mitochondria quality and quantity control through mitophagy is highlighted by the contribution that defects in mitochondria-autophagy crosstalk make to aging and age-related diseases. In this review, we analyze some of the more recent findings regarding the study of brain aging and neurodegeneration in the context of mitophagy. We discuss the data on the dynamics of selective autophagy in neurons and glial cells during aging and in the course of neurodegeneration, focusing on three mechanisms of mitophagy: non-receptor-mediated mitophagy, receptor-mediated mitophagy, and transcellular mitophagy. We review the role of mitophagy in neuronal/glial homeostasis and in the molecular pathogenesis of neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, and other disorders. Common mechanisms of aging and neurodegeneration that are related to different mitophagy pathways provide a number of promising targets for potential therapeutic agents.
    Keywords:  Alzheimer’s disease; Parkinson’s disease; aging; mitophagy; neurodegeneration
    DOI:  https://doi.org/10.3390/ijms221910251
  31. Chin Med J (Engl). 2021 Sep 20. 134(19): 2322-2332
      BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of vision loss worldwide. However, the mechanisms involved in the development and progression of AMD are poorly delineated. We aimed to explore the critical genes involved in the progression of AMD.METHODS: The differentially expressed genes (DEGs) in AMD retinal pigment epithelial (RPE)/choroid tissues were identified using the microarray datasets GSE99248 and GSE125564, which were downloaded from the gene expression omnibus database. The overlapping DEGs from the two datasets were screened to identify DEG-related biological pathways using gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The hub genes were identified from these DEGs through protein-protein interaction network analyses. The expression levels of hub genes were evaluated by quantitative real-time polymerase chain reaction following the induction of senescence in ARPE-19 with FK866. Following the identification of AMD-related key genes, the potential small molecule compounds targeting the key genes were predicted by PharmacoDB. Finally, a microRNA-gene interaction network was constructed.
    RESULTS: Microarray analyses identified 174 DEGs in the AMD RPE compared to the healthy RPE samples. These DEGs were primarily enriched in the pathways involved in the regulation of DNA replication, cell cycle, and proteasome-mediated protein polyubiquitination. Among the top ten hub genes, HSP90AA1, CHEK1, PSMA4, PSMD4, and PSMD8 were upregulated in the senescent ARPE-19 cells. Additionally, the drugs targeting HSP90AA1, CHEK1, and PSMA4 were identified. We hypothesize that Hsa-miR-16-5p might target four out of the five key DEGs in the AMD RPE.
    CONCLUSIONS: Based on our findings, HSP90AA1 is likely to be a central gene controlling the DNA replication and proteasome-mediated polyubiquitination during the RPE senescence observed in the progression of AMD. Targeting HSP90AA1, CHEK1, PSMA4, PSMD4, and/or PSMD8 genes through specific miRNAs or small molecules might potentially alleviate the progression of AMD through attenuating RPE senescence.
    DOI:  https://doi.org/10.1097/CM9.0000000000001773
  32. Nat Metab. 2021 Oct 14.
      Diet-induced obesity is a major risk factor for metabolic syndrome, diabetes and cardiovascular disease. Here, we show that a 5-d fasting-mimicking diet (FMD), administered every 4 weeks for a period of 2 years, ameliorates the detrimental changes caused by consumption of a high-fat, high-calorie diet (HFCD) in female mice. We demonstrate that monthly FMD cycles inhibit HFCD-mediated obesity by reducing the accumulation of visceral and subcutaneous fat without causing loss of lean body mass. FMD cycles increase cardiac vascularity and function and resistance to cardiotoxins, prevent HFCD-dependent hyperglycaemia, hypercholesterolaemia and hyperleptinaemia and ameliorate impaired glucose and insulin tolerance. The effect of monthly FMD cycles on gene expression associated with mitochondrial metabolism and biogenesis in adipocytes and the sustained ketogenesis in HFCD-fed mice indicate a role for fat cell reprogramming in obesity prevention. These effects of an FMD on adiposity and cardiac ageing could explain the protection from HFCD-dependent early mortality.
    DOI:  https://doi.org/10.1038/s42255-021-00469-6
  33. Nat Commun. 2021 Oct 15. 12(1): 6021
      The mammalian brain relies on neurochemistry to fulfill its functions. Yet, the complexity of the brain metabolome and its changes during diseases or aging remain poorly understood. Here, we generate a metabolome atlas of the aging wildtype mouse brain from 10 anatomical regions spanning from adolescence to old age. We combine data from three assays and structurally annotate 1,547 metabolites. Almost all metabolites significantly differ between brain regions or age groups, but not by sex. A shift in sphingolipid patterns during aging related to myelin remodeling is accompanied by large changes in other metabolic pathways. Functionally related brain regions (brain stem, cerebrum and cerebellum) are also metabolically similar. In cerebrum, metabolic correlations markedly weaken between adolescence and adulthood, whereas at old age, cross-region correlation patterns reflect decreased brain segregation. We show that metabolic changes can be mapped to existing gene and protein brain atlases. The brain metabolome atlas is publicly available ( https://mouse.atlas.metabolomics.us/ ) and serves as a foundation dataset for future metabolomic studies.
    DOI:  https://doi.org/10.1038/s41467-021-26310-y
  34. Elife. 2021 10 12. pii: e73586. [Epub ahead of print]10
      New findings clarify apparently conflicting results about how molecular agents that preserve protein integrity prevent harmful, dense aggregates from forming.
    Keywords:  FUS; RRM; aging; biochemistry; chaperones; chemical biology; human; molecular condensates; time-resolved quantitative XL-MS
    DOI:  https://doi.org/10.7554/eLife.73586
  35. EMBO Mol Med. 2021 Oct 11. e13659
      While some individuals age without pathological memory impairments, others develop age-associated cognitive diseases. Since changes in cognitive function develop slowly over time in these patients, they are often diagnosed at an advanced stage of molecular pathology, a time point when causative treatments fail. Thus, there is great need for the identification of inexpensive and minimal invasive approaches that could be used for screening with the aim to identify individuals at risk for cognitive decline that can then undergo further diagnostics and eventually stratified therapies. In this study, we use an integrative approach combining the analysis of human data and mechanistic studies in model systems to identify a circulating 3-microRNA signature that reflects key processes linked to neural homeostasis and inform about cognitive status. We furthermore provide evidence that expression changes in this signature represent multiple mechanisms deregulated in the aging and diseased brain and are a suitable target for RNA therapeutics.
    Keywords:  Alzheimer; RNA therapeutics; biomarker; cognitive impairment; microRNA
    DOI:  https://doi.org/10.15252/emmm.202013659