bims-senagi Biomed News
on Senescence and aging
Issue of 2021–09–05
23 papers selected by
Maria Grazia Vizioli, Mayo Clinic



  1. Aging Cell. 2021 Aug 30. e13468
      Ataxia-telangiectasia (A-T) is a genetic disorder caused by the lack of functional ATM kinase. A-T is characterized by chronic inflammation, neurodegeneration and premature ageing features that are associated with increased genome instability, nuclear shape alterations, micronuclei accumulation, neuronal defects and premature entry into cellular senescence. The causal relationship between the detrimental inflammatory signature and the neurological deficiencies of A-T remains elusive. Here, we utilize human pluripotent stem cell-derived cortical brain organoids to study A-T neuropathology. Mechanistically, we show that the cGAS-STING pathway is required for the recognition of micronuclei and induction of a senescence-associated secretory phenotype (SASP) in A-T olfactory neurosphere-derived cells and brain organoids. We further demonstrate that cGAS and STING inhibition effectively suppresses self-DNA-triggered SASP expression in A-T brain organoids, inhibits astrocyte senescence and neurodegeneration, and ameliorates A-T brain organoid neuropathology. Our study thus reveals that increased cGAS and STING activity is an important contributor to chronic inflammation and premature senescence in the central nervous system of A-T and constitutes a novel therapeutic target for treating neuropathology in A-T patients.
    Keywords:  Ataxia-Telangiectasia; brain aging; brain organoids; cGAS-STING signalling; cellular senescence; neurodegeneration
    DOI:  https://doi.org/10.1111/acel.13468
  2. Nat Commun. 2021 Sep 03. 12(1): 5213
      Intervertebral disc degeneration is highly prevalent within the elderly population and is a leading cause of chronic back pain and disability. Due to the link between disc degeneration and senescence, we explored the ability of the Dasatinib and Quercetin drug combination (D + Q) to prevent an age-dependent progression of disc degeneration in mice. We treated C57BL/6 mice beginning at 6, 14, and 18 months of age, and analyzed them at 23 months of age. Interestingly, 6- and 14-month D + Q cohorts show lower incidences of degeneration, and the treatment results in a significant decrease in senescence markers p16INK4a, p19ARF, and SASP molecules IL-6 and MMP13. Treatment also preserves cell viability, phenotype, and matrix content. Although transcriptomic analysis shows disc compartment-specific effects of the treatment, cell death and cytokine response pathways are commonly modulated across tissue types. Results suggest that senolytics may provide an attractive strategy to mitigating age-dependent disc degeneration.
    DOI:  https://doi.org/10.1038/s41467-021-25453-2
  3. FASEB J. 2021 Oct;35(10): e21890
      The primary aims of this study were to determine the effects of lifelong exercise and detraining on age-related alterations in mitochondrial function, inflammation associated with senescence-associated secretory phenotype (SASP), and lipolysis in the perirenal fat and liver of rats. Female Sprague-Dawley rats were randomly assigned to four groups: young control (n = 12), old control (n = 12), detraining (n = 12), and lifelong exercise (n = 12). We then investigated mitochondrial function, SASP-associated inflammation, and lipolysis in the perirenal fat and liver using qRT-PCR and western blotting to assess the expression of AKT, hypoxia-inducible factor 1α (HIF-1α), nuclear factor-kappa B (NF-κB), c-jun kinase (JNK), and p38 mitogen-activated protein kinase (p38MAPK). In the tissues of both the perirenal fat and liver, lifelong exercise significantly improved mitochondrial function, SASP-associated inflammation, and lipolysis. Meanwhile, pathways associated with inflammatory regulation were inhibited, predominantly via the activation of phosphorylated-AKT (p-AKT) and suppression of HIF-1α in both tissues, and via JNK in the perirenal fat and p38MAPK in the liver. Furthermore, detraining activated NF-κB expression in both tissues and induced the upregulation of serum high-sensitivity C-reactive protein (hsCRP) levels. Collectively, lifelong exercise was found to exert beneficial effects by ameliorating age-related alterations in mitochondrial function, SASP-associated inflammation, and lipolysis in perirenal fat and liver tissues, potentially inhibiting inflammation via the JNK and p38 MAPK pathways, respectively, as well as the HIF-1α and AKT pathways in both tissues. In contrast, detraining induced high levels of circulating hsCRP by activating the NF-κB signaling pathway in both tissues.
    Keywords:  SASP; detraining; lifelong exercise; lipolysis; mitochondrial function
    DOI:  https://doi.org/10.1096/fj.202100868R
  4. Front Cell Dev Biol. 2021 ;9 722205
      Cellular senescence occurs in proliferating cells as a consequence of various triggers including telomere shortening, DNA damage, and inappropriate expression of oncogenes. The senescent state is accompanied by failure to reenter the cell cycle under mitotic stimulation, resistance to cell death and enhanced secretory phenotype. A growing number of studies have convincingly demonstrated a paradoxical role for spontaneous senescence and therapy-induced senescence (TIS), that senescence may involve both cancer prevention and cancer aggressiveness. Cellular senescence was initially described as a physiological suppressor mechanism of tumor cells, because cancer development requires cell proliferation. However, there is growing evidence that senescent cells may contribute to oncogenesis, partly in a senescence-associated secretory phenotype (SASP)-dependent manner. On the one hand, SASP prevents cell division and promotes immune clearance of damaged cells, thereby avoiding tumor development. On the other hand, SASP contributes to tumor progression and relapse through creating an immunosuppressive environment. In this review, we performed a review to summarize both bright and dark sides of senescence in cancer, and the strategies to handle senescence in cancer therapy were also discussed.
    Keywords:  aging; cancer; senescence; senescence-associated secretory phenotype; senescent cell
    DOI:  https://doi.org/10.3389/fcell.2021.722205
  5. Inflamm Res. 2021 Sep 02.
       BACKGROUND: The insulin/IGF-1 signaling pathway has a major role in the regulation of longevity both in Caenorhabditis elegans and mammalian species, i.e., reduced activity of this pathway extends lifespan, whereas increased activity accelerates the aging process. The insulin/IGF-1 pathway controls protein and energy metabolism as well as the proliferation and differentiation of insulin/IGF-1-responsive cells. Insulin/IGF-1 signaling also regulates the functions of the innate and adaptive immune systems. The purpose of this review was to elucidate whether insulin/IGF-1 signaling is linked to immunosuppressive STAT3 signaling which is known to promote the aging process.
    METHODS: Original and review articles encompassing the connections between insulin/IGF-1 and STAT3 signaling were examined from major databases including Pubmed, Scopus, and Google Scholar.
    RESULTS: The activation of insulin/IGF-1 receptors stimulates STAT3 signaling through the JAK and AKT-driven signaling pathways. STAT3 signaling is a major activator of immunosuppressive cells which are able to counteract the chronic low-grade inflammation associated with the aging process. However, the activation of STAT3 signaling stimulates a negative feedback response through the induction of SOCS factors which not only inhibit the activity of insulin/IGF-1 receptors but also that of many cytokine receptors. The inhibition of insulin/IGF-1 signaling evokes insulin resistance, a condition known to be increased with aging. STAT3 signaling also triggers the senescence of both non-immune and immune cells, especially through the activation of p53 signaling.
    CONCLUSIONS: Given that cellular senescence, inflammaging, and counteracting immune suppression increase with aging, this might explain why excessive insulin/IGF-1 signaling promotes the aging process.
    Keywords:  Ageing; Alzheimer’s; FoxO; Immunosenescence; Tolerance; mTOR
    DOI:  https://doi.org/10.1007/s00011-021-01498-3
  6. Int J Cancer. 2021 Aug 30.
      Stress granules (SGs) containing mRNAs and proteins stalled in translation during stress, are increasingly being implicated in disease and cancer including neurological disorders. The dysregulated assembly, persistence, disassembly and clearance of stress granules contribute to the process of senescence. Senescence has long been a mysterious player in cellular physiology and associated diseases. The systemic process of aging has been pivotal in the development of various neurological disorders like age-related neuropathy, Alzheimer's disease and Parkinson's disease. Glioma is a cancer of neurological origin with a very poor prognosis and high rate of recurrence, stress granules have only recently been implicated in its pathogenesis. Senescence has long been established to play an anti-tumorigenic role, however, relatively less studied is its pro-tumorigenic importance. Here, we have evaluated the existing literature to assess the crosstalk of the two biological phenomena of senescence and SG formation in the context of tumorigenesis. In this review we have attempted to analyze the contribution of senescence in regulating diverse cellular processes, like, senescence associated secretory phenotype (SASP), microtubular reorganization, telomeric alteration, autophagic clearance and how intricately these phenomena are tied with the formation of SGs. Finally, we propose that interplay between senescence, its contributing factors and the genesis of SGs can drive tumorigenicity of gliomas, which can potentially be utilised for therapeutic intervention. This article is protected by copyright. All rights reserved.
    DOI:  https://doi.org/10.1002/ijc.33787
  7. Mech Ageing Dev. 2021 Aug 30. pii: S0047-6374(21)00135-4. [Epub ahead of print]199 111563
      Age associated chronic inflammation is a major contributor to diseases with advancing age. Adipose tissue function is at the nexus of processes contributing to age-related metabolic disease and mediating longevity. Hormonal fluctuations in aging potentially regulate age-associated visceral adiposity and metabolic dysfunction. Visceral adiposity in aging is linked to aberrant adipogenesis, insulin resistance, lipotoxicity and altered adipokine secretion. Age-related inflammatory phenomena depict sex differences in macrophage polarization, changes in T and B cell numbers, and types of dendritic cells. Sex differences are also observed in adipose tissue remodeling and cellular senescence suggesting a role for sex steroid hormones in the regulation of the adipose tissue microenvironment. It is crucial to investigate sex differences in aging clinical outcomes to identify and better understand physiology in at-risk individuals. Early interventions aimed at targets involved in adipose tissue adipogenesis, remodeling and inflammation in aging could facilitate a profound impact on health span and overcome age-related functional decline.
    Keywords:  Adipose tissue; Adipose tissue inflammation; Aging; Macrophages; Metabolism; Sex differences
    DOI:  https://doi.org/10.1016/j.mad.2021.111563
  8. Elife. 2021 09 01. pii: e63453. [Epub ahead of print]10
      Mitochondrial activity determines aging rate and the onset of chronic diseases. The mitochondrial permeability transition pore (mPTP) is a pathological pore in the inner mitochondrial membrane thought to be composed of the F-ATP synthase (complex V). OSCP, a subunit of F-ATP synthase, helps protect against mPTP formation. How the destabilization of OSCP may contribute to aging, however, is unclear. We have found that loss OSCP in the nematode Caenorhabditis elegans initiates the mPTP and shortens lifespan specifically during adulthood, in part via initiation of the mitochondrial unfolded protein response (UPRmt). Pharmacological or genetic inhibition of the mPTP inhibits the UPRmt and restores normal lifespan. Loss of the putative pore-forming component of F-ATP synthase extends adult lifespan, suggesting that the mPTP normally promotes aging. Our findings reveal how an mPTP/UPRmt nexus may contribute to aging and age-related diseases and how inhibition of the UPRmt may be protective under certain conditions.
    Keywords:  C. elegans; F-ATP synthase; aging; c-subunit; cell biology; mitochondrial permeability transition pore; mitochondrial unfolded protein response; oscp/atp-3
    DOI:  https://doi.org/10.7554/eLife.63453
  9. Proc Natl Acad Sci U S A. 2021 Sep 07. pii: e2022974118. [Epub ahead of print]118(36):
      Genomic instability, the unresolved accumulation of DNA variants, is hypothesized as one of the contributors to the natural aging process. We assessed the frequency of unresolved DNA damage reaching the transcriptome of the murine myocardium during the course of natural aging and in hearts from four distinct mouse models of premature aging with established aging-related cardiac dysfunctions. RNA sequencing and variant calling based on total RNA sequencing was compared between hearts from naturally aging mice, mice with cardiomyocyte-specific deficiency of Ercc1, a component of the DNA repair machinery, mice with reduced mitochondrial antioxidant capacity, Tert-deficient mice with reduced telomere length, and a mouse model of human Hutchinson-Gilford progeria syndrome (HGPS). Our results demonstrate that no enrichment in variants is evident in the naturally aging murine hearts until 2 y of age from the HGPS mouse model or mice with reduced telomere lengths. In contrast, a dramatic accumulation of variants was evident in Ercc1 cardiomyocyte-specific knockout mice with deficient DNA repair machinery, in mice with reduced mitochondrial antioxidant capacity, and in the intestine, liver, and lung of naturally aging mice. Our data demonstrate that genomic instability does not evidently contribute to naturally aging of the mouse heart in contrast to other organs and support the contention that the endogenous DNA repair machinery is remarkably active to maintain genomic integrity in cardiac cells throughout life.
    Keywords:  DNA repair; RNA-seq; aging; genomic instability; oxidative stress
    DOI:  https://doi.org/10.1073/pnas.2022974118
  10. Biogerontology. 2021 Sep 03.
      Age is an important risk factor for different diseases. The same mechanisms that promote aging are involved in the development and progression of age-associated diseases. Polyphenols are organic compounds found in fruits and vegetables. Due to their beneficial properties (e.g. antioxidant and anti-inflammatory), polyphenols have been extensively used for treating chronic diseases. To exert their functions, polyphenols target various molecular mechanisms and signaling pathways, such as mTOR, NF-κB, and Wnt/β-catenin. Wnt signaling is a critical pathway for developmental processes. Besides, dysregulation of this signaling pathway has been observed in various diseases. Several investigations have been conducted on Wnt inhibitors at pre-clinical stages, showing promising results. Herein, we review the studies dealing with the role of polyphenols in targeting the Wnt signaling pathways in aging processes and age-associated diseases, including cancer, diabetes, Alzheimer's disease, osteoporosis, and Parkinson's disease.
    Keywords:  Aging; Cancer; Diabetes; Neurodegenerative disease; Osteopenia; Polyphenol; Wnt
    DOI:  https://doi.org/10.1007/s10522-021-09934-x
  11. Cell Metab. 2021 Aug 26. pii: S1550-4131(21)00367-3. [Epub ahead of print]
      Aging impairs the integrated immunometabolic responses, which have evolved to maintain core body temperature in homeotherms to survive cold stress, infections, and dietary restriction. Adipose tissue inflammation regulates the thermogenic stress response, but how adipose tissue-resident cells instigate thermogenic failure in the aged are unknown. Here, we define alterations in the adipose-resident immune system and identify that type 2 innate lymphoid cells (ILC2s) are lost in aging. Restoration of ILC2 numbers in aged mice to levels seen in adults through IL-33 supplementation failed to rescue old mice from metabolic impairment and increased cold-induced lethality. Transcriptomic analyses revealed intrinsic defects in aged ILC2, and adoptive transfer of adult ILC2s are sufficient to protect old mice against cold. Thus, the functional defects in adipose ILC2s during aging drive thermogenic failure.
    Keywords:  IL-33; ILC2; adipose; aging; inflammation; metabolism; thermogenesis
    DOI:  https://doi.org/10.1016/j.cmet.2021.08.004
  12. Biomed Res Int. 2021 ;2021 3456321
      Inflammation response is an important reason for disc cell senescence during disc degeneration. Recently, melatonin is suggested to protect against disc degeneration. However, the effects of melatonin on annulus fibrosus (AF) cell senescence are not fully studied. The main purpose of this study was to investigate the effects of melatonin on AF cell senescence in an inflammatory environment and the underlying mechanism. Rat disc AF cells were cultured in a medium with tumor necrosis factor-α (TNF-α). Melatonin was added along with the medium to observe its protective effects. Compared with the control AF cells, TNF-α significantly declined cell proliferation potency and telomerase activity, elevated senescence-associated β-galactosidase (SA-β-Gal) activity, upregulated protein expression of senescence markers (p16 and p53), and increased reactive oxygen species (ROS) content and activity of the NF-κB pathway. However, when the TNF-α-treated AF cells were incubated with melatonin, ROS content and activity of the NF-κB pathway were decreased, and those parameters reflecting cell senescence indicated that AF cell senescence was also partly alleviated. Together, melatonin suppresses AF cell senescence through regulating the ROS/NF-κB pathway in an inflammatory environment. This study sheds a new light that melatonin may be promising to retard inflammation-caused disc degeneration.
    DOI:  https://doi.org/10.1155/2021/3456321
  13. J Cancer. 2021 ;12(19): 5938-5949
      Colorectal cancer (CRC) is one of the most mortal cancers in the world. Multiple factors and bio-processes are associated with in tumorigenesis and metastasis of CRC, including cellular senescence and immune evasion. This study aims to identify prognostic and immune-meditating effects of INHBA in CRC. Microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database to screen the differentially expressed genes (DEGs) in senescent cells and CRC tissues from the Cancer Genome Atlas (TCGA). Key factor was settled from the alternative DEGs set. Enrichment analyses and functional networks prediction were determined from online databases. Correlation analyses were performed to reveal the association among key factor, immune infiltration, T cell biomarkers and immune checkpoints. Moreover, expressions of key factors and immune checkpoints of tissue and blood samples from CRC patients as well as human CRC cell lines were measured. Results showed that Inhibin beta A (INHBA) was sorted out as a senescence-related factor and a prognostic predictor in CRC. What's more, INHBA was found highly co-expressed with T-cell biomarkers and immune checkpoints. In conclusion, INHBA was considered as a senescence-related regulator and a prognostic predictor in CRC, which also mediating immune evasion.
    Keywords:  Cellular senescence; Colorectal cancer; INHBA; Immune checkpoints; Immune evasion
    DOI:  https://doi.org/10.7150/jca.61556
  14. Mech Ageing Dev. 2021 Aug 30. pii: S0047-6374(21)00136-6. [Epub ahead of print] 111564
      Intervertebral disc (IVD) degeneration is considered an important contributor of low back pain, a major age-related disease. Interestingly, an unprecedented high number of senescent cells has been reported in aged and degenerated IVDs, most probably affecting tissue homeostasis. In previous studies classical markers of cellular senescence have been used, such as SA-β-gal staining or p16Ink4a expression. Aim of the presented study was a re-evaluation of the number of senescent IVD cells by using a newly established staining procedure for lipofuscin, based on a Sudan Black-B analogue (GL13), which can be used in fresh, as well as in fixed and embedded tissues. In cultures of senescent rat and human IVD cells both SA-β-gal and GL13 gave similar percentages of senescent cells. Similarly, in fresh tissues from old rats the ratios of senescent cells were high with both detection procedures. Finally, in formalin-fixed and paraffin-embedded tissues from humans, a significant increased number of GL13-positive cells was found in herniated tissues, as compared to apparently normal ones, while similar numbers of p16Ink4a-positive cells were observed. These data confirm the significantly enhanced number of senescent cells in aged and degenerated IVDs, most probably contributing to the degeneration of this tissue.
    Keywords:  GL13; SA-β-gal; intervertebral disc; lipofuscin; senescence
    DOI:  https://doi.org/10.1016/j.mad.2021.111564
  15. J Phys Chem B. 2021 Sep 02.
      Cellular senescence is the irreversible cell cycle arrest in response to various types of stress. Although the plasma membrane and its composition are significantly affected by cellular senescence, detailed studies on the physical properties of the plasma membrane have shown inconclusive results. In this study, we utilized both ensemble and single-molecule fluorescence imaging to investigate how membrane properties, such as fluidity, hydrophobicity, and ganglioside GM1 level are affected by cellular senescence. The diffusion coefficient of lipid probes, as well as the type of diffusion determined by an exponent α, which is the slope of the log-log plot of mean squared displacement as a function of time lag, were analyzed. We found that the number of molecules with a lower diffusion coefficient increased as cells became senescent. The changes in the population with a lower diffusion coefficient, observed after methyl-β-cyclodextrin treatment, and the increase in ceramide levels, detected using a ceramide-specific antibody, suggest that ceramide-rich lipid rafts were enhanced in senescent cells. Our results emphasize the importance of membrane properties in cellular senescence and might serve as a base for in-depth studies to determine how such domains facilitate the signaling pathway specific to cellular senescence.
    DOI:  https://doi.org/10.1021/acs.jpcb.1c05403
  16. Cell Rep. 2021 Aug 31. pii: S2211-1247(21)01082-2. [Epub ahead of print]36(9): 109639
      Normal neurodevelopment relies on intricate signaling pathways that balance neural stem cell (NSC) self-renewal, maturation, and survival. Disruptions lead to neurodevelopmental disorders, including microcephaly. Here, we implicate the inhibition of NSC senescence as a mechanism underlying neurogenesis and corticogenesis. We report that the receptor for activated C kinase (Rack1), a family member of WD40-repeat (WDR) proteins, is highly enriched in NSCs. Deletion of Rack1 in developing cortical progenitors leads to a microcephaly phenotype. Strikingly, the absence of Rack1 decreases neurogenesis and promotes a cellular senescence phenotype in NSCs. Mechanistically, the senescence-related p21 signaling pathway is dramatically activated in Rack1 null NSCs, and removal of p21 significantly rescues the Rack1-knockout phenotype in vivo. Finally, Rack1 directly interacts with Smad3 to suppress the activation of transforming growth factor (TGF)-β/Smad signaling pathway, which plays a critical role in p21-mediated senescence. Our data implicate Rack1-driven inhibition of p21-induced NSC senescence as a critical mechanism behind normal cortical development.
    Keywords:  Rack1; TGF-β/Smad; cellular senescence; microcephaly; neural stem cells; p21
    DOI:  https://doi.org/10.1016/j.celrep.2021.109639
  17. Elife. 2021 Sep 01. pii: e68610. [Epub ahead of print]10
      Most age-related human diseases are accompanied by a decline in cellular organelle integrity, including impaired lysosomal proteostasis and defective mitochondrial oxidative phosphorylation. An open question, however, is the degree to which inherited variation in or near genes encoding each organelle contributes to age-related disease pathogenesis. Here, we evaluate if genetic loci encoding organelle proteomes confer greater-than-expected age-related disease risk. As mitochondrial dysfunction is a 'hallmark' of aging, we begin by assessing nuclear and mitochondrial DNA loci near genes encoding the mitochondrial proteome and surprisingly observe a lack of enrichment across 24 age-related traits. Within nine other organelles, we find no enrichment with one exception: the nucleus, where enrichment emanates from nuclear transcription factors. In agreement, we find that genes encoding several organelles tend to be 'haplosufficient', while we observe strong purifying selection against heterozygous protein-truncating variants impacting the nucleus. Our work identifies common variation near transcription factors as having outsize influence on age-related trait risk, motivating future efforts to determine if and how this inherited variation then contributes to observed age-related organelle deterioration.
    Keywords:  genetics; genomics; human
    DOI:  https://doi.org/10.7554/eLife.68610
  18. Transl Neurodegener. 2021 Sep 01. 10(1): 33
      Advancing age is a major risk factor for Alzheimer's disease (AD). This raises the question of whether AD biology mechanistically diverges from aging biology or alternatively represents exaggerated aging. Correlative and modeling studies can inform this question, but without a firm grasp of what drives aging and AD it is difficult to definitively resolve this quandary. This review speculates over the relevance of a particular hallmark of aging, mitochondrial function, to AD, and further provides background information that is pertinent to and provides perspective on this speculation.
    Keywords:  Aging; Alzheimer’s disease; Mitochondria; Mitochondrial DNA
    DOI:  https://doi.org/10.1186/s40035-021-00261-2
  19. EMBO J. 2021 Aug 30. e108863
      Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.
    Keywords:  aging; cancer; inflammation; metabolic syndromes; neurodegeneration
    DOI:  https://doi.org/10.15252/embj.2021108863
  20. NPJ Aging Mech Dis. 2021 Aug 30. 7(1): 23
      The neural functions of adropin, a secreted peptide highly expressed in the brain, have not been investigated. In humans, adropin is highly expressed in astrocytes and peaks during critical postnatal periods of brain development. Gene enrichment analysis of transcripts correlating with adropin expression suggests processes relevant to aging-related neurodegenerative diseases that vary with age and dementia state, possibly indicating survivor bias. In people aged <40 y and 'old-old' (>75 y) diagnosed with dementia, adropin correlates positively with genes involved in mitochondrial processes. In the 'old-old' without dementia adropin expression correlates positively with morphogenesis and synapse function. Potent neurotrophic responses in primary cultured neurons are consistent with adropin supporting the development and function of neural networks. Adropin expression in the 'old-old' also correlates positively with protein markers of tau-related neuropathologies and inflammation, particularly in those without dementia. How variation in brain adropin expression affects neurological aging was investigated using old (18-month) C57BL/6J mice. In mice adropin is expressed in neurons, oligodendrocyte progenitor cells, oligodendrocytes, and microglia and shows correlative relationships with groups of genes involved in neurodegeneration and cellular metabolism. Increasing adropin expression using transgenesis improved spatial learning and memory, novel object recognition, resilience to exposure to new environments, and reduced mRNA markers of inflammation in old mice. Treatment with synthetic adropin peptide also reversed age-related declines in cognitive functions and affected expression of genes involved in morphogenesis and cellular metabolism. Collectively, these results establish a link between adropin expression and neural energy metabolism and indicate a potential therapy against neurological aging.
    DOI:  https://doi.org/10.1038/s41514-021-00076-5
  21. Cell Rep. 2021 Aug 31. pii: S2211-1247(21)01077-9. [Epub ahead of print]36(9): 109634
      Fibroblasts residing in the connective tissues constitute the stem cell niche, particularly in organs such as skin. Although the effect of fibroblasts on stem cell niches and organ aging is an emerging concept, the underlying mechanisms are largely unresolved. We report a mechanism of redox-dependent activation of transcription factor JunB, which, through concomitant upregulation of p16INK4A and repression of insulin growth factor-1 (IGF-1), initiates the installment of fibroblast senescence. Fibroblast senescence profoundly disrupts the metabolic and structural niche, and its essential interactions with different stem cells thus enforces depletion of stem cells pools and skin tissue decline. In fact, silencing of JunB in a fibroblast-niche-specific manner-by reinstatement of IGF-1 and p16 levels-restores skin stem cell pools and overall skin tissue integrity. Here, we report a role of JunB in the control of connective tissue niche and identified targets to combat skin aging and associated pathologies.
    Keywords:  IGF-1; JunB; aging; fibroblasts; p16(INK4A); redox imbalance; skin; stem cell niche
    DOI:  https://doi.org/10.1016/j.celrep.2021.109634
  22. Geroscience. 2021 Sep 04.
      It has been demonstrated that elamipretide (SS-31) rescues age-related functional deficits in the heart but the full set of mechanisms behind this have yet to be determined. We investigated the hypothesis that elamipretide influences post-translational modifications to heart proteins. The S-glutathionylation and phosphorylation proteomes of mouse hearts were analyzed using shotgun proteomics to assess the effects of aging on these post-translational modifications and the ability of the mitochondria-targeted drug elamipretide to reverse age-related changes. Aging led to an increase in oxidation of protein thiols demonstrated by increased S-glutathionylation of cysteine residues on proteins from Old (24 months old at the start of the study) mouse hearts compared to Young (5-6 months old). This shift in the oxidation state of the proteome was almost completely reversed by 8 weeks of treatment with elamipretide. Many of the significant changes that occurred were in proteins involved in mitochondrial or cardiac function. We also found changes in the mouse heart phosphoproteome that were associated with age, some of which were partially restored with elamipretide treatment. Parallel reaction monitoring of a subset of phosphorylation sites revealed that the unmodified peptide reporting for Myot S231 increased with age, but not its phosphorylated form and that both phosphorylated and unphosphorylated forms of the peptide covering cMyBP-C S307 increased, but that elamipretide treatment did not affect these changes. These results suggest that changes to thiol redox state and phosphorylation status are two ways in which age may affect mouse heart function, which can be restored by treatment with elamipretide.
    Keywords:  Aging; Elamipretide; Heart; Mass spectrometry; Mitochondria; Phosphoproteomics; Post-translational modification; Redox proteomics; S-glutathionylation; SS-31
    DOI:  https://doi.org/10.1007/s11357-021-00447-6
  23. Nat Commun. 2021 Sep 01. 12(1): 5205
      Molecular mechanisms associated with human germ cell aplasia in infertile men remain undefined. Here we perform single-cell transcriptome profiling to highlight differentially expressed genes and pathways in each somatic cell type in testes of men with idiopathic germ cell aplasia. We identify immaturity of Leydig cells, chronic tissue inflammation, fibrosis, and senescence phenotype of the somatic cells, as well markers of chronic inflammation in the blood. We find that deregulated expression of parentally imprinted genes in myoid and immature Leydig cells, with relevant changes in the ratio of Lamin A/C transcripts and an active DNA damage response in Leydig and peritubular myoid cells are also indicative of senescence of the testicular niche. This study offers molecular insights into the pathogenesis of idiopathic germ cell aplasia.
    DOI:  https://doi.org/10.1038/s41467-021-25544-0