bims-senagi Biomed News
on Senescence and aging
Issue of 2021‒07‒25
nineteen papers selected by
Maria Grazia Vizioli
Mayo Clinic


  1. Cell Rep. 2021 Jul 20. pii: S2211-1247(21)00832-9. [Epub ahead of print]36(3): 109419
      Aging, pathological tau oligomers (TauO), and chronic inflammation in the brain play a central role in tauopathies, including Alzheimer's disease (AD) and frontotemporal dementia (FTD). However, the underlying mechanism of TauO-induced aging-related neuroinflammation remains unclear. Here, we show that TauO-associated astrocytes display a senescence-like phenotype in the brains of patients with AD and FTD. TauO exposure triggers astrocyte senescence through high mobility group box 1 (HMGB1) release and inflammatory senescence-associated secretory phenotype (SASP), which mediates paracrine senescence in adjacent cells. HMGB1 release inhibition using ethyl pyruvate (EP) and glycyrrhizic acid (GA) prevents TauO-induced senescence through inhibition of p38-mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB)-the essential signaling pathways for SASP development. Despite the developed tauopathy in 12-month-old hTau mice, EP+GA treatment significantly decreases TauO and senescent cell loads in the brain, reduces neuroinflammation, and thus ameliorates cognitive functions. Collectively, TauO-induced HMGB1 release promotes cellular senescence and neuropathology, which could represent an important common pathomechanism in tauopathies including AD and FTD.
    Keywords:  HMGB1; SASP; aging; astrocytes; cognitive functions; neurodegeneration; neuroinflammation; senescence; tau oligomers; tauopathies
    DOI:  https://doi.org/10.1016/j.celrep.2021.109419
  2. Aging Cell. 2021 Jul 19. e13442
      Oxidized phospholipids (OxPLs) are pro-inflammatory molecules that affect bone remodeling under physiological conditions. Transgenic expression of a single-chain variable fragment (scFv) of the antigen-binding domain of E06, an IgM natural antibody that recognizes the phosphocholine (PC) moiety of OxPLs, increases trabecular and cortical bone in adult male and female mice by increasing bone formation. OxPLs increase with age, while natural antibodies decrease. Age-related bone loss is associated with increased oxidative stress and lipid peroxidation and is characterized by a decline in osteoblast number and bone formation, raising the possibility that increased OxPLs, together with the decline of natural antibodies, contribute to age-related bone loss. We show here that transgenic expression of E06-scFv attenuated the age-associated loss of spinal, femoral, and total bone mineral density in both female and male mice aged up to 22 and 24 months, respectively. E06-scFv attenuated the age-associated decline in trabecular bone, but not cortical bone, and this effect was associated with an increase in osteoblasts and a decrease in osteoclasts. Furthermore, RNA-seq analysis showed that E06-scFv increased Wnt10b expression in vertebral bone in aged mice, indicating that blocking OxPLs increases Wnt signaling. Unlike age-related bone loss, E06-scFv did not attenuate the bone loss caused by estrogen deficiency or unloading in adult mice. These results demonstrate that OxPLs contribute to age-associated bone loss. Neutralization of OxPLs, therefore, is a promising therapeutic target for senile osteoporosis, as well as atherosclerosis and non-alcoholic steatohepatitis (NASH), two other conditions shown to be attenuated by E06-scFv in mice.
    Keywords:  Wnt signaling; aging and bone; osteoblasts; oxidized phospholipids
    DOI:  https://doi.org/10.1111/acel.13442
  3. Aging Cell. 2021 Jul 18. e13421
      In the context of obesity, senescent cells accumulate in white adipose tissue (WAT). The cellular underpinnings of WAT senescence leading to insulin resistance are not fully elucidated. The objective of the current study was to evaluate the presence of WAT senescence early after initiation of high-fat diet (HFD, 1-10 weeks) in 5-month-old male C57BL/6J mice and the potential role of energy metabolism. We first showed that WAT senescence occurred 2 weeks after HFD as evidenced in whole WAT by increased senescence-associated ß-galactosidase activity and cyclin-dependent kinase inhibitor 1A and 2A expression. WAT senescence affected various WAT cell populations, including preadipocytes, adipose tissue progenitors, and immune cells, together with adipocytes. WAT senescence was associated with higher glycolytic and mitochondrial activity leading to enhanced ATP content in HFD-derived preadipocytes, as compared with chow diet-derived preadipocytes. One-month daily exercise, introduced 5 weeks after HFD, was an effective senostatic strategy, since it reversed WAT cellular senescence, while reducing glycolysis and production of ATP. Interestingly, the beneficial effect of exercise was independent of body weight and fat mass loss. We demonstrated that WAT cellular senescence is one of the earliest events occurring after HFD initiation and is intimately linked to the metabolic state of the cells. Our data uncover a critical role for HFD-induced elevated ATP as a local danger signal inducing WAT senescence. Exercise exerts beneficial effects on adipose tissue bioenergetics in obesity, reversing cellular senescence, and metabolic abnormalities.
    Keywords:  ATP; adipose tissue senescence; bioenergetics; exercise; obesity; xanthine oxidase
    DOI:  https://doi.org/10.1111/acel.13421
  4. Nat Rev Urol. 2021 Jul 22.
      Senescent cells accumulate with age in all tissues. Although senescent cells undergo cell-cycle arrest, these cells remain metabolically active and their secretome - known as the senescence-associated secretory phenotype - is responsible for a systemic pro-inflammatory state, which contributes to an inflammatory microenvironment. Senescent cells can be found in the ageing prostate and the senescence-associated secretory phenotype and can be linked to BPH and prostate cancer. Indeed, a number of signalling pathways provide biological plausibility for the role of senescence in both BPH and prostate cancer, although proving causality is difficult. The theory of senescence as a mechanism for prostate disease has a number of clinical implications and could offer opportunities for targeting in the future.
    DOI:  https://doi.org/10.1038/s41585-021-00496-8
  5. Biochim Biophys Acta Mol Cell Res. 2021 Jul 15. pii: S0167-4889(21)00153-1. [Epub ahead of print] 119099
      Cellular senescence generates a permanent cell cycle arrest, characterized by apoptosis resistance and a pro-inflammatory senescence-associated secretory phenotype (SASP). Physiologically, senescent cells promote tissue remodeling during development and after injury. However, when accumulated over a certain threshold as happens during aging or after cellular stress, senescent cells contribute to the functional decline of tissues, participating in the generation of several diseases. Cellular senescence is accompanied by increased mitochondrial metabolism. How mitochondrial function is regulated and what role it plays in senescent cell homeostasis is poorly understood. Mitochondria are functionally and physically coupled to the endoplasmic reticulum (ER), the major calcium (Ca2+) storage organelle in mammalian cells, through special domains known as mitochondria-ER contacts (MERCs). In this domain, the release of Ca2+ from the ER is mainly regulated by inositol 1,4,5-trisphosphate receptors (IP3Rs), a family of three Ca2+ release channels activated by a ligand (IP3). IP3R-mediated Ca2+ release is transferred to mitochondria through the mitochondrial Ca2+ uniporter (MCU), where it modulates the activity of several enzymes and transporters impacting its bioenergetic and biosynthetic function. Here, we review the possible connection between ER to mitochondria Ca2+ transfer and senescence. Understanding the pathways that contribute to senescence is essential to reveal new therapeutic targets that allow either delaying senescent cell accumulation or reduce senescent cell burden to alleviate multiple diseases.
    Keywords:  MERCs; calcium; metabolism; mitochondria; senescence
    DOI:  https://doi.org/10.1016/j.bbamcr.2021.119099
  6. Ageing Res Rev. 2021 Jul 20. pii: S1568-1637(21)00160-4. [Epub ahead of print] 101413
      Cellular senescence is the inability of cells to proliferate, which has both beneficial and detrimental effects on tissue development and homeostasis. Chronic accumulation of senescent cells is associated with age-related disease, including osteoarthritis, a common joint disease responsible for joint pain and disability in older adults. The pathology of this disease includes loss of cartilage, synovium inflammation, and subchondral bone remodeling. Senescent cells are present in the cartilage of people with advanced osteoarthritis, but the link between cellular senescence and this disease is unclear. In this review, we summarize current evidence for the role of cellular senescence of different cell types in the onset and progression of osteoarthritis. We focus on the underlying mechanisms of senescence in chondrocytes, which maintain the cartilage in joints, and review the role of the Forkhead family of transcription factors, which are involved in cartilage maintenance and osteoarthritis. Finally, we discuss the potential therapeutic value and implications of targeting senescent cells using senolytic agents or immune therapies, targeting the senescence-associated secretory phenotype of these cells using senomorphic agents, and renewing the plasticity of stem cells and chondrocytes. Our review highlights current gaps in understanding of the mechanism of senescence that may, when addressed, provided new options for modifying and treating disease in osteoarthritis.
    Keywords:  cellular senescence; chondrocyte; osteoarthritis; senescence associated secretory phenotype
    DOI:  https://doi.org/10.1016/j.arr.2021.101413
  7. Ageing Res Rev. 2021 Jul 16. pii: S1568-1637(21)00157-4. [Epub ahead of print] 101410
      Human aging is a multifactorial phenomenon that affects numerous organ systems and cellular processes, with the immune system being one of the most dysregulated. Immunosenescence, the gradual deterioration of the immune system, and inflammaging, a chronic inflammatory state that persists in the elderly, are among the plethora of immune changes that occur during aging. Almost all populations of immune cells change with age in terms of numbers and/or activity. These alterations are in general highly detrimental, resulting in an increased susceptibility to infections, reduced healing abilities, and altered homeostasis that promote the emergence of age-associated diseases such as cancer, diabetes, and other diseases associated with inflammation. Thanks to recent developments, several strategies have been proposed to target central immunological processes or specific immune subpopulations affected by aging. These therapeutic approaches could soon be applied in the clinic to slow down or even reverse specific age-induced immune changes in order to rejuvenate the immune system and prevent or reduce the impact of various diseases. Due to its systemic nature and interconnection with all the other systems in the body, the immune system is an attractive target for aging intervention because relatively targeted modifications to a small set of cells have the potential to improve the health of multiple organ systems.. Therefore, anti-aging immune targeting therapies could represent a potent approach for improving healthspan. Here, we review aging changes in the major components of the immune system, we summarize the current immune-targeting therapeutic approaches in the context of aging and discuss the future directions in the field of immune rejuvenation.
    Keywords:  anti-aging; geroscience; healthy longevity; immune system; immunosenescence; inflammation
    DOI:  https://doi.org/10.1016/j.arr.2021.101410
  8. STAR Protoc. 2021 Sep 17. 2(3): 100649
      The cyclic GMP-AMP synthase (cGAS) is the principal DNA sensor, which binds DNA and triggers the type I interferon production. We used ISD45 or inactivated Vaccinia Virus (VACV) to stimulate cGAS and monitored cellular localization by immunofluorescence microscopy, Operetta high-content screening, and cytoplasmic/nuclear fractionation. LocNES server was used to predict cGAS nuclear export signal (NES) sequence and characterized the function by mutagenesis. This protocol provides a prototype of cGAS subcellular distribution or the identification of NES in other proteins. For complete details on the use and execution of this protocol, please refer to Sun et al. Sun et al. (2021).
    Keywords:  Cell Biology; Immunology; Molecular Biology
    DOI:  https://doi.org/10.1016/j.xpro.2021.100649
  9. Oxid Med Cell Longev. 2021 ;2021 9980444
      A growing amount of evidence has confirmed the crucial role of the prolyl isomerase PIN1 in aging and age-related diseases. However, the mechanism of PIN1 in age-related hearing loss (ARHL) remains unclear. Pathologically, ARHL is primarily due to the loss and dysfunction of hair cells (HCs) and spiral ganglion cells (SGCs) in the cochlea. Therefore, in this study, we aimed to investigate the role of PIN1 in protecting hair cells and auditory HEI-OC1 cells from senescence. Enzyme-linked immunosorbent assays, immunohistochemistry, and immunofluorescence were used to detect the PIN1 protein level in the serum of ARHL patients and C57BL/6 mice in different groups, and in the SGCs and HCs of young and aged C57BL/6 mice. In addition, a model of HEI-OC1 cell senescence induced by H2O2 was used. Adult C57BL/6 mice were treated with juglone, or juglone and NAC, for 4 weeks. Interestingly, we found that the PIN1 protein expression decreased in the serum of patients with ARHL, in senescent HEI-OC1 cells, and in the cochlea of aged mice. Moreover, under H2O2 and juglone treatment, a large amount of ROS was produced, and phosphorylation of p53 was induced. Importantly, PIN1 expression was significantly increased by treatment with the p53 inhibitor pifithrin-α. Overexpression of PIN1 reversed the increased level of p-p53 and rescued HEI-OC1 cells from senescence. Furthermore, PIN1 mediated cellular senescence by the PI3K/Akt/mTOR signaling pathway. In vivo data from C57BL/6 mice showed that treatment with juglone led to hearing loss. Taken together, these findings demonstrated that PIN1 may act as a vital modulator in hair cell and HEI-OC1 cell senescence.
    DOI:  https://doi.org/10.1155/2021/9980444
  10. Obesity (Silver Spring). 2021 Jun 10.
      OBJECTIVE: Adipose tissue (AT) senescence is associated with AT dysfunction in rodents, but little is known about human AT senescence. The study goal was to define the distribution of senescent cells in two subcutaneous depots and understand relationships with adiposity and inflammation.METHODS: Sixty-three volunteers (48 females) underwent abdominal and femoral subcutaneous fat biopsies. Fat cell size, senescent cells using senescence-associated β-galactosidase staining per 100 nucleated cells (percentage), and mRNA expression of four cytokines were measured.
    RESULTS: There was a larger proportion of senescent cells in femoral than abdominal subcutaneous AT (mean difference 1.6% [95% CI: 0.98%-2.3%], p < 0.001), and the percentage of femoral AT senescent cells was greater in women than men (median 3.9% vs. 2.1%, p < 0.01). There was a positive correlation between senescence and fat cell size in abdominal (rs  = 0.44, p < 0.001) and femoral (rs  = 0.35, p = 0.007) AT depots. Abdominal AT tumor necrosis factor alpha (rs  = 0.49, p < 0.01) and interleukin-1β (rs  = 0.44, p = 0.01) expression was positively correlated with abdominal, but not femoral, AT senescence.
    CONCLUSIONS: In human subcutaneous AT, there are more senescent cells in femoral than abdominal depots; abdominal AT senescent cells are more associated with inflammatory signals than femoral AT senescent cells.
    DOI:  https://doi.org/10.1002/oby.23202
  11. Front Cell Neurosci. 2021 ;15 698126
      The immune system is crucial for defending against various invaders, such as pathogens, cancer cells or misfolded proteins. With increasing age, the diminishing immune response, known as immunosenescence, becomes evident. Concomitantly, some diseases like infections, autoimmune diseases, chronic inflammatory diseases and cancer, accumulate with age. Different cell types are part of the innate immunity response and produce soluble factors, cytokines, chemokines, and type I interferons. Improper maturation of innate immune cells or their dysfunction have been linked to numerous age-related diseases. In parallel to the occurrence of the many functional facets of the immune response, a symbiotic microbiota had been acquired. For the relevant and situation-dependent function of the immune system the microbiome plays an essential role because it fine-tunes the immune system and its responses during life. Nevertheless, how the age-related alterations in the microbiota are reflected in the innate immune system, is still poorly understood. With this review, we provide an up-to-date overview on our present understanding of the gut microbiota effects on innate immunity, with a particular emphasis on aging-associated changes in the gut microbiota and the implications for the brain innate immune response.
    Keywords:  bacteria; brain; gut micobiota; inflammaging; innate immunity; metabolites; microglia; senescence
    DOI:  https://doi.org/10.3389/fncel.2021.698126
  12. J Cell Mol Med. 2021 Jul 23.
      Cataracts are the leading cause of blindness worldwide owing to the increasing proportion of elderly individuals in the population. The purpose of this study was to investigate whether metformin could alleviate the occurrence and development of age-related cataract (ARC) and the underlying mechanism. In the present study, we established a senescence model induced by oxidative stress, which was confirmed by measuring β-galactosidase activity, qRT-PCR and Western blotting. In addition, we showed that metformin alleviated the oxidative stress-induced senescence of HLE-B3 cells via the activation of AMPK. Next, we provided evidence that oxidative stress impaired autophagic flux and induced lysosomal dysfunction. Subsequently, we found that metformin restored autophagic flux that had been impaired by oxidative stress by activating AMPK. Additionally, we found that metformin suppressed HLE-B3 cell senescence by improving lysosomal function and inactivating mTOR. Furthermore, the inactivation of AMPK, impairment of autophagic flux and lysosomal dysfunction were observed in the human lens epithelium of ARC. In summary, our data suggest that the activation of AMPK may be a potential strategy for preventing ARC, and metformin may be an emerging candidate to alleviate the formation and development of ARC.
    Keywords:  adenosine monophosphate; age-related cataract; autophagic flux; metformin; oxidative stress; senescence
    DOI:  https://doi.org/10.1111/jcmm.16797
  13. Biochem Biophys Res Commun. 2021 Jul 16. pii: S0006-291X(21)01084-6. [Epub ahead of print]570 143-147
      Insulin-like growth factor binding protein 3 (IGFBP3) is known for its pleiotropic ability to regulate various cellular processes such as proliferation, apoptosis, differentiation etc. It has recently been shown that IGFBP3 is part of the secretome of senescent human endometrial mesenchymal stromal cells (MESCs) (Griukova et al., 2019) that takes part in paracrine propagation of senescence-like phenotype in MESCs (Vassilieva et al., 2020); however, mechanisms of pro-senescent IGFBP3 action in MESCs remain still unexplored. This study is aimed at elucidating the role of IGFBP3 upregulation in senescent MESCs. IGFBP3 knockdown in MESCs committed to H2O2-induced senescence led to partial abrogation of p21/Rb axis, to elevated ERK phosphorylation and to increase in SA-β-gal activity. Additionally, MESCs derived from various donors were found to demonstrate different IGFBP3 regulation during stress-induced senescence. Obtained results suggest ambiguous role of IGFBP3 in stress-induced senescence of MESCs.
    Keywords:  Cell senescence; IGFBP3; Mesenchymal stromal cells; Oxidative stress
    DOI:  https://doi.org/10.1016/j.bbrc.2021.07.046
  14. J Pharm Anal. 2021 Jun;11(3): 340-350
      Lipotoxicity, caused by intracellular lipid accumulation, accelerates the degenerative process of cellular senescence, which has implications in cancer development and therapy. Previously, carnitine palmitoyltransferase 1C (CPT1C), a mitochondrial enzyme that catalyzes carnitinylation of fatty acids, was found to be a critical regulator of cancer cell senescence. However, whether loss of CPT1C could induce senescence as a result of lipotoxicity remains unknown. An LC/MS-based lipidomic analysis of PANC-1, MDA-MB-231, HCT-116 and A549 cancer cells was conducted after siRNA depletion of CPT1C. Cellular lipotoxicity was further confirmed by lipotoxicity assays. Significant changes were found in the lipidome of CPT1C-depleted cells, including major alterations in fatty acid, diacylglycerol, triacylglycerol, oxidative lipids, cardiolipin, phosphatidylglycerol, phosphatidylcholine/phosphatidylethanolamine ratio and sphingomyelin. This was coincident with changes in expressions of mRNAs involved in lipogenesis. Histological and biochemical analyses revealed higher lipid accumulation and increased malondialdehyde and reactive oxygen species, signatures of lipid peroxidation and oxidative stress. Reduction of ATP synthesis, loss of mitochondrial transmembrane potential and down-regulation of expression of mitochondriogenesis gene mRNAs indicated mitochondrial dysfunction induced by lipotoxicity, which could further result in cellular senescence. Taken together, this study demonstrated CPT1C plays a critical role in the regulation of cancer cell lipotoxicity and cell senescence, suggesting that inhibition of CPT1C may serve as a new therapeutic strategy through induction of tumor lipotoxicity and senescence.
    Keywords:  Anticancer target; Lipid accumulation; Lipid peroxidation; Lipidomics; Mitochondrial dysfunction; Oxidative stress
    DOI:  https://doi.org/10.1016/j.jpha.2020.04.004
  15. Aging Cell. 2021 Jul 18. e13430
      Dental pulp stem cells (DPSCs) play a vital role in tooth restoration, regeneration, and homeostasis. The link between DPSC senescence and tooth aging has been well-recognized. ROR2 plays an important role in aging-related gene expression. However, the expression and function of ROR2 in DPSC aging remain largely unknown. In this study, we found that ROR2 expression was significantly decreased in aged pulp tissues and DPSCs. The depletion of ROR2 in young DPSCs inhibits their self-renewal capacity, while its overexpression in aged DPSCs restores their self-renewal capacity. Interestingly, we found that sphingomyelin (SM) is involved in the senescence of DPSCs regulated by ROR2. Mechanistically, we confirmed that ROR2 inhibited the phosphorylation of STK4, which promoted the translocation of Forkhead Box O1 (FOXO1) to the nucleus. STK4 inhibition or knockdown of FOXO1 markedly increased the proliferation of DPSCs and upregulated the expression of SMS1, which catalyzed SM biogenesis. Moreover, FOXO1 directly bound to the SMS1 promoter, repressing its transcription. Our findings demonstrated the critical role of the ROR2/STK4-FOXO1/SMS1 axis in the regulation of SM biogenesis and DPSC senescence, providing a novel target for antagonizing tooth aging.
    Keywords:  FOXO1; ROR2; SMS1; dental pulp stem cells; senescence
    DOI:  https://doi.org/10.1111/acel.13430
  16. Int J Mol Sci. 2021 Jul 14. pii: 7544. [Epub ahead of print]22(14):
      The recent advances in deciphering the human genome allow us to understand and evaluate the mechanisms of human genome age-associated transformations, which are largely unclear. Genome sequencing techniques assure comprehensive mapping of human genetics; however, understanding of gene functional interactions, specifically of time/age-dependent modifications, remain challenging. The age of the genome is defined by the sum of individual (inherited) and acquired genomic traits, based on internal and external factors that impact ontogenesis from the moment of egg fertilization and embryonic development. The biological part of genomic age opens a new perspective for intervention. The discovery of single cell-based mechanisms for genetic change indicates the possibility of influencing aging and associated disease burden, as well as metabolism. Cell populations with transformed genetic background were shown to serve as the origin of common diseases during extended life expectancy (superaging). Consequently, age-related cell transformation leads to cancer and cell degeneration (senescence). This article aims to describe current advances in the genomic mechanisms of senescence and its role in the spatiotemporal spread of epithelial clones and cell evolution.
    Keywords:  aging; cell transformation; genome; metabolism; senescence; single cell analysis
    DOI:  https://doi.org/10.3390/ijms22147544
  17. Front Cell Infect Microbiol. 2021 ;11 675414
      Frailty is a major public issue that affects the physical health and quality of life of older adults, especially as the population ages. Chronic low-grade inflammation has been speculated to accelerate the aging process as well as the development of age-related diseases such as frailty. Intestinal homeostasis plays a crucial role in healthy aging. The interaction between the microbiome and the host regulates the inflammatory response. Emerging evidence indicates that in older adults with frailty, the diversity and composition structure of gut microbiota are altered. Age-associated changes in gut microbiota composition and in their metabolites contribute to increased gut permeability and imbalances in immune function. In this review, we aim to: identify gut microbiota changes in the aging and frail populations; summarize the role of chronic low-grade inflammation in the development of frailty; and outline how gut microbiota may be related to the pathogenesis of frailty, more specifically, in the regulation of gut-derived chronic inflammation. Although additional research is needed, the regulation of gut microbiota may represent a safe, easy, and inexpensive intervention to counteract the chronic inflammation leading to frailty.
    Keywords:  aging; chronic low-grade inflammation; frailty; gut microbiota; review
    DOI:  https://doi.org/10.3389/fcimb.2021.675414
  18. Nature. 2021 Jul 21.
      The classic mode of STING activation is through binding the cyclic dinucleotide 2'3'-cyclic GMP-AMP (cGAMP), produced by the DNA sensor cyclic GMP-AMP synthase (cGAS), which is important for the innate immune response to microbial infection and autoimmune disease. Modes of STING activation that are independent of cGAS are much less well understood. Here, through a spatiotemporally resolved proximity labelling screen followed by quantitative proteomics, we identify the lysosomal membrane protein Niemann-Pick type C1 (NPC1) as a cofactor in the trafficking of STING. NPC1 interacts with STING and recruits it to the lysosome for degradation in both human and mouse cells. Notably, we find that knockout of Npc1 'primes' STING signalling by physically linking or 'tethering' STING to SREBP2 trafficking. Loss of NPC1 protein also 'boosts' STING signalling by blocking lysosomal degradation. Both priming and boosting of STING signalling are required for severe neurological disease in the Npc1-/- mouse. Genetic deletion of Sting1 (the gene that encodes STING) or Irf3, but not that of Cgas, significantly reduced the activation of microglia and relieved the loss of Purkinje neurons in the cerebellum of Npc1-/- mice, leading to improved motor function. Our study identifies a cGAS- and cGAMP-independent mode of STING activation that affects neuropathology and provides a therapeutic target for the treatment of Niemann-Pick disease type C.
    DOI:  https://doi.org/10.1038/s41586-021-03762-2
  19. Int J Mol Sci. 2021 Jul 03. pii: 7194. [Epub ahead of print]22(13):
      Age-related macular degeneration (AMD), the main cause of vision loss in the elderly, is associated with oxidation in the retina cells promoting telomere attrition. Activation of telomerase was reported to improve macular functions in AMD patients. The catalytic subunit of human telomerase (hTERT) may directly interact with proteins important for senescence, DNA damage response, and autophagy, which are impaired in AMD. hTERT interaction with mTORC1 (mTOR (mechanistic target of rapamycin) complex 1) and PINK1 (PTEN-induced kinase 1) activates macroautophagy and mitophagy, respectively, and removes cellular debris accumulated over AMD progression. Ectopic expression of telomerase in retinal pigment epithelium (RPE) cells lengthened telomeres, reduced senescence, and extended their lifespan. These effects provide evidence for the potential of telomerase in AMD therapy. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may be involved in AMD pathogenesis through decreasing oxidative stress and senescence, regulation of vascular endothelial growth factor (VEGF), and improving autophagy. PGC-1α and TERT form an inhibitory positive feedback loop. In conclusion, telomerase activation and its ectopic expression in RPE cells, as well as controlled clinical trials on the effects of telomerase activation in AMD patients, are justified and should be assisted by PGC-1α modulators to increase the therapeutic potential of telomerase in AMD.
    Keywords:  AMD; DNA damage response; PGC-1α; age-related macular degeneration; autophagy; hTERT; mTORC1; peroxisome proliferator-activated receptor gamma coactivator 1 alpha; senescence; telomerase
    DOI:  https://doi.org/10.3390/ijms22137194