bims-senagi Biomed News
on Senescence and aging
Issue of 2021–07–04
35 papers selected by
Maria Grazia Vizioli, Mayo Clinic



  1. Aging Cell. 2021 Jun 29. e13426
      Cellular senescence plays an important role in different biological and pathological conditions. Senescent cells communicate with their microenvironment through a plethora of soluble factors, metalloproteases and extracellular vesicles (EV). Although much is known about the role that soluble factors play in senescence, the downstream signalling pathways activated by EV in senescence is unknown. To address this, we performed a small molecule inhibitor screen and have identified the IκB kinases IKKε, IKKα and IKKβ as essential for senescence mediated by EV (evSASP). By using pharmacological inhibitors of IKKε, IKKα and IKKβ, in addition to CRISPR/Cas9 targeting their respective genes, we find these pathways are important in mediating senescence. In addition, we find that senescence activation is dependent on canonical NF-κB transcription factors where siRNA targeting p65 prevent senescence. Importantly, these IKK pathways are also relevant to ageing as knockout of IKKA, IKKB and IKKE avoid the activation of senescence. Altogether, these findings open a new potential line of investigation in the field of senescence by targeting the negative effects of the evSASP independent of particular EV contents.
    Keywords:  IκB kinase (IKK); NF-κB; SASP; ageing; extracellular vesicles (EV); senescence
    DOI:  https://doi.org/10.1111/acel.13426
  2. Trends Biochem Sci. 2021 Jun 29. pii: S0968-0004(21)00117-1. [Epub ahead of print]
      Recognition of DNA is an evolutionarily highly conserved mechanism of immunity. In mammals, the cGAS-STING pathway plays a central role in coupling DNA sensing to the execution of innate immune mechanisms, both in contexts of infection as well as in noninfectious settings of cellular stress and injury. The indiscriminate ability of double-stranded DNA (dsDNA) to activate cGAS challenges our understanding on how engagement of this pathway is prevented on genomic self-DNA under homeostatic conditions. Here, we review recent discoveries on the regulation of cGAS on chromatin and we discuss implications for cGAS-dependent inflammatory phenotypes. We close by highlighting emerging developments on the role of nuclear cGAS and related open questions for future research.
    Keywords:  DNA sensing; cGAS; chromatin; innate immunity
    DOI:  https://doi.org/10.1016/j.tibs.2021.05.011
  3. Nat Metab. 2021 Jun 28.
      Acetyl-CoA is a central node in carbon metabolism and plays critical roles in regulatory and biosynthetic processes. The acetyl-CoA synthetase Acs2, which catalyses acetyl-CoA production from acetate, is an integral subunit of the serine-responsive SAM-containing metabolic enzyme (SESAME) complex, but the precise function of Acs2 within the SESAME complex remains unclear. Here, using budding yeast, we show that Acs2 within the SESAME complex is required for the regulation of telomere silencing and cellular senescence. Mechanistically, the SESAME complex interacts with the histone acetyltransferase SAS protein complex to promote histone H4K16 acetylation (H4K16ac) enrichment and the occupancy of bromodomain-containing protein, Bdf1, at subtelomeric regions. This interaction maintains telomere silencing by antagonizing the spreading of Sir2 along the telomeres, which is enhanced by acetate. Consequently, dissociation of Sir2 from telomeres by acetate leads to compromised telomere silencing and accelerated chronological ageing. In human endothelial cells, ACSS2, the ortholog of yeast Acs2, also interacts with H4K16 acetyltransferase hMOF and are required for acetate to increase H4K16ac, reduce telomere silencing and induce cell senescence. Altogether, our results reveal a conserved mechanism to connect cell metabolism with telomere silencing and cellular senescence.
    DOI:  https://doi.org/10.1038/s42255-021-00412-9
  4. Nucleic Acids Res. 2021 Jun 28. pii: gkab538. [Epub ahead of print]
      A major stress response influenced by microRNAs (miRNAs) is senescence, a state of indefinite growth arrest triggered by sublethal cell damage. Here, through bioinformatic analysis and experimental validation, we identified miR-340-5p as a novel miRNA that foments cellular senescence. miR-340-5p was highly abundant in diverse senescence models, and miR-340-5p overexpression in proliferating cells rendered them senescent. Among the target mRNAs, miR-340-5p prominently reduced the levels of LBR mRNA, encoding lamin B receptor (LBR). Loss of LBR by ectopic overexpression of miR-340-5p derepressed heterochromatin in lamina-associated domains, promoting the expression of DNA repetitive elements characteristic of senescence. Importantly, overexpressing miR-340-5p enhanced cellular sensitivity to senolytic compounds, while antagonization of miR-340-5p reduced senescent cell markers and engendered resistance to senolytic-induced cell death. We propose that miR-340-5p can be exploited for removing senescent cells to restore tissue homeostasis and mitigate damage by senescent cells in pathologies of human aging.
    DOI:  https://doi.org/10.1093/nar/gkab538
  5. Mech Ageing Dev. 2021 Jun 25. pii: S0047-6374(21)00100-7. [Epub ahead of print]198 111528
      The capacity to regenerate damaged or lost tissue varies widely along the animal kingdom and generally declines with aging of the organism. The gradual accumulation of senescent cells in tissues during aging has been causally involved in their reduced function at old age, and to be at the basis of age-related diseases. Recently, however, cellular senescence has been shown to play a positive role as a morphogenetic force modelling and promoting tissue development during embryogenesis, and to be responsible for tissue wound healing and repair. Work done on organismal models ranging from fish and amphibians, with extraordinary regenerative capacities, to mammals, with a more restricted regenerative potential, is shedding light on a novel and unexpected function of cellular senescence. In this review, we will analyze the senescence phenotype and how could it be contributing or restricting tissue regeneration.
    Keywords:  Cellular senescence; Regeneration; Tissue repair
    DOI:  https://doi.org/10.1016/j.mad.2021.111528
  6. Int J Mol Sci. 2021 Jun 25. pii: 6814. [Epub ahead of print]22(13):
      Skin aging is associated with the accumulation of senescent cells and is related to many pathological changes, including decreased protection against pathogens, increased susceptibility to irritation, delayed wound healing, and increased cancer susceptibility. Senescent cells secrete a specific set of pro-inflammatory mediators, referred to as a senescence-associated secretory phenotype (SASP), which can cause profound changes in tissue structure and function. Thus, drugs that selectively eliminate senescent cells (senolytics) or neutralize SASP (senostatics) represent an attractive therapeutic strategy for age-associated skin deterioration. There is growing evidence that plant-derived compounds (flavonoids) can slow down or even prevent aging-associated deterioration of skin appearance and function by targeting cellular pathways crucial for regulating cellular senescence and SASP. This review summarizes the senostatic and senolytic potential of flavonoids in the context of preventing skin aging.
    Keywords:  flavonoids; senescence-associated secretory phenotype (SASP); senescent cells; senolytics; senostatics
    DOI:  https://doi.org/10.3390/ijms22136814
  7. Proteomes. 2021 Jun 21. pii: 30. [Epub ahead of print]9(2):
      Cellular senescence is a state of terminal proliferative arrest that plays key roles in aging by preventing stem cell renewal and by inducing the expression of a series of inflammatory factors including many secreted proteins with paracrine effects. The in vivo identification of senescent cells is difficult due to the absence of universal biomarkers. Chromatin modifications are key aspects of the senescence transition and may provide novel biomarkers. We used a combined protein profiling and bottom-up mass spectrometry approach to characterize the isoforms and post-translational modifications of chromatin proteins over time in post-mitotic human fibroblasts in vitro. We show that the H2B type 1-K variant is specifically enriched in deep senescent cells with persistent DNA damage. This accumulation was not observed in quiescent cells or in cells induced into senescence without DNA damage by expression of the RAF kinase. Similarly, HMGA1a di-methylated and HMGA1b tri-phosphorylated forms accumulated exclusively in the chromatin of cells in deep senescent conditions with persistent DNA damage. H2B type 1-K and modified HMGA1 may thus represent novel biomarkers of senescent cells containing persistent DNA damage.
    Keywords:  histone post-translational modifications; histone variants; mass spectrometry; quiescence; senescence
    DOI:  https://doi.org/10.3390/proteomes9020030
  8. Cells. 2021 Jun 11. pii: 1466. [Epub ahead of print]10(6):
      Etoposide (ETO) has been used in treating adrenocortical tumor (ACT) cells. Our previous study showed that ETO inhibits ACT cell growth. In the present study, we show that ETO treatment at IC50 (10 μM) inhibited ACT cell growth by inducing cellular senescence rather than apoptosis. Several markers of cellular senescence, including enlarged nuclei, activated senescence-associated β-galactosidase activity, elevated levels of p53 and p21, and down-regulation of Lamin B1, were observed. We further found that ETO induced multiple centrosomes. The inhibition of multiple centrosomes accomplished by treating cells with either roscovitine or centrinone or through the overexpression of NR5A1/SF-1 alleviated ETO-induced senescence, suggesting that ETO triggered senescence via multiple centrosomes. Primary cilia also played a role in ETO-induced senescence. In the mechanism, DNA-PK-Chk2 signaling was activated by ETO treatment; inhibition of this signaling cascade alleviated multiple ETO-induced centrosomes and primary cilia followed by reducing cellular senescence. In addition to DNA damage signaling, autophagy was also triggered by ETO treatment for centrosomal events and senescence. Importantly, the inactivation of DNA-PK-Chk2 signaling reduced ETO-triggered autophagy; however, the inhibition of autophagy did not affect DNA-PK-Chk2 activation. Thus, ETO activated the DNA-PK-Chk2 cascade to facilitate autophagy. The activated autophagy further induced multiple centrosomes and primary cilia followed by triggering senescence.
    Keywords:  Chk2; DNA-PK; autophagy; centrosome; etoposide; primary cilia; senescence
    DOI:  https://doi.org/10.3390/cells10061466
  9. Aging (Albany NY). 2021 Jun 27. 13
      Cardiac senescence is associated with cardiomyopathy which is a degenerative disease in the aging process of the elderly. The present study investigates using multiple experimental approaches whether the natural flavone acacetin could attenuate myocardial senescence in C57/BL6 mice and H9C2 rat cardiac cells induced by D-galactose. We found that the impaired heart function in D-galactose-induced accelerated aging mice was improved by oral acacetin treatment in a dose-dependent manner. Acacetin significantly countered the increased serum advanced glycation end products, the myocardial telomere length shortening, the increased cellular senescence marker proteins p21 and p53, and the reduced mitophagy signaling proteins PINK1/Parkin and Sirt6 expression in aging mice. In H9C2 rat cardiac cells, acacetin alleviated cell senescence induced by D-galactose in a concentration-dependent manner. Acacetin decreased p21 and p53 expression, up-regulated PINK1/Parkin, LC3II/LC3I ratio, pLKB1, pAMPK and Sirt6, and reversed the depolarized mitochondrial membrane potential in aging cardiac cells. Mitophagy inhibition with 3-methyladenine or silencing Sirt6 abolished the protective effects of acacetin against cardiac senescence. Further analysis revealed that acacetin effect on Sirt6 was mediated by Sirt1 activation and increase of NAD+/NADH ratio. These results demonstrate that acacetin significantly inhibits in vivo and in vitro cardiac senescence induced by D-galactose via Sirt1-mediated activation of Sirt6/AMPK signaling pathway, thereby enhancing mitophagy and preserving mitochondrial function, which suggests that acacetin may be a drug candidate for treating cardiovascular disorders related to aging.
    Keywords:  Sirt1; Sirt6; cardiac senescence; mitophagy; pAMPK; telomere length shortening
    DOI:  https://doi.org/10.18632/aging.203163
  10. Mech Ageing Dev. 2021 Jun 24. pii: S0047-6374(21)00099-3. [Epub ahead of print]198 111527
      Lipid-based signalling modulates several cellular processes and intercellular communication during wound healing and tissue regeneration. Bioactive lipids include but are not limited to the diverse group of eicosanoids, phospholipids, and extracellular vesicles and mediate the attraction of immune cells, initiation of inflammatory responses, and their resolution. In aged individuals, wound healing and tissue regeneration are greatly impaired, resulting in a delayed healing process and non-healing wounds. Senescent cells accumulate with age in vivo, preferably at sites implicated in age-associated pathologies and their elimination was shown to alleviate many age-associated diseases and disorders. In contrast to these findings, the transient presence of senescent cells in the process of wound healing exerts beneficial effects and limits fibrosis. Hence, clearance of senescent cells during wound healing was repeatedly shown to delay wound closure in vivo. Recent findings established a dysregulated synthesis of eicosanoids, phospholipids and extracellular vesicles as part of the senescent phenotype. This intriguing connection between cellular senescence, lipid-based signalling, and the process of wound healing and tissue regeneration prompts us to compile the current knowledge in this review and propose future directions for investigation.
    Keywords:  Leukotriene; Prostaglandin; Senolytic; Skin ageing; Specialized pro-resolving mediators
    DOI:  https://doi.org/10.1016/j.mad.2021.111527
  11. Cells. 2021 Jun 22. pii: 1568. [Epub ahead of print]10(7):
      Cancer incidence increases drastically with age. Of the many possible reasons for this, there is the accumulation of senescent cells in tissues and the loss of function and proliferation potential of immune cells, often referred to as immuno-senescence. Immune checkpoint inhibitors (ICI), by invigorating immune cells, have the potential to be a game-changers in the treatment of cancer. Yet, the variability in the efficacy of ICI across patients and cancer types suggests that several factors influence the success of such inhibitors. There is currently a lack of clinical studies measuring the impact of aging and senescence on ICI-based therapies. Here, we review how cellular senescence and aging, either by directly altering the immune system fitness or indirectly through the modification of the tumor environment, may influence the cancer-immune response.
    Keywords:  aging; cancer; immune checkpoint inhibitors; senescence; tumor
    DOI:  https://doi.org/10.3390/cells10071568
  12. Exp Mol Med. 2021 Jun 29.
      Senescent cells exhibit a reduced response to intrinsic and extrinsic stimuli. This diminished reaction may be explained by the disrupted transmission of nuclear signals. However, this hypothesis requires more evidence before it can be accepted as a mechanism of cellular senescence. A proteomic analysis of the cytoplasmic and nuclear fractions obtained from young and senescent cells revealed disruption of nucleocytoplasmic trafficking (NCT) as an essential feature of replicative senescence (RS) at the global level. Blocking NCT either chemically or genetically induced the acquisition of an RS-like senescence phenotype, named nuclear barrier-induced senescence (NBIS). A transcriptome analysis revealed that, among various types of cellular senescence, NBIS exhibited a gene expression pattern most similar to that of RS. Core proteomic and transcriptomic patterns common to both RS and NBIS included upregulation of the endocytosis-lysosome network and downregulation of NCT in senescent cells, patterns also observed in an aging yeast model. These results imply coordinated aging-dependent reduction in the transmission of extrinsic signals to the nucleus and in the nucleus-to-cytoplasm supply of proteins/RNAs. We further showed that the aging-associated decrease in Sp1 transcription factor expression was critical for the downregulation of NCT. Our results suggest that NBIS is a modality of cellular senescence that may represent the nature of physiological aging in eukaryotes.
    DOI:  https://doi.org/10.1038/s12276-021-00643-6
  13. Cells. 2021 Jun 08. pii: 1437. [Epub ahead of print]10(6):
      Cellular senescence, a stress-induced state of irreversible cell cycle arrest, is associated with organ dysfunction and age-related disease. While immortalized cell lines bypass key pathways of senescence, important mechanisms of cellular senescence can be studied in primary cells. Primary tubular epithelial cells (PTEC) derived from mouse kidney are highly susceptible to develop cellular senescence, providing a valuable tool for studying such mechanisms. Here, we tested whether genetic differences between mouse inbred strains have an impact on the development of stress-induced cellular senescence in cultured PTEC. Kidneys from 129S1, B6, NOD, NZO, CAST, and WSB mice were used to isolate PTEC. Cells were monitored for expression of typical senescence markers (SA-β-galactosidase, γ-H2AX+/Ki67-, expression levels of CDKN2A, lamin B1, IL-1a/b, IL-6, G/M-CSF, IFN-g, and KC) at 3 and 10 days after pro-senescent gamma irradiation. Clear differences were found between PTEC from different strains with the highest senescence values for PTEC from WSB mice and the lowest for PTEC from 129S1 mice. PTEC from B6 mice, the most commonly used inbred strain in senescence research, had a senescence score lower than PTEC from WSB and CAST mice but higher than PTEC from NZO and 129S1 mice. These data provide new information regarding the influence of genetic diversity and help explain heterogeneity in existing data. The observed differences should be considered when designing new experiments and will be the basis for further investigation with the goal of identifying candidate loci driving pro- or anti-senescent pathways.
    Keywords:  cell culture; cellular senescence; genetic background; mouse strains; primary cells
    DOI:  https://doi.org/10.3390/cells10061437
  14. Int J Mol Sci. 2021 Jun 09. pii: 6214. [Epub ahead of print]22(12):
      Pulmonary fibrosis is a chronic and fatal lung disease that significantly impacts the aging population globally. To date, anti-fibrotic, immunosuppressive, and other adjunct therapy demonstrate limited efficacies. Advancing our understanding of the pathogenic mechanisms of lung fibrosis will provide a future path for the cure. Cellular senescence has gained substantial interest in recent decades due to the increased incidence of fibroproliferative lung diseases in the older age group. Furthermore, the pathologic state of cellular senescence that includes maladaptive tissue repair, decreased regeneration, and chronic inflammation resembles key features of progressive lung fibrosis. This review describes regulatory pathways of cellular senescence and discusses the current knowledge on the senescence of critical cellular players of lung fibrosis, including epithelial cells (alveolar type 2 cells, basal cells, etc.), fibroblasts, and immune cells, their phenotypic changes, and the cellular and molecular mechanisms by which these cells contribute to the pathogenesis of pulmonary fibrosis. A few challenges in the field include establishing appropriate in vivo experimental models and identifying senescence-targeted signaling molecules and specific therapies to target senescent cells, known collectively as "senolytic" or "senotherapeutic" agents.
    Keywords:  cellular senescence; lung fibrosis; pathogenesis
    DOI:  https://doi.org/10.3390/ijms22126214
  15. Int J Mol Sci. 2021 Jun 02. pii: 6011. [Epub ahead of print]22(11):
      As we age, our bodies accrue damage in the form of DNA mutations. These mutations lead to the generation of sub-optimal proteins, resulting in inadequate cellular homeostasis and senescence. The build-up of senescent cells negatively affects the local cellular micro-environment and drives ageing associated disease, including neurodegeneration. Therefore, limiting the accumulation of DNA damage is essential for healthy neuronal populations. The naked mole rats (NMR) are from eastern Africa and can live for over three decades in chronically hypoxic environments. Despite their long lifespan, NMRs show little to no biological decline, neurodegeneration, or senescence. Here, we discuss molecular pathways and adaptations that NMRs employ to maintain genome integrity and combat the physiological and pathological decline in organismal function.
    Keywords:  DNA damage; DNA repair; ageing; naked mole rat; neurodegeneration; oxidative stress; reactive oxygen species; senescence
    DOI:  https://doi.org/10.3390/ijms22116011
  16. CNS Neurol Disord Drug Targets. 2021 Jun 27.
      Alzheimer's disease (AD) is characterized by progressive memory loss due to neurodegeneration that occurs mainly during aging. The accumulation of senescent cells has been related to aging. Furthermore, the expression of the variant ApoE ∈ 4 is a critical risk factor for AD. Some events that occur in senescence, such as the secretion of pro-inflammatory molecules, and metabolic and epigenetic changes, in addition to the detection of ApoE4, may accelerate the progression of AD. Here, we discuss the implications of cellular senescence and the presence of ApoE polymorphisms in AD. Molecular studies of these risk factors for AD may hence be pivotal to define new biomarkers and novel therapeutic strategies for this neurodegenerative pathology.
    Keywords:  AD progression; Alzheimer; ApoE; aging; neurodegeneration; senescence
    DOI:  https://doi.org/10.2174/1871527320666210628102721
  17. Korean J Physiol Pharmacol. 2021 Jul 01. 25(4): 297-305
      Luteolin, a sort of flavonoid, has been reported to be involved in neuroprotective function via suppression of neuroinflammation. In this study, we investigated the protective effect of luteolin against oxidative stress-induced cellular senescence and its molecular mechanism using hydrogen peroxide (H2O2)-induced cellular senescence model in House Ear Institute-Organ of Corti 1 cells (HEI-OC1). Our results showed that luteolin attenuated senescent phenotypes including alterations of morphology, cell proliferation, senescence-associated β-galactosidase expression, DNA damage, as well as related molecules expression such as p53 and p21 in the oxidant challenged model. Interestingly, we found that luteolin induces expression of sirtuin 1 in dose- and time-dependent manners and it has protective role against H2O2-induced cellular senescence by upregulation of sirtuin 1 (SIRT1). In contrast, the inhibitory effect of luteolin on cellular senescence under oxidative stress was abolished by silencing of SIRT1. This study indicates that luteolin effectively protects against oxidative stress-induced cellular senescence through p53 and SIRT1. These results suggest that luteolin possesses therapeutic potentials against age-related hearing loss that are induced by oxidative stress.
    Keywords:  Cellular senescence; Hydrogen peroxide; Luteolin; Sirtuin 1; Tumor suppressor protein p53
    DOI:  https://doi.org/10.4196/kjpp.2021.25.4.297
  18. Pharmacol Ther. 2021 Jun 25. pii: S0163-7258(21)00145-5. [Epub ahead of print] 107943
      Cell death by apoptosis and permanent cell cycle arrest by senescence serve as barriers to the development of cancer. Chemotherapeutic agents not only induce apoptosis, they can also induce senescence known as therapy-induced senescence (TIS). There are, however, controversies whether TIS improves or worsens therapeutic outcome. Unlike apoptosis, which permanently removes cancer cells, senescent cells are metabolically active, and can contribute to tumor progression and relapse. If senescent cells are not cleared by the immune system or if cancer cells escape senescence, they may acquire resistance to apoptotic stimuli and become highly aggressive. Thus, there have been significant efforts in developing senolytics, drugs that target these pro-survival molecules to eliminate senescent cells. The anti-apoptotic Bcl-2 family proteins not only protect against cell death by apoptosis, but they also allow senescent cells to survive. While combining senolytics with chemotherapeutic drugs is an attractive approach, there are also limitations. Moreover, members of the Bcl-2 family have distinct effects on apoptosis and senescence. The purpose of this review article is to discuss recent literatures on how members of the Bcl-2 family orchestrate the interplay between apoptosis and senescence, and the challenges and progress in targeting these Bcl-2 family proteins for cancer therapy.
    Keywords:  Apoptosis; Bcl-2; Bcl-xl Mcl-1; Senescence; Senolytics
    DOI:  https://doi.org/10.1016/j.pharmthera.2021.107943
  19. Int J Mol Sci. 2021 Jun 29. pii: 7012. [Epub ahead of print]22(13):
      Fibrosing interstitial lung diseases (ILDs) are chronic and ultimately fatal age-related lung diseases characterized by the progressive and irreversible accumulation of scar tissue in the lung parenchyma. Over the past years, significant progress has been made in our incomplete understanding of the pathobiology underlying fibrosing ILDs, in particular in relation to diverse age-related processes and cell perturbations that seem to lead to maladaptation to stress and susceptibility to lung fibrosis. Growing evidence suggests that a specific biological phenomenon known as cellular senescence plays an important role in the initiation and progression of pulmonary fibrosis. Cellular senescence is defined as a cell fate decision caused by the accumulation of unrepairable cellular damage and is characterized by an abundant pro-inflammatory and pro-fibrotic secretome. The senescence response has been widely recognized as a beneficial physiological mechanism during development and in tumour suppression. However, recent evidence strengthens the idea that it also drives degenerative processes such as lung fibrosis, most likely by promoting molecular and cellular changes in chronic fibrosing processes. Here, we review how cellular senescence may contribute to lung fibrosis pathobiology, and we highlight current and emerging therapeutic approaches to treat fibrosing ILDs by targeting cellular senescence.
    Keywords:  aging; pulmonary fibrosis; senescence; senolytics; senomorphics
    DOI:  https://doi.org/10.3390/ijms22137012
  20. Cells. 2021 Jun 08. pii: 1430. [Epub ahead of print]10(6):
      Once believed to solely function as a cyclin-dependent kinase inhibitor, p27Kip1 is now emerging as a critical mediator of autophagy, cytoskeletal dynamics, cell migration and apoptosis. During periods of metabolic stress, the subcellular location of p27Kip1 largely dictates its function. Cytoplasmic p27Kip1 has been found to be promote cellular resilience through autophagy and anti-apoptotic mechanisms. Nuclear p27Kip1, however, inhibits cell cycle progression and makes the cell susceptible to quiescence, apoptosis, and/or senescence. Cellular location of p27Kip1 is regulated, in part, by phosphorylation by various kinases, including Akt and AMPK. Aging promotes nuclear localization of p27Kip1 and a predisposition to senescence or apoptosis. Here, we will review the role of p27Kip1 in healthy and aging cells with a particular emphasis on the interplay between autophagy and apoptosis.
    Keywords:  AMPK; Akt; aging; apoptosis; autophagy; p27; senescence
    DOI:  https://doi.org/10.3390/cells10061430
  21. J Cell Mol Med. 2021 Jun 30.
      Although recent evidence has shown that hepatocyte senescence plays a crucial role in the pathogenesis and development of non-alcoholic fatty liver disease (NAFLD), the mechanism is still not clear. The purpose of this study was to investigate the signal transduction pathways involved in the senescence of hepatocyte, in order to provide a potential strategy for blocking the process of NAFLD. The results confirmed that hepatocyte senescence occurred in HFD-fed Golden hamsters and PA-treated LO2 cells as manifested by increased levels of senescence marker SA-β-gal, p16 and p21, heterochromatin marker H3K9me3, DNA damage marker γ-H2AX and decreased activity of telomerase. Further studies demonstrated that iron overload could promote the senescence of hepatocyte, whereas the overexpression of Yes-associated protein (YAP) could blunt iron overload and alleviate the senescence of hepatocyte. Of importance, depression of lncRNA MAYA (MAYA) reduced iron overload and cellular senescence via promotion of YAP in PA-treated hepatocytes. These effects were further supported by in vivo experiments. In conclusion, these data suggested that inhibition of MAYA could up-regulate YAP, which might repress hepatocyte senescence through modulating iron overload. In addition, these findings provided a promising option for heading off the development of NAFLD by abrogating hepatocyte senescence.
    Keywords:  MAYA; Yes-associated protein; cellular senescence; iron overload; non-alcoholic fatty liver disease
    DOI:  https://doi.org/10.1111/jcmm.16764
  22. Int J Mol Sci. 2021 Jun 29. pii: 7016. [Epub ahead of print]22(13):
      Immune functions decline as we age, while the incidence of cancer rises. The advent of immune checkpoint blockade (ICB) has not only revolutionized cancer therapy, but also spawned great interest in identifying predictive biomarkers, since only one third of patients show treatment response. The aging process extensively affects the adaptive immune system and thus T cells, which are the main target of ICB. In this review, we address age-related changes regarding the adaptive immune system with a focus on T cells and their implication on carcinogenesis and ICB. Differences between senescence, exhaustion, and anergy are defined and current knowledge, treatment strategies, and studies exploring T cell aging as a biomarker for ICB are discussed. Finally, novel approaches to improve immunotherapies and to identify biomarkers of response to ICB are presented and their potential is assessed in a comparative analysis.
    Keywords:  T cells; aging; biomarker; cancer; exhaustion; immune checkpoint inhibitors; senescence
    DOI:  https://doi.org/10.3390/ijms22137016
  23. Int J Mol Sci. 2021 Jun 30. pii: 7064. [Epub ahead of print]22(13):
      Radiation-induced damage to normal lung parenchyma remains a dose-limiting factor in thorax-associated radiotherapy (RT). Severe early and late complications with lungs can increase the risk of morbidity in cancer patients after RT. Herein, senescence of lung epithelial cells following RT-induced cellular stress, or more precisely the respective altered secretory profile, the senescence-associated secretory phenotype (SASP), was suggested as a central process for the initiation and progression of pneumonitis and pulmonary fibrosis. We previously reported that abrogation of certain aspects of the secretome of senescent lung cells, in particular, signaling inhibition of the SASP-factor Ccl2/Mcp1 mediated radioprotection especially by limiting endothelial dysfunction. Here, we investigated the therapeutic potential of a combined metformin treatment to protect normal lung tissue from RT-induced senescence and associated lung injury using a preclinical mouse model of radiation-induced pneumopathy. Metformin treatment efficiently limited RT-induced senescence and SASP expression levels, thereby limiting vascular dysfunctions, namely increased vascular permeability associated with increased extravasation of circulating immune and tumor cells early after irradiation (acute effects). Complementary in vitro studies using normal lung epithelial cell lines confirmed the senescence-limiting effect of metformin following RT finally resulting in radioprotection, while fostering RT-induced cellular stress of cultured malignant epithelial cells accounting for radiosensitization. The radioprotective action of metformin for normal lung tissue without simultaneous protection or preferable radiosensitization of tumor tissue might increase tumor control probabilities and survival because higher radiation doses could be used.
    Keywords:  lung injury; metformin; normal tissue toxicity; premature senescence; pulmonary disease; radiotherapy; senescence-associated secretory phenotype
    DOI:  https://doi.org/10.3390/ijms22137064
  24. Aging Cell. 2021 Jul 01. e13362
      Gene variants associated with longevity are also associated with protection against cognitive decline, dementia and Alzheimer's disease, suggesting that common physiologic pathways act at the interface of longevity and cognitive function. To test the hypothesis that variants in genes implicated in cognitive function may promote exceptional longevity, we performed a comprehensive 3-stage study to identify functional longevity-associated variants in ~700 candidate genes in up to 450 centenarians and 500 controls by target capture sequencing analysis. We found an enrichment of longevity-associated genes in the nPKC and NF-κB signaling pathways by gene-based association analyses. Functional analysis of the top three gene variants (NFKBIA, CLU, PRKCH) suggests that non-coding variants modulate the expression of cognate genes, thereby reducing signaling through the nPKC and NF-κB. This matches genetic studies in multiple model organisms, suggesting that the evolutionary conservation of reduced PKC and NF-κB signaling pathways in exceptional longevity may include humans.
    Keywords:  NF-κB; PKC; centenarian; genetic variant; longevity; rare variant
    DOI:  https://doi.org/10.1111/acel.13362
  25. Cold Spring Harb Perspect Biol. 2021 Jun 29. pii: a040907. [Epub ahead of print]
      While some animals, such as planaria and hydra, appear to be capable of seemingly endless cycles of regeneration, most animals experience a gradual decline in fitness and ultimately die. The progressive loss of cell and tissue function, leading to senescence and death, is generally referred to as aging. Adult ("tissue") stem cells maintain tissue homeostasis and facilitate repair; however, age-related changes in stem cell function over time are major contributors to loss of organ function or disease in older individuals. Therefore, considerable effort is being invested in restoring stem cell function to counter degenerative diseases and age-related tissue dysfunction. Here, we will review strategies that could be used to restore stem cell function, including the use of environmental interventions, such as diet and exercise, heterochronic approaches, and cellular reprogramming. Maintaining optimal stem cell function and tissue homeostasis into late life will likely extend the amount of time older adults are able to be independent and lead healthy lives.
    DOI:  https://doi.org/10.1101/cshperspect.a040907
  26. Mol Biol Rep. 2021 Jul 01.
      Telomeres, guanine rich DNA sequences, which are found at both ends of human chromosomes, play a vital role in genome protection. These repetitive nucleotide sequences protect the genome from nucleolytic degradation, unnecessary recombination, and interchromosomal fusion. Though, as somatic cells go through replication cycles, their telomeres shrink until they reach a critical length called the Hayflick limit. At this limit, cellular senescence, an irreversible cell cycle arrest, is prompted. For all the above reasons, telomere length is a hopeful biomarker for age-associated diseases and cancer. While there are numerous methods for telomere measurement and quantification, there are still challenges for routine analysis in clinics as these methods are not simple and rapid. Recently, a new method has been developed that measures absolute length and absolute quantities of single telomere molecules. This method, single telomere absolute-length rapid (STAR) assay, which promises to measure telomere length rapidly and accurately, is also expected to be scalable. This review will discuss different telomere length measurement methods, including STAR assay, and will highlight each of their advantages and drawbacks. It will culminate in determining if STAR assay has the potential to be the superior method for telomere measurement.
    Keywords:  PCR; Quantification; STAR Assay; Telomere
    DOI:  https://doi.org/10.1007/s11033-021-06496-6
  27. Signal Transduct Target Ther. 2021 Jun 28. 6(1): 245
      Remarkable progress in ageing research has been achieved over the past decades. General perceptions and experimental evidence pinpoint that the decline of physical function often initiates by cell senescence and organ ageing. Epigenetic dynamics and immunometabolic reprogramming link to the alterations of cellular response to intrinsic and extrinsic stimuli, representing current hotspots as they not only (re-)shape the individual cell identity, but also involve in cell fate decision. This review focuses on the present findings and emerging concepts in epigenetic, inflammatory, and metabolic regulations and the consequences of the ageing process. Potential therapeutic interventions targeting cell senescence and regulatory mechanisms, using state-of-the-art techniques are also discussed.
    DOI:  https://doi.org/10.1038/s41392-021-00646-9
  28. Oncol Lett. 2021 Aug;22(2): 603
      Palbociclib (PD0332991), a selective cyclin-dependent kinase 4/6 (CDK4/6) inhibitor, has been reported to exert anticancer activity in some cancers, including gastric cancer (GC). However, the role of palbociclib in GC remains largely unknown. The present study aimed to investigate the effects of palbociclib on the progression of GC and the potential mechanisms underlying its effects. The colony formation, proliferation, senescence, as well as apoptosis and cell cycle progression of AGS and HGC-27 cells following treatment with palbociclib were analyzed using colony formation assays, MTT assays, senescence-associated β-galactosidase (SA-β-gal) staining and flow cytometry, respectively. The protein expression levels of Bax, Caspase-3, Bcl-2, p16, p21, p53, Notch1, Notch2 and hairy and enhancer of split 1 (Hes1) were measured in AGS and HGC-27 cells using western blotting. Moreover, the mRNA expression levels of Notch1, Notch2 and Hes1 in AGS and HGC-27 cells were determined by reverse transcription-quantitative PCR. In the present study, palbociclib significantly inhibited cell proliferation and induced cell senescence, cell cycle arrest and apoptosis in both cell lines in a dose-dependent manner. Additionally, palbociclib significantly increased the expression levels of Bax, Caspase-3, p16, p21 and p53, whilst decreasing the expression of Bcl-2, Notch1, Notch2 and Hes1 in AGS and HGC-27 cells. Furthermore, the Notch pathway activator Jagged-1/FC reversed the effects of palbociclib on cell proliferation, apoptosis, senescence and cell cycle progression. These findings demonstrated that palbociclib could inhibit proliferation and induce senescence, cell cycle arrest and apoptosis in GC cells by inhibiting the Notch pathway.
    Keywords:  Notch pathway; apoptosis; cell cycle; gastric cancer; palbociclib; senescence
    DOI:  https://doi.org/10.3892/ol.2021.12864
  29. Int J Mol Sci. 2021 Jun 15. pii: 6381. [Epub ahead of print]22(12):
      Proper functioning of cells-their ability to divide, differentiate, and regenerate-is dictated by genomic stability. The main factors contributing to this stability are the telomeric ends that cap chromosomes. Telomere biology and telomerase activity have been of interest to scientists in various medical science fields for years, including the study of both cancer and of senescence and aging. All these processes are accompanied by telomere-length modulation. Maintaining the key levels of telomerase component (hTERT) expression and telomerase activity that provide optimal telomere length as well as some nontelomeric functions represents a promising step in advanced anti-aging strategies, especially in dermocosmetics. Some known naturally derived compounds contribute significantly to telomere and telomerase metabolism. However, before they can be safely used, it is necessary to assess their mechanisms of action and potential side effects. This paper focuses on the metabolic potential of natural compounds to modulate telomerase and telomere biology and thus prevent senescence and skin aging.
    Keywords:  antioxidants; natural compounds; senescence; skin aging; telomerase; telomeres
    DOI:  https://doi.org/10.3390/ijms22126381
  30. Commun Biol. 2021 Jul 02. 4(1): 831
      Gain of even a single chromosome leads to changes in human cell physiology and uniform perturbations of specific cellular processes, including downregulation of DNA replication pathway, upregulation of autophagy and lysosomal degradation, and constitutive activation of the type I interferon response. Little is known about the molecular mechanisms underlying these changes. We show that the constitutive nuclear localization of TFEB, a transcription factor that activates the expression of autophagy and lysosomal genes, is characteristic of human trisomic cells. Constitutive nuclear localization of TFEB in trisomic cells is independent of mTORC1 signaling, but depends on the cGAS-STING activation. Trisomic cells accumulate cytoplasmic dsDNA, which activates the cGAS-STING signaling cascade, thereby triggering nuclear accumulation of the transcription factor IRF3 and, consequently, upregulation of interferon-stimulated genes. cGAS depletion interferes with TFEB-dependent upregulation of autophagy in model trisomic cells. Importantly, activation of both the innate immune response and autophagy occurs also in primary trisomic embryonic fibroblasts, independent of the identity of the additional chromosome. Our research identifies the cGAS-STING pathway as an upstream regulator responsible for activation of autophagy and inflammatory response in human cells with extra chromosomes, such as in Down syndrome or other aneuploidy-associated pathologies.
    DOI:  https://doi.org/10.1038/s42003-021-02278-9
  31. STAR Protoc. 2021 Sep 17. 2(3): 100620
      Telomere dysfunction-induced focus (TIF) assay allows efficient profiling of telomere dysfunctions in cells and tissues. Here, we describe the use of the TIF assay to screen synthetic peptides from E3 ubiquitin ligase FBW7, a tumor suppressor gene product, to prevent TIFs caused by environmental radiation stress. We demonstrate peptidomimetic telomere dysfunction inhibitor as a potentially intervening therapeutic drug candidate in aging-related diseases. This work demonstrates a novel utility of the TIF assay protocol in identifying telomere dysfunction inhibitors. For complete details on the use and execution of this protocol, please refer to Wang et al (2020).
    Keywords:  Cancer; Cell Biology; Cell culture; Cell-based Assays; Microscopy; Molecular Biology; Molecular/Chemical Probes; Protein Biochemistry
    DOI:  https://doi.org/10.1016/j.xpro.2021.100620
  32. Cells. 2021 Jun 04. pii: 1386. [Epub ahead of print]10(6):
      All vertebrate blood cells descend from multipotent hematopoietic stem cells (HSCs), whose activity and differentiation depend on a complex and incompletely understood relationship with inflammatory signals. Although homeostatic levels of inflammatory signaling play an intricate role in HSC maintenance, activation, proliferation, and differentiation, acute or chronic exposure to inflammation can have deleterious effects on HSC function and self-renewal capacity, and bias their differentiation program. Increased levels of inflammatory signaling are observed during aging, affecting HSCs either directly or indirectly via the bone marrow niche and contributing to their loss of self-renewal capacity, diminished overall functionality, and myeloid differentiation skewing. These changes can have significant pathological consequences. Here, we provide an overview of the current literature on the complex interplay between HSCs and inflammatory signaling, and how this relationship contributes to age-related phenotypes. Understanding the mechanisms and outcomes of this interaction during different life stages will have significant implications in the modulation and restoration of the hematopoietic system in human disease, recovery from cancer and chemotherapeutic treatments, stem cell transplantation, and aging.
    Keywords:  aging; bone marrow niche; hematopoiesis; hematopoietic stem cells; inflammatory signaling; myelodysplasia; myeloid bias; regeneration
    DOI:  https://doi.org/10.3390/cells10061386
  33. Nature. 2021 Jun 30.
    CITIID-NIHR BioResource COVID-19 Collaboration
      Although two-dose mRNA vaccination provides excellent protection against SARS-CoV-2, data are scarce on vaccine efficacy against variants of concern (VOC) in individuals above 80 years of age1. Here we analysed immune responses following vaccination with mRNA vaccine BNT162b22 in elderly participants and younger health care workers. Serum neutralisation and binding IgG/IgA after the first vaccine dose diminished with increasing age, with a marked drop in participants over 80 years old. Sera from participants above 80 showed significantly lower neutralisation potency against B.1.1.7, B.1.351 and P.1. variants of concern as compared to wild type and were more likely to lack any neutralisation against VOC following the first dose. However, following the second dose, neutralisation against VOC was detectable regardless of age. Frequency of SARS-CoV-2 Spike specific B-memory cells was higher in elderly responders versus non-responders after first dose. Elderly participants demonstrated clear reduction in somatic hypermutation of class switched cells. SARS-CoV-2 Spike specific T- cell IFNγ and IL-2 responses decreased with increasing age, and both cytokines were secreted primarily by CD4 T cells. We conclude that the elderly are a high risk population that warrant specific measures to boost vaccine responses, particularly where variants of concern are circulating.
    DOI:  https://doi.org/10.1038/s41586-021-03739-1
  34. Acta Neuropathol Commun. 2021 Jun 29. 9(1): 116
      Sustained brain chronic inflammation in Alzheimer's disease (AD) includes glial cell activation, an increase in cytokines and chemokines, and lipid mediators (LMs), concomitant with decreased pro-homeostatic mediators. The inflammatory response at the onset of pathology engages activation of pro-resolving, pro-homeostatic LMs followed by a gradual decrease. We used an APP knock-in (App KI) AD mouse that accumulates β-amyloid (Aβ) and presents cognitive deficits (at 2 and 6 months of age, respectively) to investigate LMs, their precursors, biosynthetic enzymes and receptors, glial activation, and inflammatory proteins in the cerebral cortex and hippocampus at 2-, 4-, 8- and 18-month-old in comparison with wild-type (WT) mice. We used LC-mass-spectrometry and MALDI molecular imaging to analyze LMs and phospholipids, and immunochemistry for proteins. Our results revealed an age-specific lipid and cytokine profile, and glial activation in the App KI mice. Despite an early onset of Aβ pathology, pro-inflammatory and pro-resolving LMs were prominently increased only in the oldest age group. Furthermore, the LM biosynthetic enzymes increased, and their receptor expression decreased in the aged App KI mice. Arachidonic acid (AA)-containing phospholipid molecular species were elevated, correlating with decreased cPLA2 activity. MALDI molecular imaging depicted differential distribution of phospholipids according to genotype in hippocampal layers. Brain histology disclosed increased microglia proliferation starting from young age in the App KI mice, while astrocyte numbers were enhanced in older ages. Our results demonstrate that the brain lipidome is modified preferentially during aging as compared to amyloid pathology in the model studied here. However, alterations in phospholipids signal early pathological changes in membrane composition.
    Keywords:  Alzheimer; Amyloid; Astrocyte; Inflammation; Lipid mediators; Microglia; Phospholipids; Resolution
    DOI:  https://doi.org/10.1186/s40478-021-01216-4
  35. Proc Natl Acad Sci U S A. 2021 Jul 06. pii: e2023418118. [Epub ahead of print]118(27):
      The autophagy-lysosomal pathway plays a critical role in intracellular clearance and metabolic homeostasis. While neuronal autophagy is known to participate in the degradation of neurofibrillary tangles composed of hyperphosphorylated and misfolded tau protein in Alzheimer's disease and other tauopathies, how microglial-specific autophagy regulates microglial intrinsic properties and neuronal tau pathology is not well understood. We report here that Atg7, a key mediator of autophagosome biogenesis, plays an essential role in the regulation of microglial lipid metabolism and neuroinflammation. Microglia-specific deletion of Atg7 leads to the transition of microglia to a proinflammatory status in vivo and to inflammasome activation in vitro. Activation of ApoE and lipid efflux attenuates the lipid droplets accumulation and inhibits cytokine production in microglial cells with Atg7 deficiency. Functionally, we show that the absence of microglial Atg7 enhances intraneuronal tau pathology and its spreading. Our results reveal an essential role for microglial autophagy in regulating lipid homeostasis, neuroinflammation, and tau pathology.
    Keywords:  Alzheimer's disease; autophagy; lipid metabolism; microglia; tau
    DOI:  https://doi.org/10.1073/pnas.2023418118