JBMR Plus. 2025 Jun;9(6): ziaf047
Yuko Kawano,
Hiroki Kawano,
Stephanie Busch,
Allison J Li,
Jane Zhang,
Noah A Salama,
Emily R Quarato,
Mary Georger,
Nataliia Vdovichenko,
Mitra Azadniv,
Daniel K Byun,
Elizabeth A LaMere,
Mark W LaMere,
Jane L Liesveld,
Michael W Becker,
Laura M Calvi.
Stromal cells are critical regulators of hematopoietic stem/progenitor cells and skeletal homeostasis. Although precise systems for functional analysis are critical to investigate mechanistically bone and bone marrow (BM)-derived stromal cells, the establishment of reproducible, highly enriched ex vivo methods for stromal cell isolation, culture and evaluation have been challenging, leading to inconsistent data on stromal cell function. In this work, we carefully tested ex vivo culture of murine stromal cells from BM and bone and discovered abundant and persistent contamination of monocytes and macrophages. We succeeded in establishing highly enriched ex vivo culture system for stromal cells by eliminating persistent monocytes and macrophages using selection against the immunological markers F4/80, Ly6C, and CD45. Transcriptional and functional assays of enriched stromal cell culture revealed differential characteristics of stromal cells from different origins, a dormant signature for bone-derived cells and a highly proliferative progenitor-like signature for BM-derived cells. Monocyte and macrophage contamination reduced signatures of immature stromal cells such as expression levels of SOX9 and CD140a as well as the cells' ability to support hematopoietic stem and progenitor cells based on our growth factor-free co-culture system of hematopoietic cells and stromal cells followed by in vivo functional assays. The inhibitory effects of macrophages on stromal cells may be explained by their potent production of inflammatory cytokines such as CXCL2, CCL3, and complement factor (C1q) confirmed by protein immunoassay of culture supernatant, as well as the differential contribution of pre-osteoblasts to the stromal cell population. This study highlights the functional diversity of stromal cells depending on the microenvironment of origin while addressing a critical limitation of murine ex vivo systems. Our robust culture system enables the study of isolated stromal cells function as well as the impact of stromal cells-macrophage crosstalk.
Keywords: ex vivo co-culture system; macrophage-stromal cell crosstalk; monocyte/macrophage; stromal cells; supporting effect of hematopoietic cells