Genomics Proteomics Bioinformatics. 2025 Mar 19. pii: qzaf026. [Epub ahead of print]
Advancements in high-throughput omics technologies have facilitated a systematic exploration of crucial hematopoietic organs across diverse species. A thorough understanding of hematopoiesis in vivo and facilitation of generating functional hematopoietic stem and progenitor cells (HSPCs) in vitro necessitate a comprehensive hematopoietic cross-stage developmental landscape across species. To address this need, we developed HemAtlas, a platform designed for the systematic mapping of hematopoiesis both in vivo and in vitro. HemAtlas features detailed analyses of multi-omics datasets from humans, mice, zebrafish, and HSPC in vitro culture systems. Utilizing literature curation and data normalization, HemAtlas integrates various functional modules, allowing interactive exploration and visualization of any collected omics data based on user-specific interests. Moreover, by applying a systematic and uniform integration method, we constructed organ-wide hematopoietic references for each species with manually curated cell annotations, enabling a comprehensive decoding of cross-stage developmental hematopoiesis at the organ level. Of particular significance are three distinctive functions-single-cell cross-stage, cross-species, and cross-model analysis-that HemAtlas employs to elucidate the hematopoietic development in zebrafish, mice, and humans, and to offer guidance on the generation of HSPCs in vitro. Simultaneously, HemAtlas incorporates a comprehensive map of HSPC cross-stage development to reveal HSPC stage-specific properties. Taken together, HemAtlas serves as a crucial resource to advance our understanding of hematopoiesis and is available at https://ngdc.cncb.ac.cn/hematlas/.
Keywords: Cross-species analyses; Developmental hematopoiesis; Hematopoietic database; Hematopoietic stem and progenitor cells in vitro; Multi-omics