bims-scepro Biomed News
on Stem cell proteostasis
Issue of 2025–02–23
sixteen papers selected by
William Grey, University of York



  1. bioRxiv. 2025 Feb 09. pii: 2025.02.08.636742. [Epub ahead of print]
      Sickle Cell Disease (SCD) is a blood disorder affecting millions worldwide. Emerging evidence reveals that SCD pathophysiology increases risk of myeloid malignancies and hematopoietic stem cell (HSC) dysfunction, possibly due to pathological stress on bone marrow. To investigate this further, we interrogated mice and individuals with SCD and observed extended cell cycle times, oxidative stress, DNA damage, senescence, and dysregulation of molecular programs associated with these processes in bone marrow hematopoietic stem and progenitor cells (HSPCs). Human SCD HSPCs displayed poor hematopoietic potential ex vivo . SCD mice displayed a dramatic loss of transplantable bone marrow HSPCs, which was reversed upon treatment of SCD mice with the senolytic agent, ABT-263 (navitoclax). Thus, senolytics restore bone marrow function during SCD in mice and represent a novel strategy to improve bone marrow health in individuals with SCD and improve the safety of potentially curative gene therapies that utilize autologous HSPCs from individuals with SCD.
    DOI:  https://doi.org/10.1101/2025.02.08.636742
  2. Exp Hematol. 2025 Feb 18. pii: S0301-472X(25)00040-2. [Epub ahead of print] 104749
      Among various types of candidate cells, including osteoblasts and Nestin+ periarteriolar cells, several lines of histological and genetic evidence have demonstrated that the single population of mesenchymal stem cells, termed CXC chemokine ligand 12 (CXCL12)-abundant reticular (CAR) cells, which overlap strongly with leptin receptor-expressing (LepR+) cells, is the major cellular component of niches for hematopoietic stem cells (HSCs) and hematopoiesis in the bone marrow (BM). Expression of p16, a marker for senescent cells, and interleukin (IL)-1β and γH2AX foci, a marker for DNA damage, were increased in CAR/LepR+ cells and osteoblasts with age. However, the most striking phenotype of aging in the human BM is yellow marrow, which consists predominantly of adipocytes, causing the decreased volume of the principal site of hematopoiesis probably with the decreased numbers of HSCs in the total body. BM adipocytes are derived from CAR/LepR+ cells and act as negative or positive regulators of HSCs during homeostasis and myelosuppressive condition. Therefore, a fundamental question is how a portion of BM CAR/LepR+ cells differentiate into adipocytes during aging. Many rounds of inflammatory stress induced yellow marrow in mice. On the other hand, type H vessels found in the metaphysis and peripheral nerves running along the arteries were markedly reduced in the marrow of aged mice, which might affect HSCs and/or their niche cells. Understanding the cellular and molecular function of aged HSC niches might enable pharmacological regulation of niche functions to facilitate control of disease caused by BM aging.
    Keywords:  B cells; HSCs; lymphopoiesis; mesenchymal stem cells; microenvironments
    DOI:  https://doi.org/10.1016/j.exphem.2025.104749
  3. Cell Signal. 2025 Feb 13. pii: S0898-6568(25)00065-8. [Epub ahead of print] 111652
      New strategy to prevent relapse and drug resistance in acute myeloid leukemia (AML) is urgently to be solved. The connection between those properties and leukemia stem cells (LSCs) in AML remains poorly understood. In this study, we demonstrate that leukemia cells with high signal transducer and activator of transcription 1 (STAT1) expression preserve quiescent properties, in contrast, leukemia cells with low STAT1 expression possess active and vulnerable apoptotic properties in AML model, highlighting the differential impact of STAT1 expression on cellular behavior in acute myeloid leukemia. STAT1 depletion damages the quiescence of LSCs and prolongs the survive of AML mice. By inhibiting STAT1 in leukemia cells, we observe a significant elevation in reactive oxygen species (ROS) levels, rendering the cells more susceptible to the detrimental effects of oxidative stress. The synergistic administration of Fludarabine, a potent STAT1 inhibitor, with conventional chemotherapy regimens, augments the efficacy of chemotherapy drugs against AML cells and the sensitivity of LSCs to chemotherapy. In a word, STAT1, as a switch, enables leukemia cells convertible in ROS high and low states. Inhibition of STAT1 enables leukemia cells more sensitive to chemotherapy, STAT1 as a new target offers a promising strategy in AML treatment.
    Keywords:  Acute myeloid leukemia (AML); Leukemia stem cells (LSCs); Oxidative stress; Signal transducer and activator of transcription 1 (STAT1)
    DOI:  https://doi.org/10.1016/j.cellsig.2025.111652
  4. Cell Rep. 2025 Feb 13. pii: S2211-1247(25)00095-6. [Epub ahead of print]44(2): 115324
      Hematopoietic stem and progenitor cells (HSPCs) undergo rapid transcriptional transitions among distinct cell states and functional properties during development, but the underlying molecular mechanism is largely unknown. Here, we characterize the mRNA m5C landscape of developing HSPCs in zebrafish and found that m5C modification is essential for HSPC expansion through maintaining mRNA stability. Deletion of the m5C reader, Y-box binding protein 1 (Ybx1), significantly inhibits the proliferation of HSPCs in zebrafish and mice. Mechanistically, Ybx1 recognizes m5C-modified mRNAs and maintains the stability of cell-cycle-related transcripts, thereby ensuring proper HSPC expansion. This study reveals the critical role of Ybx1-mediated mRNA m5C modification in developmental hematopoiesis and provides new insights and epitransciptomic strategies for optimizing HSPC expansion.
    Keywords:  5-methylcytosine; CP: Stem cell research; Ybx1; cell-cycle progression; hematopoietic stem and progenitor cells; mRNA stability
    DOI:  https://doi.org/10.1016/j.celrep.2025.115324
  5. Oncoimmunology. 2025 Dec;14(1): 2458843
      Adoptive cell therapy including chimeric antigen receptor (CAR) T cells targeting CD19 has been approved by FDA to treat B cell-derived malignancies with remarkable success. The success has not yet been expanded to treating Acute Myeloid Leukemia (AML). We previously showed that a nanobody and single-chain fragment variable (scFv) CD13 (Nanobody)/TIM-3 (scFv) directed bispecific split CAR (bissCAR) T cells, while effective in eliminating AML in preclinical models, also caused substantial toxicity to human hematopoietic stem cells (HSCs) and other lineages. To maintain the bissCART specificity and efficacy, yet reduce toxicity to normal cells including HSCs, we generated new anti-TIM-3 nanobodies and constructed new cognate nanobodies-directed CD13/41BB and TIM3/CD3zeta nbiCARTs. The resultant nbiCARTs showed strong antitumor activity to CD13/TIM3 positive leukemic cells in vitro and in preclinical models. Importantly, the 3rd generation of nbiCARTs had little toxicity to human bone marrow-derived colony forming progenitors ex vivo and the human HSCs in mice with a humanized immune system. Together, the current studies generated novel and 3rd G CD13/TIM-3 nbiCARTs that displayed stronger antitumor activity yet minimal toxicity to normal tissues like HSCs that express a moderate level of CD13, paving the way to further evaluate the novel CD13/TIM-3CARTs in treating aggressive and refractory AML in clinical studies.
    Keywords:  Acute Myeloid Leukemia (AML); CD13-TIM3; nanobody CARTs; reduced toxicity
    DOI:  https://doi.org/10.1080/2162402X.2025.2458843
  6. Proteomes. 2025 Feb 17. pii: 11. [Epub ahead of print]13(1):
      Acute myeloid leukemia (AML) is an aggressive bone marrow malignancy that can be cured only by intensive chemotherapy possibly combined with allogeneic stem cell transplantation. We compared the pretreatment proteomic profiles of AML cells derived from 50 patients at the time of first diagnosis with normal CD34+ bone marrow cells. A comparison based on all AML and CD34+ normal cell populations identified 121 differentially abundant proteins that showed at least 2-fold differences, and these proteins included several markers of neutrophil differentiation (e.g., TLR2, the integrins ITGM and ITGX, and downstream mediators including RHO GTPase, S100A8, S100A9, S100A22). However, the expression of these 121 proteins varied between patients, and a subset of 28 patients was characterized by increased long-term AML-free survival, signs of myeloid AML cell differentiation, and favorable genetic abnormalities. These two main patient subsets (28 with differentiation versus 22 with fewer signs of differentiation) also differed with regard to the phosphorylation of 16 differentially abundant proteins. Furthermore, we also classified our patients based on their expression of 16 proteins involved in the regulation of iron metabolism/ferroptosis and showing differential expression when comparing AML cells and normal CD34+ cells. Among the 22 patients with less favorable prognosis, we could then identify a genetically heterogeneous subset characterized by adverse prognosis (i.e., death from primary resistance/relapse) and an iron metabolism/ferroptosis protein profile showing similarities with normal CD34+ cells. We conclude that proteomic profiles differ between AML and normal CD34+ cells; especially, proteomic differences reflecting differentiation and regulation of iron metabolism/ferroptosis are associated with risk of relapse after intensive conventional therapy.
    Keywords:  Toll-like receptor; acute myeloid leukemia; cellular communication; differentiation; hematopoiesis; integrin; intracellular signaling; mass spectrometry; normal CD34+ bone marrow cells; patient heterogeneity; proteomics
    DOI:  https://doi.org/10.3390/proteomes13010011
  7. Cell Stem Cell. 2025 Feb 12. pii: S1934-5909(25)00010-4. [Epub ahead of print]
      Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy characterized by the blockage of myeloid cell differentiation and uncontrolled proliferation of immature myeloid cells. Here, we show that paraspeckle component 1 (PSPC1) is aberrantly overexpressed and associated with poor survival in AML patients. Using human AML cells and mouse models, we demonstrate that PSPC1 is not required for normal hematopoiesis, but it is critical and essential for AML cells to maintain their leukemic characteristics. PSPC1 loss induces robust differentiation, suppresses proliferation, and abolishes leukemogenesis in diverse AML cells. Mechanistically, PSPC1 exerts a pro-leukemia effect by regulating a unique leukemic transcription program via cooperative chromatin binding with PU.1 and activation of tumor-promoting genes, including NDC1, which is not previously implicated in AML. Our findings uncover a unique and crucial role of PSPC1 dependency in AML and highlight its potential as a promising therapeutic target for AML.
    Keywords:  AML; NDC1; PSPC1; PU.1; hematopoiesis; leukemia
    DOI:  https://doi.org/10.1016/j.stem.2025.01.010
  8. bioRxiv. 2025 Jan 27. pii: 2025.01.24.634753. [Epub ahead of print]
      Given the successful graft-versus-leukemia cell treatment effect observed with allogeneic hematopoietic stem cell transplant for patients with refractory or relapsed acute myeloid leukemia, immunotherapies have also been investigated in the nontransplant setting. Here, we use a multi-omic approach to investigate spatiotemporal interactions in the bone marrow niche between leukemia cells and immune cells in patients with refractory or relapsed acute myeloid leukemia treated with a combination of the immune checkpoint inhibitor pembrolizumab and hypomethylating agent decitabine. We derived precise segmentation data by extensively training nuclear and membrane cell segmentation models, which enabled accurate transcript assignment and deep learning-feature-based image analysis. To overcome read-depth limitations, we integrated the single-cell RNA sequencing data with single-cell-resolution spatial transcriptomic data from the same sample. Quantifying cell-cell distances between cell edges rather than cell centroids allowed us to conduct a more accurate downstream analysis of the tumor microenvironment, revealing that multiple cell types of interest had global enrichment or local enrichment proximal to leukemia cells after pembrolizumab treatment, which could be associated with their clinical responses. Furthermore, ligand-receptor analysis indicated a potential increase in TWEAK signaling between leukemia cells and immune cells after pembrolizumab treatment.
    Highlights: Spatial transcriptomic analysis of R-AML bone marrow niches provides detailed information about intercellular interactions in the tumor microenvironment.Immunotherapy shifts the cell composition of the leukemia neighborhood.
    Graphical abstract:
    DOI:  https://doi.org/10.1101/2025.01.24.634753
  9. Exp Cell Res. 2025 Feb 15. pii: S0014-4827(25)00050-3. [Epub ahead of print] 114454
      Multiple myeloma (MM) is a malignant proliferative disorder of plasma cells and remains an incurable disease. Threonine and tyrosine kinase (TTK) is a dual-specific protein kinase that targets serine/threonine and tyrosine residues for phosphorylation. Its elevated expression has been linked to unfavorable outcomes in several types of cancer. Although the role of TTK in MM are still incompletely understood. In this research, we assessed TTK mRNA and protein expression levels in 51 MM patients and 30 healthy donors using qRT-PCR and western blotting. The impact of TTK expression on MM cell apoptosis, proliferation, and the cell cycle were assessed through CCK-8 assay, flow cytometry, and western blotting. Our findings revealed a significant overexpression of TTK in multiple myeloma patients and cell lines. TTK knockdown promoted apoptosis and G0/G1 phase arrest while inhibiting proliferation in MM cells, whereas TTK overexpression reduced apoptosis and G0/G1 phase arrest, enhancing proliferation in MM cells. Next, we identified regucalcin (RGN) as a downstream target of TTK through proteomic analysis. In NDMM, the expression of RGN was decreased. Cell function experiments showed that RGN knockdown significantly promoted MM cell proliferation, inhibited apoptosis and reduced cell cycle arrest, and reversed the increased apoptosis, weakened proliferation, and enhanced cell cycle arrest caused by TTK knockdown. Finally, a xenograft mouse model showed that TTK significantly promotes MM development. In summary, we demonstrated that the TTK-RGN axis regulates cell apoptosis, G0/G1 phase arrest, and proliferation in MM, highlighting TTK as a potential target for therapeutic intervention in this cancer.
    Keywords:  Multiple myeloma; RGN; TTK; apoptosis; proliferation
    DOI:  https://doi.org/10.1016/j.yexcr.2025.114454
  10. Br J Haematol. 2025 Feb 21.
      Acute myeloid leukaemia (AML) remains a deadly disease, largely due to the persistence of drug-resistant leukaemia-initiating cells (LICs) which promote relapse. Therefore, effective therapies must target LICs. Patient-derived xenografts (PDXs) are valuable for testing new therapies, though establishing AML PDX models is challenging. Two humanized mouse strains, MISTRG and NRGS, have been developed for this purpose. In this study, we show both are suitable strains for the development of AML PDXs; however, MISTRG-derived PDXs contain 10 times higher LIC frequencies than NRGS-derived PDXs. These differences have crucial implications for preclinical AML therapy testing and modelling relapse models of the disease.
    Keywords:  MISTRG; NRGS; acute myeloid Leukaemia; leukaemia‐initiating cells; patient‐derived xenograft
    DOI:  https://doi.org/10.1111/bjh.20029
  11. Acta Pharmacol Sin. 2025 Feb 21.
      Multiple myeloma (MM) is a prevalent hematologic malignancy characterized by abnormal proliferation of cloned plasma cells. Given the aggressive nature and drug resistance of MM cells, identification of novel genes could provide valuable insights for treatment. In this study we performed machine learning in the RNA microarray data of purified myeloma plasma cell samples from five independent MM cohorts with 957 MM patients, and identified O-GlcNAcylation transferase (OGT) and cell division cycle 27 (CDC27) as the key prognostic genes for MM. We demonstrated a close link between OGT and CDC27 in MM cells by knockdown of OGT with siOGT, pharmacological inhibition of O-GlcNAcylation with OSMI-1 and pharmacological accumulation of O-GlcNAcylation with Thiamet G. Using mass spectrometry and immunoprecipitation, we identified the O-GlcNAcylated CDC27 protein as a key target protein that may be directly downregulated by OSMI-1 in MM.1S cells. We further revealed that O-GlcNAcylation maintained CDC27 protein stability by blocking the autophagy-lysosome pathway (ALP). Moreover, we demonstrated the enhanced antitumor efficacy of combined OSMI-1 and bortezomib (BTZ) treatment in MM cells both in vivo and in vitro. Thus, this study identifies a novel function of O-GlcNAcylation-related ALP in regulating CDC27 protein stability and a potential therapeutic strategy for treating MM.
    Keywords:  CDC27; O-GlcNAcylation; bortezomib; machine learning; multiple myeloma
    DOI:  https://doi.org/10.1038/s41401-025-01500-2
  12. bioRxiv. 2025 Feb 01. pii: 2025.01.29.635603. [Epub ahead of print]
      Multiple myeloma (MM) is a neoplasm of antibody-producing plasma cells and is the second most prevalent hematological malignancy worldwide. Development of drug resistance and disease relapse significantly impede the success of MM treatment, highlighting the critical need to discover novel therapeutic targets. In a custom CRISPR/Cas9 screen targeting 197 DNA damage response-related genes, Protein Arginine N-Methyltransferase 1 (PRMT1) emerged as a top hit, revealing it as a potential therapeutic vulnerability and survival dependency in MM cells. PRMT1, a major Type I PRMT enzyme, catalyzes the asymmetric transfer of methyl groups to arginine residues, influencing gene transcription and protein function through post-translational modification. Dysregulation or overexpression of PRMT1 has been observed in various malignancies including MM and is linked to chemoresistance. Treatment with the Type I PRMT inhibitor GSK3368715 resulted in a dose-dependent reduction in cell survival across a panel of MM cell lines. This was accompanied by reduced levels of asymmetric dimethylation of arginine (ADMA) and increased arginine monomethylation (MMA) in MM cells. Cell cycle analysis revealed an accumulation of cells in the G0/G1 phase and a reduction in the S phase upon GSK3368715 treatment. Additionally, PRMT1 inhibition led to a significant downregulation of genes involved in cell proliferation, DNA replication, and DNA damage response (DDR), likely inducing genomic instability and impairing tumor growth. This was supported by Reverse Phase Protein Array (RPPA) analyses, which revealed a significant reduction in levels of proteins associated with cell cycle regulation and DDR pathways. Overall, our findings indicate that MM cells critically depend on PRMT1 for survival, highlighting the therapeutic potential of PRMT1 inhibition in treating MM.
    DOI:  https://doi.org/10.1101/2025.01.29.635603
  13. Eur J Med Chem. 2025 Feb 12. pii: S0223-5234(25)00146-1. [Epub ahead of print]288 117381
      Translational readthrough (TR) regulation has emerged as a promising therapeutic strategy for cancer treatment. Utilizing a constructed monoclonal cell line AG-9, designed for screening compounds that induce TR, we identified a BRD4-targeted PROTAC molecule, dBET57, that promotes TR by degrading GSPT1. Notably, dBET57 exhibited significant antiproliferative activity against acute myeloid leukemia (AML) and non-Hodgkin lymphoma (NHL) cells across a diverse panel of tumor cell lines. Building on these findings, we optimized the structure of dBET57, leading to the development of analogs with enhanced dual-target degradation capabilities. Most of these optimized degraders demonstrated superior antiproliferative activity in vitro against various AML and NHL cell lines when compared to dBET57. Among them, DP-15 emerged as a particularly promising candidate, exhibiting significant anticancer activity against both AML and NHL cells while maintaining acceptable safety profiles for normal leukocytes. Furthermore, DP-15 demonstrated enhanced antitumor efficacy in mouse cell-derived xenograft (CDX) models. Our findings highlight the potential of dual BRD4 and GSPT1 degraders, such as DP-15, as effective therapeutic agents for the treatment of hematological malignancies.
    Keywords:  Acute myeloid leukemia (AML); Bromodomain-containing protein 4 (BRD4); G1 to S phase transition protein 1 (GSPT1); Non-hodgkin lymphoma (NHL); PROTAC; Structure activity relationship (SAR)
    DOI:  https://doi.org/10.1016/j.ejmech.2025.117381
  14. Nature. 2025 Feb 19.
      Mitochondrial stress pathways protect mitochondrial health from cellular insults1-8. However, their role under physiological conditions is largely unknown. Here, using 18 single, double and triple whole-body and tissue-specific knockout and mutant mice, along with systematic mitochondrial morphology analysis, untargeted metabolomics and RNA sequencing, we discovered that the synergy between two stress-responsive systems-the ubiquitin E3 ligase Parkin and the metalloprotease OMA1-safeguards mitochondrial structure and genome by mitochondrial fusion, mediated by the outer membrane GTPase MFN1 and the inner membrane GTPase OPA1. Whereas the individual loss of Parkin or OMA1 does not affect mitochondrial integrity, their combined loss results in small body size, low locomotor activity, premature death, mitochondrial abnormalities and innate immune responses. Thus, our data show that Parkin and OMA1 maintain a dual regulatory mechanism that controls mitochondrial fusion at the two membranes, even in the absence of extrinsic stress.
    DOI:  https://doi.org/10.1038/s41586-025-08590-2
  15. Cell Death Dis. 2025 Feb 15. 16(1): 101
      The integrated stress response (ISR) is a fundamental signaling network that leverages the cell's biosynthetic capacity against different stresses to restore homeostasis. However, when homeostasis is unattainable, the ISR switches to drive cell death and eliminate irreparably damaged cells. Previous work has shown that persistent activity of the ISR kinase PERK during unyielding endoplasmic reticulum (ER) stress induces apoptosis downstream of death receptor 5 (DR5) [1]. ER stress provides activating signals that engage the ectodomain (ED) of DR5 to drive its unconventional activation in the Golgi apparatus [1, 2]. Here, using chemical genetics to uncouple stress sensing from ISR activation, we found that DR5 signaling from the Golgi apparatus is integral to the ISR and not specific to ER stress. Furthermore, we show that DR5 activation can be driven solely by increased expression and does not require its ED. These findings indicate that a general ISR kill switch eliminates irreversibly injured cells.
    DOI:  https://doi.org/10.1038/s41419-025-07403-8
  16. Sci Adv. 2025 Feb 21. 11(8): eadu3011
      Mitochondrial tRNA taurine modifications mediated by mitochondrial tRNA translation optimization 1 (Mto1) is essential for the mitochondrial protein translation. Mto1 deficiency was shown to induce proteostress in embryonic stem cells. A recent finding that a patient with MTO1 gene mutation showed severe anemia led us to hypothesize that Mto1 dysfunctions may result in defective erythropoiesis. Hematopoietic-specific Mto1 conditional knockout (cKO) mice were embryonic lethal and showed niche-independent defect in erythroblast proliferation and terminal differentiation. Mechanistically, mitochondrial oxidative phosphorylation complexes were severely impaired in the Mto1 cKO fetal liver, and this was followed by cytosolic iron accumulation. Overloaded cytosolic iron promoted heme biosynthesis, which induced an unfolded protein response (UPR) in Mto1 cKO erythroblasts. An iron chelator or UPR inhibitor rescued erythroid terminal differentiation in the Mto1 cKO fetal liver in vitro. This mitochondrial regulation of iron homeostasis revealed the indispensable role of mitochondrial tRNA modification in fetal hematopoiesis.
    DOI:  https://doi.org/10.1126/sciadv.adu3011