Cell Biol Toxicol. 2024 Nov 28. 40(1): 105
BACKGROUND: Gilteritinib is a commonly used targeted drug for acute myeloid leukemia (AML), but the emergence of gilteritinib resistance greatly reduces the therapeutic effect. RING finger protein 38 (RNF38), a protein with RING Finger domain and E3 ubiquitin ligase activity, has been implicated in tumorigenesis and drug resistance. However, the role and mechanism of RNF38 in the gilteritinib resistance of AML remains unclear.
METHODS: Normal AML cells were treated with gilteritinib to construct gilteritinib-resistant cells (MV4-11/Gilteritinib and MOLM-13/Gilteritinib). CCK8 assay, TUNEL staining and EdU assay were used to assess gilteritinib resistance, cell apoptosis and proliferation. The protein levels of autophagy-related markers, RNF38 and LIM homeobox transcription factor 1 alpha (LMX1A) were determined by western blot. Also, RNF38 and LMX1A mRNA levels were tested using qRT-PCR. Autophagic flux was assessed using mRFP-GFP-LC3 labeling, and autophagosome numbers was counted under transmission electron microscopy. Co-IP assay was employed to analyze interaction between RNF38 and LMX1A. The effects of LMX1A and RNF38 on AML tumorigenesis were analyzed by in vivo experiments.
RESULTS: In gilteritinib-resistant AML cells, autophagy-related markers, mRFP-GFP-LC3 signals and autophagosome numbers were significantly enhanced. Autophagy inhibitor 3-MA could suppress gilteritinib resistance in AML cells. RNF38 knockdown inhibited gilteritinib resistance and autophagy in AML cells. Mechanistically, RNF38 reduced LMX1A expression by inducing its ubiquitination. RNF38 overexpression reversed the inhibitory effect of LMX1A on gilteritinib resistance and autophagy in AML cells, as well as AML tumor growth in vivo, while these effects could be abolished by proteasome inhibitor MG132.
CONCLUSIONS: RNF38 induced autophagy to promote gilteritinib resistance in AML by increasing the ubiquitination of LMX1A.
Keywords: Acute myeloid leukemia; Autophagy; Gilteritinib; LMX1A; RNF38