Cell Biochem Biophys. 2024 Aug 17.
Acute myeloid leukemia (AML) is a kind of heterogeneous hematologic malignancy with high incidence, which is usually treated by intensive and maintenance treatment with large dose of conventional chemotherapy drugs. However, cell resistance is still an unsolved problem. The abnormal expression of miRNAs is closely related to the pathogenesis and progression of AML, and affects the drug resistance of cancer cells. miR-149-3p plays an important role in the resistance of cancer cells to cisplatin, and plays an excellent anti-tumor activity. By studying the function of miR-149-3p, it is expected to find new therapeutic methods to reverse chemotherapy resistance. In order to explore the mechanism of action of miR-149-3p on AML chemotherapeutic drug sensitivity, we explored the relationship between the Warburg effect and AML chemotherapeutic drug resistance. Based on AML cells, transfection of miR-149-3p inhibitor/NC and Warburg effect inhibitor (2DG) and PI3K/AKT pathway inhibitor (LY294002) were used to investigate the mechanism of IFN-γ regulating chemotherapy resistance of AML cells through Warburg effect. Down-regulation of miR-149-3p significantly inhibited drug sensitivity of AML cells. Down-regulation of miR-149-3p significantly promoted proliferation and invasion of AML cells while inhibiting apoptosis by up-regulating the expression of Bcl-2 and down-regulating the expression of Bax. Down-regulation of miR-149-3p significantly promoted the expression of Warburg effect-related proteins hexokinase 2 (HK2), lactate dehydrogenase A (LDHA), and Glucose transporter 1 (GLUT1), glucose consumption, lactic acid, and intracellular ATP production. After inhibiting the Warburg effect with 2DG, the effect of miR-149-3p was inhibited, suggesting that upregulation of miR-149-3p reversed AML cell resistance by inhibiting the Warburg effect. In addition, miR-149-3p interacted with AKT1. Down-regulation of miR-149-3p increased the expression of inosine phosphate 3 kinase (PI3K), protein kinase B (AKT), and multi-drug resistance protein (MDR1). LY294002 inhibited the expression of these proteins, and down-regulation of miR-149-3p reversed the effect of LY294002 and improved the drug resistance of cells. Upregulation of miR-149-3p expression may potentially be a therapeutic target for AML resistance. It has been shown to inhibit PI3K/AKT pathway activation, thereby inhibiting the Warburg effect, and affecting cell proliferation, apoptosis, and drug resistance.
Keywords: Acute myeloid leukemia; Drug sensitivity; PI3K/AKT signaling pathway; Warburg effect; miR-149-3p