bims-rimeca Biomed News
on RNA methylation in cancer
Issue of 2023–10–29
twelve papers selected by
Sk Ramiz Islam, Saha Institute of Nuclear Physics



  1. Reprod Biol Endocrinol. 2023 Oct 27. 21(1): 99
       BACKGROUND: Endometriosis-related infertility is a common worldwide reproductive health concern. Despite ongoing research, the causes of infertility remain unclear. Evidence suggests that epigenetic regulation is crucial in reproduction. However, the role of N6-methyladenosine (m6A) modification of RNA in endometriosis-related infertility requires further investigation.
    METHODS: We examined the expression of m6A and methyltransferase-like 3 (METTL3) in endometrial samples taken from normal fertile women in the proliferative phase (the NP group) or the mid-secretory phase (the NS group) or from women with endometriosis-related infertility at the mid-secretory phase (the ES group). We treated primary endometrial stromal cells (ESCs) with medroxyprogesterone acetate and 8-Bromo-cyclic adenosine monophosphate for in vitro decidualization and detected the expression of m6A, METTL3, and decidual markers. We analyzed the expression of m6A, METTL3, and forkhead box O1 (FOXO1) in ESCs from normal fertile women (the ND group) or women with endometriosis-related infertility (the ED group). We also assessed the expression of m6A, METTL3, and decidual markers, as well as the embryo adhesion rate, upon METTL3 overexpression or knockdown. Additionally, we investigated the role of METTL3 in embryo implantation in vivo by applying mice with endometriosis. Furthermore, we performed RNA stability assays, RNA immunoprecipitation (RIP), and methylated RIP assays to explore the mechanisms underlying the regulation of FOXO1 by METTL3-mediated m6A.
    RESULTS: The expression of m6A and METTL3 was reduced only in the NS group; the NP and ES groups demonstrated increased m6A and METTL3 levels. m6A and METTL3 levels decreased in ESCs with prolonged decidual treatment. Compared to the ND group, m6A and METTL3 levels in the ED group increased after decidual treatment, whereas the expression of FOXO1 decreased. METTL3 overexpression suppressed the expression of decidual markers and embryo implantation in vitro; METTL3 knockdown exhibited the opposite effect. Inhibition of METTL3 promoted embryo implantation in vivo. Furthermore, we observed that METTL3-mediated m6A regulated the degradation of FOXO1 mRNA through YTHDF2, a m6A binding protein.
    CONCLUSIONS: METTL3-regulated m6A promotes YTHDF2-mediated decay of FOXO1 mRNA, thereby affecting cellular decidualization and embryo implantation. These findings provide novel insights into the development of therapies for women with endometriosis-related infertility.
    Keywords:  Decidualization; Endometriosis; Forkhead box O1; Infertility; Methyltransferase-like 3; N6-methyladenosine
    DOI:  https://doi.org/10.1186/s12958-023-01151-0
  2. Acc Chem Res. 2023 Oct 27.
      ConspectusEpigenetics is brought to RNA, introducing a new dimension to gene expression regulation. Among numerous RNA modifications, N6-methyladenosine (m6A) is an abundant internal modification on eukaryote mRNA first identified in the 1970s. However, the significance of m6A modification in mRNA had been long neglected until the fat mass and obesity-associated (FTO) enzyme was identified as the first m6A demethylase almost 40 years later. The m6A modification influences nearly every step of RNA metabolism and thus broadly affects gene expression at multiple levels, playing a critical role in many biological processes, including cancer progression, metastasis, and immune evasion. The m6A level is dynamically regulated by RNA epigenetic machinery comprising methyltransferases such as methyltransferase-like protein 3 (METTL3), demethylases FTO and AlkB human homologue 5 (ALKBH5), and multiple reader proteins. The understanding of the biology of RNA epigenetics and its translational drug discovery is still in its infancy. It is essential to further develop chemical probes and lead compounds for an in-depth investigation into m6A biology and the translational discovery of anticancer drugs targeting m6A modifying oncogenic proteins.In this Account, we present our work on the development of chemical inhibitors to regulate m6A in mRNA by targeting the FTO demethylase, and the elucidation of their mode of action. We reported rhein to be the first substrate competitive FTO inhibitor. Due to rhein's poor selectivity, we identified meclofenamic acid (MA) that selectively inhibits FTO compared with ALKBH5. Based on the structural complex of MA bound with FTO, we designed MA analogs FB23-2 and Dac51, which exhibit significantly improved activities compared with MA. For example, FB23-2 is specific to FTO inhibition in vitro among over 400 other oncogenic proteins, including kinases, proteases, and DNA and histone epigenetic proteins. Mimicking FTO depletion, FB23-2 promotes the differentiation/apoptosis of human acute myeloid leukemia (AML) cells and inhibits the progression of primary cells in xenotransplanted mice. Dac51 treatment impairs the glycolytic activity of tumor cells and restores the function of CD8+ T cells, thereby inhibiting the growth of solid tumors in vivo. These FTO inhibitors were and will continue to be used as probes to promote biological studies of m6A modification and as lead compounds to target FTO in anticancer drug discovery.Toward the end, we also include a brief review of ALKBH5 demethylase inhibitors and METTL3 methyltransferase modulators. Collectively, these small-molecule modulators that selectively target RNA epigenetic proteins will promote in-depth studies on the regulation of gene expression and potentially accelerate anticancer target discovery.
    DOI:  https://doi.org/10.1021/acs.accounts.3c00451
  3. Biochem Biophys Res Commun. 2023 Oct 12. pii: S0006-291X(23)01197-X. [Epub ahead of print]684 149113
       BACKGROUND: Non-small cell lung cancer (NSCLC) is a significant public health concern globally. Evidence suggests that Salt-inducible kinase 2 (SIK2) is differentially expressed across various cancers and is also implicated in cancer progression. Despite this, the precise function of SIK2 in NSCLC is yet to be elucidated and requires further investigation.
    METHODS: SIK2 expression was evaluated in both HBEC and NSCLC cells, utilizing quantitative real-time PCR (qRT-PCR) and Western blot (WB) analyses. Furthermore, to identify the influence of SIK2 on cell proliferation, migration, invasion, and apoptosis, a range of techniques were employed. To evaluate N6-methyladenosine (m6A) modification levels of total RNA and SIK2 within cells, RNA m6A colorimetry and methylated RNA immunoprecipitation (MeRIP) techniques were employed. Additionally, to confirm the interaction between SIK2 and insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), bioinformatics analysis was executed, and the results were validated through RIP. The stability of SIK2 mRNA was determined using actinomycin D experiment. Furthermore, to validate the in vivo functionality of SIK2, a subcutaneous transplantation tumor model was established in nude mice.
    RESULTS: In this study, upregulation of SIK2 in NSCLC cells was observed. Overexpression of SIK2 was found to lead to promotion of cell proliferation, migration, invasion, and suppression of the Hippo/yes-associated protein (YAP) pathway, while inhibiting apoptosis. RIP analysis showed that IGF2BP1 protein interacted with SIK2 mRNA. Knockdown of IGF2BP1 decreased mRNA stability and m6A modification levels of SIK2. Additionally, knockdown of IGF2BP1 resulted in inhibition of cell proliferation, migration, invasion, suppression of the Hippo/YAP pathway, and promoting apoptosis. Overexpression of SIK2 overturned the impact of IGF2BP1 on NSCLC cells, which was then confirmed through in vivo experiments.
    CONCLUSION: IGF2BP1 stabilized SIK2 mRNA through m6A modification to promote NSCLC progression, potentially offering new diagnostic and therapeutic insights for NSCLC.
    Keywords:  Insulin-like growth factor 2 mRNA-binding protein 1; Methylated RNA immunoprecipitation; Non-small cell lung cancer; Salt‐inducible kinase 2
    DOI:  https://doi.org/10.1016/j.bbrc.2023.10.045
  4. Redox Biol. 2023 Oct 14. pii: S2213-2317(23)00329-4. [Epub ahead of print]67 102928
      N6-methyladenosine (m6A) is the most abundant internal modification on eukaryotic mRNAs. Demethylation of m6A on mRNA is catalyzed by the enzyme fat mass and obesity-associated protein (FTO), a member of the nonheme Fe(II) and 2-oxoglutarate (2-OG)-dependent family of dioxygenases. FTO activity and m6A-mRNA are dysregulated in multiple diseases including cancers, yet endogenous signaling molecules that modulate FTO activity have not been identified. Here we show that nitric oxide (NO) is a potent inhibitor of FTO demethylase activity by directly binding to the catalytic iron center, which causes global m6A hypermethylation of mRNA in cells and results in gene-specific enrichment of m6A on mRNA of NO-regulated transcripts. Both cell culture and tumor xenograft models demonstrated that endogenous NO synthesis can regulate m6A-mRNA levels and transcriptional changes of m6A-associated genes. These results build a direct link between NO and m6A-mRNA regulation and reveal a novel signaling mechanism of NO as an endogenous regulator of the epitranscriptome.
    DOI:  https://doi.org/10.1016/j.redox.2023.102928
  5. Cell Death Dis. 2023 Oct 21. 14(10): 693
      The interaction between tumor cells and stromal cells within the tumor microenvironment plays a critical role in cancer progression. Mesenchymal stem cells (MSCs) are important tumor stromal cells that exhibit pro-oncogenic activities when reprogrammed by the tumor. However, the precise mechanisms underlying MSC reprogramming in gastric cancer remain not well understood. QRT-PCR, western blot, and immunohistochemistry were used to examine gene and protein expression levels. In vitro and in vivo experiments were conducted to assess the biological functions of gastric cancer cells. RNA-sequencing, RNA immunoprecipitation (RIP), and meRIP assays were performed to investigate underlying molecular mechanisms. We found a significant increase in the expression and N6-methyladenosine (m6A) modification levels of colony-stimulating factor 2 (CSF2) in gastric cancer MSCs. CSF2 gene overexpression induced the reprogramming of normal MSCs into cancer-promoting MSCs, thereby enhancing the proliferation, migration, and drug resistance of gastric cancer cells through the secretion of various pro-inflammatory factors. Additionally, we demonstrated that the m6A reader IGF2BP2 bound to and stabilized CSF2 mRNA in gastric cancer MSCs. Notably, overexpression of IGF2BP2 mimicked the effect of CSF2 on MSCs, promoting gastric cancer progression. Finally, we unveiled that CSF2 induced the ubiquitination of Notch1 to reprogram MSCs. Our study highlights a critical role of IGF2BP2-mediated m6A modification of CSF2 in reprogramming MSCs, which presents a promising therapeutic target for gastric cancer.
    DOI:  https://doi.org/10.1038/s41419-023-06163-7
  6. Recent Pat Anticancer Drug Discov. 2023 Oct 17.
       BACKGROUND: Lung cancer is the most prevalent malignancy worldwide, and lung adenocarcinoma (LUAD) accounts for a substantial proportion of all cases. N6-methyladenosine (m6A) is the most frequent post-transcriptional modification in mRNAs that also plays a role in cancer development. Heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) is a reader of m6A modification, which can affect tumor invasion, migration, and proliferation.
    OBJECTIVES: The purpose of this study was to explore the prognostic factors of LUAD based on m6A through bioinformatics analysis.
    MATERIALS AND METHODS: The expression levels and prognostic significance of HNRNPA2B1 in LUAD were analyzed on the basis of data extracted from the UALCAN, GEPIA, NCBI-GEO, Human Protein Atlas, STRING, miRDB, TargetScan, PROMO, Starbase, UCSC Xena browser, TIMER, and TISIDB databases. HNRNPA2B1 protein and mRNA levels in several LUAD cell lines were detected by western blotting and qRT-PCR. CCK8, wound-healing and transwell assays were performed to evaluate the proliferation, invasion, and migration abilities of LUAD cells.
    RESULTS: HNRNPA2B1 mRNA was found to be significantly overexpressed in LUAD tissues, and its high levels correlated with poor OS and DFS. The genes co-expressed with HNRNPA2B1 were related to mRNA production, cell cycle, and histone binding. To determine the mechanistic basis of HNRNPA2B1 in LUAD, we next predicted the microRNAs and transcription factors that were directly associated with HNRNPA2B1, as well as copy number changes. In addition, it was found that HNRNPA2B1 expression was significantly related to CD4+ T cells, neutrophils, lymphocytes, immunomodulators, and chemokines. Besides, knocking down HNRNPA2B1 in the LUAD cells led to a significant reduction in their proliferation, invasion, and migration rates in vitro.
    CONCLUSION: Elevated HNRNPA2B1 is a risk factor in LUAD and portends a poor prognosis.
    Keywords:  HNRNPA2B1; invasion; lung adenocarcinoma; migration.; n6-methyladenosine; prognosis; proliferation
    DOI:  https://doi.org/10.2174/0115748928258696230925064550
  7. Am J Reprod Immunol. 2023 Nov;90(5): e13791
      The emerging role of microRNA-935 (miR-935) in modulating cancer progression has been recognized. However, its role in regulating choriocarcinoma (CCA) development and progression remains unknown. The present work aims to reveal the effect of miR-935 on CCA cell tumor properties and the related mechanism. The RNA expression of methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit (METTL3), miR-935, and gap junction protein alpha 1 (GJA1) was detected by quantitative real-time polymerase chain reaction. Protein expression of GJA1, Ki67, and METTL3 was measured by western blotting and immunohistochemistry assays. CCK-8 and colony formation were used to analyze cell proliferation. Transwell assays were performed to assess cell migration and invasion. Angiogenesis was investigated by tube formation assay. Xenograft mouse model assay was used to determine miR-935-mediated effect on tumor formation in vivo. The luciferase reporter assay and RNA pull-down assay were used to verify the relationship between miR-935 and GJA1. MeRIP assay was used to analyze the m6A methylation of pri-miR-935. MiR-935 expression was significantly upregulated in CCA tissues and cells when compared with control groups. MiR-935 overexpression promoted CCA cell proliferation, migration, invasion, and tube formation and tumor tumorigenesis in vitro and in vivo, but miR-935 knockdown showed the opposite effects. In addition, miR-935 targeted GJA1 and mediated CCA cell tumor properties by negatively regulating GJA1 expression. METTL3 promoted miR-935 maturation by inducing m6A methylation of pri-miR-935, and its overexpression contributed to CCA cell tumor properties through the regulation of miR-935. METTL3 promoted choriocarcinoma progression by m6A-dependently activating the miR-935/GJA1 pathway.
    Keywords:  CCA; GJA1; METTL3; miR-935
    DOI:  https://doi.org/10.1111/aji.13791
  8. Curr Mol Med. 2023 Oct 20.
       OBJECTIVES: The degeneration of dopaminergic (DA) neurons has emerged as a crucial pathological characteristic in Parkinson's disease (PD). To enrich the related knowledge, we aimed to explore the impact of the METTL14-TRAF6-cGASSTING axis in mitochondrial dysfunction and ferroptosis underlying DA neuron degeneration.
    METHODS: 1-methyl-4-phenylpyridinium ion (MPP+) was used to treat DA neuron MN9D to develop the PD cell models. Afterward, a cell counting kit, flow cytometer, DCFH-DA fluorescent probe, and Dipyrromethene Boron Difluoride staining were utilized to measure the cell viability, iron concentration, ROS level, and lipid peroxidation, respectively. Meanwhile, the mitochondrial ultrastructure, the activity of mitochondrial respiratory chain complexes, and levels of malondialdehyde and glutathione were monitored. In addition, reverse transcription-quantitative polymerase chain reaction and western blot assays were adopted to measure the expression of related genes. cGAS ubiquitylation and TRAF6 messenger RNA (mRNA) N6-methyladenosine (m6A) levels, the linkages among METTL14, TRAF6, and the cGAS-STING pathway were also evaluated.
    RESULTS: METTL14 expression was low, and TRAF6 expression was high after MPP+ treatment. In MPP+-treated MN9D cells, METTL14 overexpression reduced ferroptosis, ROS generation, mitochondrial injury, and oxidative stress (OS) and enhanced mitochondrial membrane potentials. TRAF6 overexpression had promoting impacts on mitochondrial dysfunction and ferroptosis in MPP+-treated MN9D cells, which was reversed by further overexpression of METTL14. Mechanistically, METTL14 facilitated the m6A methylation of TRAF6 mRNA to down-regulate TRAF6 expression, thus inactivating the cGAS-STING pathway.
    CONCLUSION: METTL14 down-regulated TRAF6 expression through TRAF6 m6A methylation to inactivate the cGAS-STING pathway, thereby relieving mitochondrial dysfunction and ferroptosis in DA neurons.
    Keywords:  Dopaminergic neurons; Ferroptosis; METTL14; Mitochondrial dysfunction; Parkinson's disease; TRAF6; cGAS-STING pathway
    DOI:  https://doi.org/10.2174/0115665240263859231018110107
  9. Int J Biol Macromol. 2023 Oct 24. pii: S0141-8130(23)04512-9. [Epub ahead of print] 127614
      An emerging research focus is the role of m6A modifications in mediating the post-transcriptional regulation of mRNA during mammalian development. Recent evidence suggests that m6A methyltransferases and demethylases play critical roles in skeletal muscle development. Ythdf2 is a m6A "reader" protein that mediates mRNA degradation in an m6A-dependent manner. However, the specific function of Ythdf2 in skeletal muscle development and the underlying mechanisms remain unclear. Here, we observed that Ythdf2 expression was significantly upregulated during myogenic differentiation, whereas Ythdf2 knockdown markedly inhibited myoblast proliferation and differentiation. Combined analysis of high-throughput sequencing, Co-IP, and RIP assay revealed that Ythdf2 could bind to m6A sites in STK11 mRNA and form an Ago2 silencing complex to promote its degradation, thereby regulating its expression and consequently, the AMPK/mTOR pathway. Furthermore, STK11 downregulation partially rescued Ythdf2 knockdown-induced impairment of proliferation and myogenic differentiation by inhibiting the AMPK/mTOR pathway. Collectively, our results indicate that Ythdf2 mediates the decay of STK11 mRNA, an AMPK activator, in an Ago2 system-dependent manner, thereby driving skeletal myogenesis by suppressing the AMPK/mTOR pathway. These findings further enhance our understanding of the molecular mechanisms underlying RNA methylation in the regulation of myogenesis and provide valuable insights for conducting in-depth studies on myogenesis.
    Keywords:  Myogenesis; RNA degradation; STK11; Ythdf2; m(6)A modification
    DOI:  https://doi.org/10.1016/j.ijbiomac.2023.127614
  10. Cell Mol Biol Lett. 2023 Oct 27. 28(1): 89
       BACKGROUND: The unique expression pattern endows oncofetal genes with great value in cancer diagnosis and treatment. However, only a few oncofetal genes are available for clinical use and the underlying mechanisms that drives the fetal-like reprogramming of cancer cells remain largely unknown.
    METHODS: Microarray assays and bioinformatic analyses were employed to screen for potential oncofetal long non-coding RNAs (lncRNAs) in hepatocellular carcinoma (HCC). The expression levels of MIR4435-2HG, NOP58 ribonucleoprotein (NOP58), insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) and stem markers were detected by quantitative polymerase chain reaction. The 2'-O-methylation (2'-O-Me) status of rRNA were detected through reverse transcription at low dNTP concentrations followed by PCR. The regulation of MIR4435-2HG by IGF2BP1 was explored by RNA immunoprecipitation (RIP), methylated RIP (MeRIP) and dual-luciferase assays. The interaction between MIR4435-2HG and NOP58 was investigated by RNA Pulldown, RIP and protein stability assays. In vitro and in vivo function assays were performed to detect the roles of MIR4435-2HG/NOP58 in HCC.
    RESULTS: MIR4435-2HG was an oncofetal lncRNA associated with poor prognosis in HCC. Functional experiments showed that overexpression of MIR4435-2HG remarkably enhanced the stem-cell properties of HCC cells, promoting tumorigenesis in vitro and in vivo. Mechanically, MIR4435-2HG directly bound NOP58 and IGF2BP1. IGF2BP1 upregulated MIR4435-2HG expression in HCC through N6-methyladenosine (m6A) modification. Moreover, MIR4435-2HG protected NOP58 from degradation, which raised rRNA 2'-O-Me levels and promoted internal ribosome entry site (IRES)-dependent translation of oncogenes.
    CONCLUSIONS: This study identified an oncofetal lncRNA MIR4435-2HG, characterized the role of MIR4435-2HG/NOP58 in stemness maintenance and proliferation of HCC cells, and confirmed m6A as a 'driver' that reactivated MR4435-2HG expression in HCC.
    Keywords:  Hepatocellular carcinoma; N6-methyladenosine; Oncofetal lncRNA; Stemness maintenance; rRNA 2′-O-methylation
    DOI:  https://doi.org/10.1186/s11658-023-00493-2
  11. FASEB J. 2023 11;37(11): e23273
      N6-methyladenosine (m6A) plays a crucial role in many bioprocesses across species, but its function in granulosa cells during oocyte maturation is not well understood in animals, especially domestic animals. We observed an increase in m6A methyltransferase-like 3 (METTL3) in granulosa cells during oocyte maturation in Haimen goats. Our results showed that knockdown of METTL3 disrupted the cell cycle in goat granulosa cells, leading to aggravated cell apoptosis and inhibition of cell proliferation and hormone secretion. Mechanistically, METTL3 may regulate the cell cycle in goat granulosa cells by mediating Aurora kinase B (AURKB) mRNA degradation in an m6A-YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) manner and participating in AURKB transcription via the Cyclin D1 (CCND1)-Retinoblastoma protein (RB)-E2F transcription factor 1 (E2F1) pathway. Overall, our study highlights the essential role of METTL3 in granulosa cells during oocyte maturation in Haimen goats. These findings provide a theoretical basis and technical means for understanding how RNA methylation participates in oocyte maturation through granulosa cells.
    Keywords:  Haimen goat; METTL3; N6-methyladenosine; cell cycle; granulosa cells
    DOI:  https://doi.org/10.1096/fj.202301232R
  12. J Cell Biochem. 2023 Oct 26.
      Excess glucocorticoids (GCs) have been reported as key factors that impair osteoblast (OB) differentiation and function. However, the role of RNA N6-methyladenosine (m6 A) in this process has not yet been elucidated. In this study, we report that both the mRNA and protein expression of fat mass and obesity-associated gene (FTO), a key m6 A demethylase, were dose-dependently downregulated during OB differentiation by dexamethasone (DEX) in bone marrow mesenchymal stem cells (BMSCs), and FTO was gradually increased during OB differentiation. Meanwhile, FTO knockdown suppressed OB differentiation and mineralization, whereas overexpression of wide-type FTO, but not mutant FTO (mutated m6 A demethylase active site), reversed DEX-induced osteogenesis impairment. Interfering with FTO inhibited proliferation and the expression of Ki67 and Pcna in BMSCs during OB differentiation, whereas forced expression of wide-type FTO improved DEX-induced inhibition of BMSCs proliferation. Moreover, FTO knockdown reduced the mRNA stability of the OB marker genes Alpl and Col1a1, and FTO-modulated OB differentiation via YTHDF1 and YTHDF2. In conclusion, our results suggest that FTO inhibits the GCs-induced OB differentiation and function of BMSCs.
    Keywords:  FTO; N6-methyladenosine; dexamethasone; mRNA stability; osteoblast differentiation; proliferation
    DOI:  https://doi.org/10.1002/jcb.30492