Epigenetics. 2023 Jan 03. 1-14
The most prominent RNA modification - N6-methyladenosine (m6A) - affects gene regulation and cancer progression. The extent and effect of m6A on long non-coding RNAs (lncRNAs) is, however, still not clear. The most established method for m6A detection is methylated RNA immunoprecipitation and sequencing (MeRIP-seq). However, Oxford Nanopore Technologies recently developed direct RNA-seq (dRNA-seq) method, allowing m6A identification at higher resolution and in its native form. We performed whole transcriptome sequencing of the glioblastoma cell line U87-MG with both MeRIP-seq and dRNA-seq. For MeRIP-seq, m6A peaks were identified using nf-core/chipseq, and for dRNA-seq - EpiNano pipeline. MeRIP-seq analysis revealed 5086 lncRNAs transcripts, while dRNA-seq identified 336 lncRNAs transcripts from which 556 and 198 were found to be m6A modified, respectively. While 24 lncRNAs with m6A overlapped between two methods. Gliovis database analysis revealed that the expression of the major part of identified overlapping lncRNAs was associated with glioma grade or patient survival prognosis. We found that the frequency of m6A occurrence in lncRNAs varied more than 9-fold throughout the provided list of 24 modified lncRNAs. The highest m6A frequency was detected in MIR1915HG, THAP9-AS1, MALAT1, NORAD1, and NEAT1 (49-88nt), while MIR99AHG, SNHG3, LOXL1-AS1, ILF3-DT showed the lowest m6A frequency (445-261nt). Taken together, (1) we provide a high accuracy list of 24 m6A modified lncRNAs of U87-MG cells; (2) we conclude that MeRIP-seq is more suitable for an initial m6A screening study, due to its higher lncRNA coverage, whereas dRNA-seq is most useful when more in-depth analysis of m6A quantity and precise location is of interest.Abbreviations: (dRNA-seq) direct RNA-seq, (GBM) glioblastoma, (LGG) low-grade glioma, (lncRNAs) long non-coding RNAs, (m6A) N6-methyladenosine, (MeRIP-seq) methylated RNA immunoprecipitation and sequencing, (ncRNA) non-coding RNA, (ONT) Oxford Nanopore Technologi; Lietuvos Mokslo Taryba.
Keywords: MeRIP-seq; epi-transcriptome; glioblastoma; lncRNA; m6A; nanopore dRNA-seq