bims-resufa Biomed News
on Respiratory supercomplex factors
Issue of 2025–02–02
one paper selected by
Gavin McStay, Liverpool John Moores University



  1. J Lipid Res. 2025 Jan 27. pii: S0022-2275(25)00010-0. [Epub ahead of print] 100750
      The environmental pollutant cadmium (Cd) poses a threat to human health through consumption of contaminated foodstuffs culminating in chronic nephrotoxicity. Mitochondrial dysfunction and excessive reactive oxygen species (ROS) are key to Cd cellular toxicity. Cd-lipid interactions have been less considered. We hypothesized Cd binding to the inner mitochondrial membrane (IMM) phospholipid cardiolipin (CL) and membrane rigidification underlies defective electron transfer by disrupted respiratory supercomplexes (SCs). In Cd-treated rat kidney cortex (rKC) mitoplasts, laurdan (lipid-water interface) and diphenylhexatriene (hydrophobic core) revealed increased and decreased membrane fluidity, respectively. Laurdan-loaded pure CL or IMM biomimetic (40mol% POPC, 35mol% DOPE, 20mol% TOCL, 5mol% SAPI) nanoliposomes were rigidified by 25μM Cd, which was confirmed in live-cell imaging of laurdan or di-4-ANEPPDHQ loaded human proximal convoluted tubule (HPCT) cells. Blue native gel electrophoresis evidenced ∼30% loss of I+III2+IVn SC formation after 5μM Cd for 6h in HPCTs, which was reversed by CL-binding drug MTP-131/SS-31/elamipretide (0.1μM), yet α-tocopherol-insensitive. Moreover, MTP131 attenuated Cd-induced H2O2 (∼30%) and cytochrome c release (∼25%), but not osmotic swelling, in rKC mitochondria as well as Cd-induced ROS (∼25%) in HPCTs. MTP-131 binding to IMM biomimetic nanoliposomes decreased zeta potential, prevented Cd-induced liposome size increase, and membrane rigidification reported by laurdan. Heterologous CRLS1 expression reversed Cd (5μM, 24h) cytotoxicity (∼25%) by MTT assay, Cd (5μM, 3h)-induced ROS and mitochondrial membrane rigidification by Cd (1μM, 1h) in HPCT cells. In summary, we report a novel mechanism for Cd toxicity in which Cd-CL interactions cause IMM rigidification, thereby disrupting correct SC assembly and increasing ROS.
    Keywords:  electron transport chain; heavy metal; liquid-ordered phase; reactive oxygen species; toxicity
    DOI:  https://doi.org/10.1016/j.jlr.2025.100750