bioRxiv. 2024 Nov 03. pii: 2024.10.30.621162. [Epub ahead of print]
Mitochondrial form and function are intimately interconnected, responding to cellular stresses and changes in energy demand. Hydrogen sulfide, a product of amino acid metabolism, has dual roles as an electron transport chain substrate and complex IV (CIV) inhibitor, leading to a reductive shift, which has pleiotropic metabolic consequences. Luminal sulfide concentration in colon is high due to microbial activity, and in this study, we demonstrate that chronic sulfide exposure of colonocyte-derived cells leads to lower Mic60 and Mic19 expression that is correlated with a profound loss of cristae and lower mitochondrial networking. Sulfide-induced depolarization of the inner mitochondrial membrane activates Oma1-dependent cleavage of Opa1 and is associated with a profound loss of CI and CIV activities associated with respirasomes. Our study reveals a potential role for sulfide as an endogenous modulator of mitochondrial dynamics and suggests that this regulation is corrupted in hereditary or acquired diseases associated with elevated sulfide.
Significance Statement: Hydrogen sulfide is a product of host as well as gut microbial metabolism and has the dual capacity for activating respiration as a substrate, and inhibiting it at the level of complex IV. In this study, we report that chronic albeit low-level sulfide exposure elicits profound changes in mitochondrial architecture in cultured human cells. Disruption of mitochondrial networks is reversed upon removal of sulfide from the growth chamber atmosphere. Sulfide-dependent depolarization of the inner mitochondrial membrane is associated with loss of cristae and respiratory supercomplexes. Our study reveals the potential for sulfide to be an endogenous regulator of mitochondrial ultrastructure and function via modulation of electron flux and for this process to be corrupted in sulfide dysregulated diseases.