bims-resufa Biomed News
on Respiratory supercomplex factors
Issue of 2022–11–20
three papers selected by
Vera Strogolova, Strong Microbials, Inc



  1. Comp Biochem Physiol A Mol Integr Physiol. 2022 Nov 12. pii: S1095-6433(22)00201-X. [Epub ahead of print] 111343
      Hypoxia poses a significant energetic challenge and most species exhibit metabolic remodelling when exposed to prolonged hypoxia. One component of this remodelling is mitochondrial biogenesis/mitophagy, which alter mitochondrial abundance and helps to adjust metabolic throughput to match changes in energy demands in hypoxia. However, how acute hypoxia impacts mitochondrial abundance in hypoxia-tolerant species is poorly understood. To help address this gap, we exposed hypoxia-tolerant naked mole-rats to 3 h of normoxia or acute hypoxia (5% O2) and measured changes in mitochondrial abundance using two well-established markers: citrate synthase (CS) enzyme activity and mitochondrial DNA (mtDNA) abundance. We found that neither marker changed with hypoxia in brain, liver, or kidney, suggesting that mitochondrial biogenesis is not initiated during acute hypoxia in these tissues. Conversely in skeletal muscle, the ratio of CS activity to total protein decreased 50% with hypoxia. However, this change was likely driven by an increase in soluble protein density in hypoxia because CS activity was unchanged relative to wet tissue weight and the mtDNA copy number was unchanged. To confirm this, we examined skeletal muscle mitochondria using transmission electron microscopy and found no change in mitochondrial volume density. Taken together with previous studies of mitochondrial respiratory function, our present findings suggest that naked mole-rats primarily rely on tissue-specific functional remodelling of metabolic pathways and mitochondrial respiratory throughput, and not physical changes in mitochondrial number or volume, to adjust to short-term hypoxic exposure.
    Keywords:  Brain; Citrate synthase; Kidney; Liver; Mitochondrial DNA; Skeletal muscle
    DOI:  https://doi.org/10.1016/j.cbpa.2022.111343
  2. Biochim Biophys Acta Bioenerg. 2022 Nov 12. pii: S0005-2728(22)00404-2. [Epub ahead of print] 148934
      The catalytic cycle of cytochrome c oxidase (COX) couples the reduction of oxygen to the translocation of protons across the inner mitochondrial membrane and involves several intermediate states of the heme a3-CuB binuclear center with distinct absorbance properties. The absorbance maximum close to 605 nm observed during respiration is commonly assigned to the fully reduced species of hemes a or a3 (R). However, by analyzing the absorbance of isolated enzyme and mitochondria in the Soret (420-450 nm), alpha (560-630 nm) and red (630-700 nm) spectral regions, we demonstrate that the Peroxy (P) and Ferryl (F) intermediates of the binuclear center are observed during respiration, while the R form is only detectable under nearly anoxic conditions in which electrons also accumulate in the higher extinction coefficient low spin a heme. This implies that a large fraction of COX (>50 %) is active, in contrast with assumptions that assign spectral changes only to R and/or reduced heme a. The concentration dependence of the COX chromophores and reduced c-type cytochromes on the transmembrane potential (ΔΨm) was determined in isolated mitochondria during substrate or of apyrase titration to hydrolyze ATP. The cytochrome c-type redox levels indicated that soluble cytochrome c is out of equilibrium with respect to both Complex III and COX. Thermodynamic analyses confirmed that reactions involving the chromophores we assign as the P and F species of COX are ΔΨm-dependent, out of equilibrium, and therefore much slower than the ΔΨm-insensitive oxidation of the R intermediate, which is undetectable due to rapid oxygen binding.
    Keywords:  Cytochrome c oxidase; Membrane potential; Mitochondria; Respiration; Spectroscopy; electron transfer
    DOI:  https://doi.org/10.1016/j.bbabio.2022.148934
  3. Sci Rep. 2022 Nov 18. 12(1): 19847
      Barth Syndrome (BTHS), a genetic disease associated with early-onset cardioskeletal myopathy, is caused by loss-of-function mutations of the TAFAZZIN gene, which is responsible for remodeling the mitochondrial phospholipid cardiolipin (CL). Deregulation of CL biosynthesis and maturation in BTHS mitochondria result in a dramatically increased monolysocardiolipin (MLCL)/CL ratio associated with bioenergetic dysfunction. One of the most promising therapeutic approaches for BTHS includes the mitochondria-targeted tetrapeptide SS-31, which interacts with CL. Here, we used TAFAZZIN knockdown (TazKD) mice to investigate for the first time whether in vivo administration of SS-31 could affect phospholipid profiles and mitochondrial dysfunction. The CL fingerprinting of TazKD cardiac mitochondria obtained by MALDI-TOF/MS revealed the typical lipid changes associated with BTHS. TazKD mitochondria showed lower respiratory rates in state 3 and 4 together with a decreased in maximal respiratory rates. Treatment of TazKD mice with SS-31 improved mitochondrial respiratory capacity and promoted supercomplex organization, without affecting the MLCL/CL ratio. We hypothesize that SS-31 exerts its effect by influencing the function of the respiratory chain rather than affecting CL directly. In conclusion, our results indicate that SS-31 have beneficial effects on improving cardiac mitochondrial dysfunction in a BTHS animal model, suggesting the peptide as future pharmacologic agent for therapy.
    DOI:  https://doi.org/10.1038/s41598-022-24231-4