bims-resufa Biomed News
on Respiratory supercomplex factors
Issue of 2021–06–13
one paper selected by
Vera Strogolova, Strong Microbials, Inc



  1. Methods Mol Biol. 2021 ;2275 301-314
      Our group has previously established a strategy utilizing fluorescence lifetime probes to image membrane protein supercomplex (SC) formation in situ. We showed that a probe at the interface between individual mitochondrial respiratory complexes exhibits a decreased fluorescence lifetime when a supercomplex is formed. This is caused by electrostatic interactions with the adjacent proteins. Fluorescence lifetime imaging microscopy (FLIM) records the resulting decrease of the lifetime of the SC-probe. Here we present the details of our method for performing SC-FLIM, including the evaluation of fluorescence lifetimes from the FLIM images. To validate the feasibility of the technique for monitoring adaptive SC formation, we compare data obtained under different metabolic conditions. The results confirm that SC formation is dynamic.
    Keywords:  FLIM; Fluorescence sensor; Live cell imaging; Mitochondria; Respiratory supercomplexes
    DOI:  https://doi.org/10.1007/978-1-0716-1262-0_19