Biochim Biophys Acta Bioenerg. 2020 Feb 29. pii: S0005-2728(20)30027-X. [Epub ahead of print]
148177
The mitochondrial bc1 complex plays an important role in mitochondrial respiration. It transfers electrons from ubiquinol to the soluble electron shuttle cytochrome c and thereby contributes to the proton motive force across the inner mitochondrial membrane. In the yeast Saccharomyces cerevisiae, each monomer consists of three catalytic and seven accessory subunits. The bc1 complex is an obligate homo-dimer in all systems. It is currently not known when exactly during the assembly dimerization occurs. In this study, we determined that the dimer formation is an early event. Specifically, dimerization is mediated by the interaction of a stable tetramer formed by the two Cor subunits, Cor1 and Cor2, that joins assembly intermediate II, containing the fully hemylated cytochrome b and the two small accessory proteins, Qcr7 and Qcr8. Addition of cytochrome c1 and Qcr6 can either occur concomitantly or independently of dimerization. These results reveal a strict order in assembly, where dimerization occurs after stabilization of co-factor acquisition by cytochrome b. Finally, assembly is completed by addition of the remaining subunits.
Keywords: Complex III assembly; Cytochrome b; Dimerization; Mitochondrial respiration; Oxidative phosphorylation; bc(1) complex