bims-rehoca Biomed News
on Redox homeostasis in cancer
Issue of 2021–12–12
twenty-two papers selected by
Vittoria Raimondi, Veneto Institute of Oncology



  1. Sci Rep. 2021 Dec 09. 11(1): 23745
      Reactive oxygen species (ROS) are byproducts of tumor cells treated with Nano-Pulse Stimulation (NPS). Recently, ROS have been suggested as a contributing factor in immunogenic cell death and T cell-mediated immunity. This research further investigated the role of NPS induced ROS in antitumor immunity. ROS production in 4T1-luc breast cancer cells was characterized using three detection reagents, namely, Amplex Red, MitoSox Red, and Dihydroethidium. The efficiency of ROS quenching was evaluated in the presence or absence of ROS scavengers and/or antioxidants. The immunogenicity of NPS treated tumor cells was assessed by ex vivo dendritic cell activation, in vivo vaccination assay and in situ vaccination with NPS tumor ablation. We found that NPS treatment enhanced the immunogenicity of 4T1-luc mouse mammary tumor, resulted in a potent in situ vaccination protection and induced long-term T cell immunity. ROS production derived from NPS treated breast cancer cells was an electric pulse dose-dependent phenomenon. Noticeably, the dynamic pattern of hydrogen peroxide production was different from that of superoxide production. Interestingly, regardless of NPS treatment, different ROS scavengers could either block or promote ROS production and stimulate or inhibit tumor cell growth. The activation of dendritic cells was not influenced by blocking ROS generation. The results from in vivo vaccination with NPS treated cancer cells suggests that ROS generation was not a prerequisite for immune protection.
    DOI:  https://doi.org/10.1038/s41598-021-03342-4
  2. Biochem Biophys Res Commun. 2021 Dec 01. pii: S0006-291X(21)01626-0. [Epub ahead of print]587 99-106
      Colorectal cancer (CRC) is one of the most common malignant tumors in the digestive system, and Chinese herbal medicine plays an important role in tumor treatment. The in-depth study of auriculasin isolated from Flemingia philippinensis showed that auriculasin promoted reactive oxygen species (ROS) generation in a concentration-dependent manner; when ROS scavenger NAC was added, the effects of auriculasin in promoting ROS generation and inhibiting cell viability were blocked. Auriculasin induced CRC cell apoptosis, led to mitochondrial shrinkage, and increased the intracellular accumulation of Fe2+ and MDA. When auriculasin and NAC were added simultaneously, the levels of apoptosis, Fe2+ and MDA returned to the control group levels, indicating that auriculasin activated apoptosis and ferroptosis by inducing ROS generation. In addition, auriculasin promoted the expression of Keap1 and AIFM1, but significantly reduced the phosphorylation level of AIFM1, while NAC significantly blocked the regulation of Keap1 and AIFM1 by auriculasin, which indicates that auriculasin can also induce oxeiptosis through ROS. When Z-VAD-FMK, Ferrostatin-1, Keap1 siRNA, PGAM5 siRNA and AIFM1 siRNA were added respectively, the inhibitory effect of auriculasin on cell viability was significantly weakened, indicating that auriculasin inhibits cell viability by inducing apoptosis, ferroptosis and oxeiptosis. Auriculasin also inhibited the invasion and clone forming ability of CRC cells, while NAC blocked the above effects of auriculasin. Therefore, auriculasin can promote CRC cell apoptosis, ferroptosis and oxeiptosis by inducing ROS generation, thereby inhibiting cell viability, invasion and clone formation, indicating that auriculasin has a significant antitumor effect.
    Keywords:  Auriculasin; Colorectal cancer; Ferroptosis; Oxeiptosis; ROS
    DOI:  https://doi.org/10.1016/j.bbrc.2021.11.101
  3. Acta Biomater. 2021 Dec 05. pii: S1742-7061(21)00791-1. [Epub ahead of print]
      Ferroptosis is a newly discovered non-apoptotic cell death form but its therapeutic efficacy triggered by traditional iron-based nanomaterials or classic drug inducers has been far from satisfactory due to the high glutathione (GSH) level in cancer cells and insufficient lipid peroxide production. Here we reported a ferroptosis/apoptosis combinational therapy by depleting GSH and downregulating GPX4 to disrupt redox homeostasis and amplify ferroptosis-related oxidation effect. In this study, we developed reactive oxygen species (ROS)-responsive serum-resistant nanoparticles with thioketal-crosslinked fluorinated polyethyleneimine 1.8K (TKPF) as the core, which were wrapped with hyaluronic acid (HA) as the shell (TKPFH NP) to co-deliver shGPX4 and shMTHFD2 plasmids for cancer treatment. The highly efficient and tumor-selective gene carrier TKPFH NPs revealed outstanding transfection efficiency (∼100 %) and sustained the efficiency (∼50 %) even in media containing 90 % FBS. Mediated by HA, TKPFH NPs actively targeted CD44 receptors, thus enabling efficient uptake by tumor cells and experiencing surface charge conversion to induce subsequent lysosomal escape. Then the TKPF NPs were effectively disintegrated by the abundant ROS in cancer cells, which facilitated the release of plasmids and avoided the cytotoxicity of cationic polymers. shGPX4 plasmid induced ferroptosis by producing ROS and lipid peroxides via downregulating GPX4, while shMTHFD2 triggered apoptosis by modulating NADPH/NADP and depleting GSH of the cancer cells. Moreover, GSH consumption caused by shMTHFD2 indirectly suppressed GPX4 and further augmented ferroptosis, showing synergistic anticancer effect against B16-F10 cells. Taken together, the rationally designed dual-gene loaded TKPFH NPs provided a safe and high-performance platform for enhanced ferroptosis-apoptosis combined anticancer efficacy based on gene therapy. STATEMENT OF SIGNIFICANCE: The therapeutic efficacy of ferroptosis has been far from satisfactory due to high GSH level and insufficient lipid peroxide production in cancer cells. Herein, we reported a ferroptosis/apoptosis combinational therapy by depleting GSH and downregulating GPX4 to disrupt redox homeostasis and amplify ferroptosis-related oxidation effect. ROS-responsive serum-resistant nanoparticles were fabricated with thioketal-crosslinked fluorinated PEI 1.8K (TKPF) as the core and hyaluronic acid (HA) as the shell (TKPFH NP) to co-deliver shGPX4 and shMTHFD2 plasmids. The shGPX4 plasmid induced ferroptosis by producing ROS and lipid peroxides via downregulating GPX4, while shMTHFD2 triggered apoptosis by modulating NADPH/NADP and depleting GSH. The rationally designed dual-gene loaded TKPFH NPs provided a safe and high-performance platform aimed for enhanced ferroptosis-apoptosis combined anticancer efficacy.
    Keywords:  Ferroptosis; Fluorinated polyethyleneimine vector; GPX4; MTHFD2
    DOI:  https://doi.org/10.1016/j.actbio.2021.11.042
  4. Postepy Biochem. 2021 09 30. 67(3): 236-247
      Photodynamic therapy (PDT) is one of the least toxic methods causing the death of cancer cells. Photosensitizer (PS) applied to a patient accumulates in the tumor, where under the appropriate wavelength and insensitivity of light is activated. Activated PS in the presence of oxygen produces reactive oxygen species (ROS), which make significant damage leading to the destruction of cancer cells by apoptosis, necrosis or autophagic process. Moreover, PDT causes an acute local inflammatory response that is involved in removing dead cells, restoring normal tissue homeostasis, and sometimes leads to the development of systemic immunity. However, some cells may survive treatment and develop resistance. Mechanisms, which lead to decrease of the level of PS in cells may be involved in the cytoprotection of cancer cells from PDT. Furthermore, increased activity of antioxidant mechanisms, overexpression of molecular chaperones and activation of survival pathways can protect cells from PDT.
    DOI:  https://doi.org/10.18388/pb.2021_394
  5. Front Cell Dev Biol. 2021 ;9 722734
      Objective: Costunolide (Cos) is a sesquiterpene lactone extracted from chicory. Although it possesses anti-tumor effects, the underlying molecular mechanism against gastric cancer cells remains unclear. This study aimed to explore the effect and potential mechanism of Cos on gastric cancer. Methods: The effect of Cos on HGC-27 and SNU-1 proliferation was detected by CCK-8 and clone formation assay. The changes in cell apoptosis were determined using Hoechst 33258 and tunel staining. The morphology of autophagy was analyzed by autophagosomes with the electron microscope and LC3-immunofluorescence with the confocal microscope. The related protein levels of the cell cycle, apoptosis, autophagy and AKT/GSK3β pathway were determined by Western blot. The anti-tumor activity of Cos was evaluated by subcutaneously xenotransplanting HGC-27 into Balb/c nude mice. The Ki67 and P-AKT levels were examined by immunohistochemistry. Results: Cos significantly inhibited HGC-27 and SNU-1 growth and induced cell cycle arrest in the G2/M phase. Cos activated intrinsic apoptosis and autophagy through promoting cellular reactive oxygen species (ROS) levels and inhibiting the ROS-AKT/GSK3β signaling pathway. Moreover, preincubating gastric carcinoma cells with 3-methyladenine (3-MA), a cell-autophagy inhibitor, significantly alleviated the effects of Cos in inducing cell apoptosis. Conclusion: Cos induced apoptosis of gastric carcinoma cells via promoting ROS and inhibiting AKT/GSK3β pathway and activating pro-death cell autophagy, which may be an effective strategy to treat gastric cancer.
    Keywords:  Akt/GSK3β; ROS; apoptosis; autophagy; costunolide; gastric cancer
    DOI:  https://doi.org/10.3389/fcell.2021.722734
  6. Front Pharmacol. 2021 ;12 770846
      Aims: Peiminine has been reported to have various pharmacological properties, including anticancer activity. In this study, we investigated the effect of this alkaloid on osteosarcoma and explored the underlying mechanisms. Methods: To evaluate the antiosteosarcoma effects of peiminine in vitro, cell viability was assessed by CCK-8 and live/dead assays; the effects of the drug on apoptosis and the cell cycle were examined by flow cytometry; the effects on cell migration and invasion were detected by wound healing and Transwell assays, respectively, while its effects on autophagy were observed by transmission electron microscopy and an LC3 fluorescent puncta formation assay. The role of autophagy in the peiminine-mediated effects in osteosarcoma cells was evaluated by CCK-8 assay and western blotting after the application of the autophagy inhibitor chloroquine. The effect of peiminine on reactive oxygen species (ROS) production was analyzed using fluorescence confocal microscopy and spectrophotometry. Additionally, peiminine-treated osteosarcoma cells were exposed to SP600125, a JNK inhibitor, and N-acetylcysteine, a ROS scavenger, after which the contribution of the ROS/JNK signaling pathway to osteosarcoma was assessed using cell viability and LC3 fluorescent puncta formation assays, flow cytometry, and western blotting. A xenograft mouse model of osteosarcoma was generated to determine the antitumor effects of peiminine in vivo. Results: Peiminine suppressed proliferation and metastasis and induced cell cycle arrest, apoptosis, and autophagy in osteosarcoma cells. These anticancer effects of peiminine were found to be dependent on intracellular ROS generation and activation of the JNK pathway. In line with these results, peiminine significantly inhibited xenograft tumor growth in vivo. Conclusions: Peiminine induced G0/G1-phase arrest, apoptosis, and autophagy in human osteosarcoma cells via the ROS/JNK signaling pathway both in vitro and in vivo. Our study may provide an experimental basis for the evaluation of peiminine as an alternative drug for the treatment of osteosarcoma.
    Keywords:  apoptosis; autophagy; c-Jun N-terminal kinase JNK; osteosarcoma; peiminine; reactive oxygen species ROS
    DOI:  https://doi.org/10.3389/fphar.2021.770846
  7. Cancers (Basel). 2021 Dec 01. pii: 6062. [Epub ahead of print]13(23):
      Chronic inflammation and oxidative stress are the interconnected pathological processes, which lead to cancer initiation and progression. The growing level of oxidative and inflammatory damage was shown to increase cancer severity and contribute to tumor spread. The overproduction of reactive oxygen species (ROS), which is associated with the reduced capacity of the endogenous cell defense mechanisms and/or metabolic imbalance, is the main contributor to oxidative stress. An abnormal level of ROS was defined as a predisposing factor for the cell transformation that could trigger pro-oncogenic signaling pathways, induce changes in gene expression, and facilitate accumulation of mutations, DNA damage, and genomic instability. Additionally, the activation of transcription factors caused by a prolonged oxidative stress, including NF-κB, p53, HIF1α, etc., leads to the expression of several genes responsible for inflammation. The resulting hyperactivation of inflammatory mediators, including TNFα, TGF-β, interleukins, and prostaglandins can contribute to the development of neoplasia. Pro-inflammatory cytokines were shown to trigger adaptive reactions and the acquisition of resistance by tumor cells to apoptosis, while promoting proliferation, invasion, and angiogenesis. Moreover, the chronic inflammatory response leads to the excessive production of free radicals, which further aggravate the initiated reactions. This review summarizes the recent data and progress in the discovery of mechanisms that associate oxidative stress and chronic inflammation with cancer onset and metastasis. In addition, the review provides insights for the development of therapeutic approaches and the discovery of natural substances that will be able to simultaneously inhibit several key oncological and inflammation-related targets.
    Keywords:  HIF1α; Nrf2; TNFα; cancer; cytokines; inflammation; metabolism; oxidative stress
    DOI:  https://doi.org/10.3390/cancers13236062
  8. Chin Med. 2021 Dec 09. 16(1): 134
       BACKGROUND: Our previous studies have shown that evodiamine (EVO) as paclitaxel and nocodazole could trigger apoptosis in various human cancer cells including human renal cell carcinoma cells, colorectal carcinoma cells, and glioblastoma cells. This study aims to investigate the anti-cancer effects of EVO on human anaplastic thyroid carcinoma (ATC) cells, and underlining mechanism.
    METHODS: Two different endogenous p53 status human anaplastic thyroid carcinoma (ATC) cells including SW1736 (wtp53) and KAT4B (mutp53) were applied in the present study. The cytotoxicity of EVO on ATC cells was measured by MTT assay, and apoptosis and G2/M arrest were detected by propidium iodide (PI) staining followed by flow cytometry. Expression of indicated proteins was evaluated by Western blotting analysis, and pharmacological studies using chemical inhibitors and siRNA were performed for elucidating underlying mechanism. The roles of mitochondrial membrane potential and reactive oxygen species were investigated by flow cytometry using DiOC6 and DCFH-DA dye, respectively.
    RESULTS: SW1736 (wtp53) cells showed a higher apoptotic percentage than KAT4B (mutp53) cells in response to EVO stimulation via a flow cytometric analysis. Mechanistic studies showed that increased p53 and its downstream proteins, and disrupted MMP with increased intracellular peroxide production participated in EVO-induced apoptosis and G2/M arrest of SW1736 cells. In EVO-treated KAT4B cells, significant increases in G2/M percentage but little apoptotic events by EVO was observed. Structure-activity analysis showed that an alkyl group at position 14 was critical for induction of apoptosis related to ROS production and MMP disruption in SW1736 cells.
    CONCLUSION: Evidence indicated that the endogenous p53 status affected the sensitivity of ATC cells to EVO-induced apoptosis and G2/M arrest, revealing the potential role of p53 related to increased ROS production and disrupted MMP in the anticancer actions of EVO, and alkylation at position 14 of EVO is a critical substitution for apoptosis of ATC cells.
    Keywords:  Anaplastic thyroid cancer (ATC); Apoptosis; Evodiamine (EVO); G2/M arrest; Mitochondria membrane potential (MMP); Reactive oxygen species (ROS)
    DOI:  https://doi.org/10.1186/s13020-021-00505-3
  9. Int J Mol Sci. 2021 Nov 23. pii: 12635. [Epub ahead of print]22(23):
      N-acetylcysteine (NAC), often used as an antioxidant-scavenging reactive oxygen species (ROS) in vitro, was recently shown to increase the cytotoxicity of other compounds through ROS-dependent and ROS-independent mechanisms. In this study, NAC itself was found to induce extensive ROS production in human leukemia HL-60 and U937 cells. The cytotoxicity depends on ROS-modulating enzyme expression. In HL-60 cells, NAC activated NOX2 to produce superoxide (O2•-). Its subsequent conversion into H2O2 by superoxide dismutase 1 and 3 (SOD1, SOD3) and production of ClO- from H2O2 by myeloperoxidase (MPO) was necessary for cell death induction. While the addition of extracellular SOD potentiated NAC-induced cell death, extracellular catalase (CAT) prevented cell death in HL-60 cells. The MPO inhibitor partially reduced the number of dying HL-60 cells. In U937 cells, the weak cytotoxicity of NAC is probably caused by lower expression of NOX2, SOD1, SOD3, and by the absence of MOP expression. However, even here, the addition of extracellular SOD induced cell death in U937 cells, and this effect could be reversed by extracellular CAT. NAC-induced cell death exhibited predominantly apoptotic features in both cell lines. Conclusions: NAC itself can induce extensive production of O2•- in HL-60 and U937 cell lines. The fate of the cells then depends on the expression of enzymes that control the formation and conversion of ROS: NOX, SOD, and MPO. The mode of cell death in response to NAC treatment bears apoptotic and apoptotic-like features in both cell lines.
    Keywords:  HL-60 cells; MPO; N-acetylcysteine; NOX; SOD; U937 cells; oxidative stress
    DOI:  https://doi.org/10.3390/ijms222312635
  10. Mol Cancer Res. 2021 Dec 08. pii: molcanres.0652.2021. [Epub ahead of print]
      DNA damaging therapy is the basis for treatment of most cancers, including B cell precursor acute lymphoblastic leukemia (BCP-ALL, hereafter ALL). We have previously shown that cAMP-activating factors present in the bone marrow render ALL cells less sensitive to DNA damage-induced apoptosis, by enhancing autophagy and suppressing p53. To sensitize ALL cells to DNA damaging therapy, we have searched for novel targets that may counteract the effects induced by cAMP-signaling. In the present study, we have identified poly(ADP-ribose) polymerase 1 (PARP1) as a potential target. We show that the PARP1-inhibitors olaparib or PJ34 inhibit cAMP-mediated autophagy and thereby potentiate the DNA damaging treatment. Furthermore, we reveal that cAMP-mediated PARP1-activation is preceded by induction of reactive oxygen species (ROS) and results in depletion of nicotinamide adenine dinucleotide (NAD), both of which are autophagy-promoting events. Accordingly, we demonstrate that scavenging ROS by N-acetylcysteine and repleting NAD independently reduce DNA damage-induced autophagy. In addition, olaparib augmented the effect of DNA damaging treatment in a human xenograft model of ALL in NOD-scidIL2Rgammanull mice. Based on the current findings, we suggest that PARP1 inhibitors may enhance the efficiency of conventional genotoxic therapies and thereby provide a novel treatment strategy for pediatric ALL patients. Implications: PARP1 inhibitors augment the DNA damage-induced killing of ALL cells by limiting the opposing effects of cAMP-mediated autophagy, which involves ROS-induced PARP1-activation and depletion of cellular NAD-levels.
    DOI:  https://doi.org/10.1158/1541-7786.MCR-21-0652
  11. Free Radic Res. 2021 Dec 06. 1-52
      Undesired toxicity and emergence of multidrug resistance (MDR) are the major impediments for the successful application of organotin-based compounds against cancer. Since oxalyl-bis(N-phenyl)hydroxamic acid (OBPHA) exerts significant efficacy against cancer, we believe that derivatives of OBPHA including organotin molecule can show a promising effect against cancer. Herein, we have selected three previously characterized OBPHA derivatives viz., succinyl-bis(N-phenyl)hydroxamic acid (SBPHA), diphenyl-tin succinyl-bis(N-phenyl)hydroxamic acid (Sn-SBPHA), malonyl-bis(N-phenyl)hydroxamic acid (MBPHA) and evaluated their antiproliferative efficacy against both drug resistant (CEM/ADR5000; EAC/Dox) and sensitive (CCRF-CEM; HeLa; EAC/S) cancers. Data revealed that Sn-SBPHA selectively targets drug resistant and sensitive cancers without inducing any significant toxicity to normal cells (Chang Liver). Moreover, shortening of the backbone of SBPHA enhances the efficacy of the newly formed molecule MBPHA by targeting only drug sensitive cancers. Sn-SBPHA induces caspase3-dependent apoptosis through redox-imbalance in both drug resistant and sensitive cancer. Sn-SBPHA also reduced the activation and expression of both MMP2 and MMP9 without altering the expression status of TIMP1 and TIMP2 in drug resistant cancer. In addition, Sn-SBPHA reduced the activation of both STAT3 and JNK1, the transcriptional modulator of MMPs, in a redox-dependent manner in CEM/ADR5000 cells. Thus, Sn-SBPHA targets MMPs by modulating STAT3 and JNK1 in a redox-dependent manner. However, MBPHA and SBPHA fail to target drug resistance and both drug resistant and sensitive cancer respectively. Furthermore, Sn-SBPHA significantly increases the lifespan of doxorubicin resistant and sensitive Ehrlich Ascites Carcinoma bearing mice without inducing any significant systemic-toxicity. Therefore, Sn-SBPHA has the therapeutic potential to target and overcome MDR in cancer.
    Keywords:  Apoptosis; Hydroxamic acid; Multidrug resistance; Reactive oxygen species; STAT3/JNK1/Matrix Metalloproteinase
    DOI:  https://doi.org/10.1080/10715762.2021.2013480
  12. Toxicology. 2021 Dec 07. pii: S0300-483X(21)00384-X. [Epub ahead of print] 153062
      Nicotine, a major alkaloid found in tobacco, is a significant risk factor for gastric cancer. IL-8, a pleiotropic cytokine, plays a vital role in cancer cell metastasis. The role of nicotine in IL-8 expression and the underlying mechanism is currently unknown. Here, we examined the effects of nicotine on IL-8 expression and explored the potential mechanisms in gastric cancer cells. We found that nicotine increases IL-8 expression. Specific inhibitor and mutagenesis studies showed that ROS and MAPK (Erk1/2, p38) were involved in this process. Deletion and site-directed mutagenesis studies indicate the involvement of transcription factor NF-κB and AP-1. ROS and ROS/MAPK (Erk1/2, p38) functioned as the upstream signaling molecules in the activation of NF-κB and AP-1, respectively. AGS gastric cancer cells pretreated with nicotine stimulate angiogenesis in the tumor microenvironment, partially abrogated by silencing IL-8 in AGS cells. In this study, we found that nicotine induces IL-8 expression via ROS/NF-κB and ROS/MAPK (Erk1/2, p38)/AP-1 axis in gastric cancer cells, thus stimulating endothelial cell proliferation and angiogenesis in the tumor microenvironment.
    Keywords:  angiogenesis; gastric cancer; interleukin-8; nicotine
    DOI:  https://doi.org/10.1016/j.tox.2021.153062
  13. Front Chem. 2021 ;9 759148
      A series of aryl-substituted 3-amino-1-aryl-8-methoxy-1H-benzo[f]chromene-2-carbonitriles (4a-4q) were designed and synthesized via reaction of 6-methoxy-2-naphthol with a mixture of appropriate aromatic aldehydes and malononitrile under microwave conditions. The structures of the novel compounds 4b, 4c, 4f, 4g, 4i, 4l, 4m, and 4o-4q were established according to IR, 1H-NMR, 13C-NMR/13C-NMR-DEPT, and MS. The benzochromene derivative 4c with a single chlorine at the meta position of the phenyl ring and, to a lesser extent, other benzochromenes with monohalogenated phenyl ring (4a, 4c-4f) exhibited the highest cytotoxicity against six human cancer cell lines MDA-MB-231, A549, HeLa, MIA PaCa-2, 5,637, and Hep G2. The mechanisms of the cytotoxic activities of benzochromenes with monohalogenated phenyl ring (4a, 4c-4f) were further analyzed using triple-negative breast cancer cell line MDA-MB-231. Cell cycle analysis showed accumulation of the treated cells in S phase for 4a, 4d-4f, and S-G2/M phases for 4c. In vivo, 4a and 4c-4f inhibited growth, proliferation, and triggered apoptosis in preestablished breast cancer xenografts grown on the chick chorioallantoic membranes while exhibiting low systemic toxicity. Compounds 4a and 4c-4f increased levels of mitochondrial superoxide and decreased mitochondrial membrane potential resulting in initiation of apoptosis as demonstrated by caspase 3/7 activation. In addition, 4c induced general oxidative stress in cancer cells. The SAR study confirmed that halogens of moderate size at meta or para positions of the pendant phenyl ring enhance the cytotoxic activity of 3-amino-1-aryl-8-methoxy-1H-benzo[f]chromene-2-carbonitriles, and these compounds could serve as leads for the development of novel anticancer therapies.
    Keywords:  1H-benzo[f]chromenes; caspase 3/7; cell cycle; chorioallantoic membrane (CAM) cancer xenografts 2; mitochondrial membrane potential; reactive oxygen species (ROS); structure–activity relationship; triple-negative breast cancer
    DOI:  https://doi.org/10.3389/fchem.2021.759148
  14. Int J Environ Res Public Health. 2021 Nov 24. pii: 12371. [Epub ahead of print]18(23):
      Air pollution has been repeatedly linked to numerous health-related disorders, including skin sensitization, oxidative imbalance, premature extrinsic aging, skin inflammation, and increased cancer prevalence. Nrf2 is a key player in the endogenous protective mechanism of the skin. We hypothesized that pharmacological activation of Nrf2 might reduce the deleterious action of diesel particulate matter (DPM), evaluated in HaCaT cells. SK-119, a recently synthesized pharmacological agent as well as 2,2'-((1E,1'E)-(1,4-phenylenebis(azaneylylidene))bis(methaneylylidene))bis(benzene-1,3,5-triol) (SH-29) were first evaluated in silico, suggesting a potent Nrf2 activation capacity that was validated in vitro. In addition, both compounds were able to attenuate key pathways underlying DPM damage, including cytosolic and mitochondrial reactive oxygen species (ROS) generation, tested by DC-FDA and MitoSOX fluorescent dye, respectively. This effect was independent of the low direct scavenging ability of the compounds. In addition, both SK-119 and SH-29 were able to reduce DPM-induced IL-8 hypersecretion in pharmacologically relevant concentrations. Lastly, the safety of both compounds was evaluated and demonstrated in the ex vivo human skin organ culture model. Collectively, these results suggest that Nrf2 activation by SK-119 and SH-29 can revert the deleterious action of air pollution.
    Keywords:  2,2′-((1E,1′E)-(1,4-phenylenebis(azaneylylidene))bis(methaneylylidene))bis(benzene-1,3,5-triol (SH-29)); Nrf2; ROS; diesel particulate matter (DPM) (E)-5-oxo-1-(4-((2,4,6-trihydroxybenzylidene)amino)phenyl)pyrrolidine-3-carboxylic acid (SK-119); keratinocytes; pharmacological activators
    DOI:  https://doi.org/10.3390/ijerph182312371
  15. Int J Mol Sci. 2021 Nov 24. pii: 12705. [Epub ahead of print]22(23):
      Malignant brain tumors are responsible for catastrophic morbidity and mortality globally. Among them, glioblastoma multiforme (GBM) bears the worst prognosis. The GrpE-like 2 homolog (GRPEL2) plays a crucial role in regulating mitochondrial protein import and redox homeostasis. However, the role of GRPEL2 in human glioblastoma has yet to be clarified. In this study, we investigated the function of GRPEL2 in glioma. Based on bioinformatics analyses from the Cancer Gene Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), we inferred that GRPEL2 expression positively correlates with WHO tumor grade (p < 0.001), IDH mutation status (p < 0.001), oligodendroglial differentiation (p < 0.001), and overall survival (p < 0.001) in glioma datasets. Functional validation in LN229 and GBM8401 GBM cells showed that GRPEL2 knockdown efficiently inhibited cellular proliferation. Moreover, GRPEL2 suppression induced cell cycle arrest at the sub-G1 phase. Furthermore, GRPEL2 silencing decreased intracellular reactive oxygen species (ROS) without impending mitochondria membrane potential. The cellular oxidative respiration measured with a Seahorse XFp analyzer exhibited a reduction of the oxygen consumption rate (OCR) in GBM cells by siGRPEL2, which subsequently enhanced autophagy and senescence in glioblastoma cells. Taken together, GRPEL2 is a novel redox regulator of mitochondria bioenergetics and a potential target for treating GBM in the future.
    Keywords:  GrpE-like 2 homolog (GRPEL2); autophagy; glioblastoma; oxygen consumption rate (OCR); senescence
    DOI:  https://doi.org/10.3390/ijms222312705
  16. Front Bioeng Biotechnol. 2021 ;9 784612
      Reactive oxygen species (ROS) are critical mediators in many physiological processes including innate and adaptive immunity, making the modulation of ROS level a powerful strategy to augment anticancer immunity. However, current evidences suggest the necessity of a deeper understanding of their multiple roles, which may vary with their concentration, location and the immune microenvironment they are in. Here, we have reviewed the reported effects of ROS on macrophage polarization, immune checkpoint blocking (ICB) therapy, T cell activation and expansion, as well as the induction of immunogenic cell death. A majority of reports are indicating detrimental effects of ROS, but it is unadvisable to simply scavenge them because of their pleiotropic effects in most occasions (except in T cell activation and expansion where ROS are generally undesirable). Therefore, clinical success will need a clearer illustration of their multi-faced functions, as well as more advanced technologies to tune ROS level with high spatiotemporal control and species-specificity. With such progresses, the efficacy of current immunotherapies will be greatly improved by combining with ROS-targeted therapies.
    Keywords:  ROS; T cell activation; immunogenic cell death; immunotherapy; macrophage polarization
    DOI:  https://doi.org/10.3389/fbioe.2021.784612
  17. Eur J Pharm Sci. 2021 Dec 05. pii: S0928-0987(21)00393-6. [Epub ahead of print] 106092
      The main goal of this work was to screen the antiproliferative activity and mechanism of actions of two copper complexes: [Cu(dmp)2(CH3CN)]2+ (1) and [Cu(phen)2(CH3CN)]2+ (2) on 2D and 3D colorectal cancer cells models. Cell viability studies on three colorectal cancer cell lines (HT-29, LS174T, Caco-2) displayed that 1 showed more robust antiproliferative activity than 2 and cisplatin. Intracellular copper content (63.24% and 48.06% for 1 and 2, respectively) can explain the differences in the cytotoxicity assay. ROS production is the primary mechanism of action involved in the antiproliferative activity of 1 showing 4-, 70- and 2.5- fold increased values of ROS level for HT-29, LS174T, Caco-2 cancer cell lines, respectively. This effect takes place along with the depolarization of the mitochondrial membrane at 2 µM. Besides, both complexes increased apoptosis on three cancer cell lines at low micromolar concentrations (0.5-2.5 μM). Moreover, 1 and 2 inhibited NF-κB pathway both in HT-29-NF-kB-hrGFP monolayer (0.5 to 1 μM) and spheroids HT-29 GFP (5 to 10 μM). This inhibitory effect leads to an inactivation of the MMP-9 expression on HT-29 cell line. Altogether, these results showed that 1 exhibits antiproliferative activity on human colorectal cancer cells in the monolayer and the 3D model.
    Keywords:  MMP-9 expression inhibition; NF-κB pathway inhibition; ROS production; antiproliferative activity; apoptosis; copper complexes
    DOI:  https://doi.org/10.1016/j.ejps.2021.106092
  18. Biochem Biophys Res Commun. 2021 Dec 03. pii: S0006-291X(21)01635-1. [Epub ahead of print]589 1-8
      BNIP3 is found to eliminate cancer cells via causing mitochondrial damage and endoplasmic reticulum stress, but it remains elusive of its role in regulating DNA double strand breaks (DSBs). In this study, we find that silibinin triggers DNA DSBs, ROS accumulation and expressional upregulation of BNIP3 in glioma cells. Mitigation of ROS with antioxidant GSH significantly inhibits silibinin-induced DNA DSBs and glioma cell death. Then, we find knockdown of BNIP3 with SiRNA obviously prevents silibinin-induced DNA DSBs and ROS accumulation. Mechanistically, BNIP3 knockdown not only reverses silibinin-triggered depletion of cysteine and GSH via maintaining xCT level, but also abrogates catalase decrease. Notably, silibinin-induced dephosphorylation of mTOR is also prevented when BNIP3 is knocked down. Given that activated mTOR could promote xCT expression and inhibit autophagic degradation of catalase, our data suggest that BNIP3 contributes to silibinin-induced DNA DSBs via improving intracellular ROS by inhibition of mTOR.
    Keywords:  BNIP3; DNA double Strand breaks; ROS; Silibinin; mTOR
    DOI:  https://doi.org/10.1016/j.bbrc.2021.11.110
  19. Chem Commun (Camb). 2021 Dec 07.
      Aldehyde dehydrogenase (ALDH), a cancer stem cell biomarker, is related to drug resistance. Co-treatment of anti-cancer drug (CPT) and ALDH inhibitor (DEAB) can overcome the drug resistance of cancer stem cells (CSCs) and finally cure cancers without relapse. We herein introduce a prodrug (DE-CPT) - consisting of 1,3-oxathiolane as an ROS responsive scaffold, and an aldehyde protecting group of DEAB - to deliver the CPT and DEAB upon reaction with ROS. From tests of the sphere-forming ability and CSC marker subpopulation, we found that DE-CPT efficiently decreases the CSCs population and kills the cancer cells.
    DOI:  https://doi.org/10.1039/d1cc05573a
  20. Molecules. 2021 Dec 01. pii: 7305. [Epub ahead of print]26(23):
      Although numerous studies have demonstrated the biological and multifaceted nature of dimethyl sulfoxide (DMSO) across different in vitro models, the direct effect of "non-toxic" low DMSO doses on cardiac and cancer cells has not been clearly explored. In the present study, H9c2 cardiomyoblasts and MCF-7 breast cancer cells were treated with varying concentrations of DMSO (0.001-3.7%) for 6 days. Here, DMSO doses < 0.5% enhanced the cardiomyoblasts respiratory control ratio and cellular viability relative to the control cells. However, 3.7% DMSO exposure enhanced the rate of apoptosis, which was driven by mitochondrial dysfunction and oxidative stress in the cardiomyoblasts. Additionally, in the cancer cells, DMSO (≥0.009) led to a reduction in the cell's maximal respiratory capacity and ATP-linked respiration and turnover. As a result, the reduced bioenergetics accelerated ROS production whilst increasing early and late apoptosis in these cells. Surprisingly, 0.001% DMSO exposure led to a significant increase in the cancer cells proliferative activity. The latter, therefore, suggests that the use of DMSO, as a solvent or therapeutic compound, should be applied with caution in the cancer cells. Paradoxically, in the cardiomyoblasts, the application of DMSO (≤0.5%) demonstrated no cytotoxic or overt therapeutic benefits.
    Keywords:  apoptosis; bioenergetics; mitochondria; oxidative stress
    DOI:  https://doi.org/10.3390/molecules26237305
  21. Redox Biol. 2021 Nov 27. pii: S2213-2317(21)00361-X. [Epub ahead of print]48 102201
      Reactive oxygen species (ROS) which are continuously generated mainly by mitochondria, have been proved to play an important role in the stress signaling of cancer cells. Moreover, pentatricopeptide repeat (PPR) proteins have been suggested to take part in mitochondrial metabolism. However, the mechanisms integrating the actions of these distinct networks in urothelial carcinoma of the bladder (UCB) pathogenesis are elusive. In this study, we found that leucine rich pentatricopeptide repeat containing (LRPPRC) was frequently upregulated in UCB and that it was an independent prognostic factor in UCB. We further revealed that LRPPRC promoted UCB tumorigenesis by regulating the intracellular ROS homeostasis. Mechanistically, LRPPRC modulates ROS balance and protects UCB cells from oxidative stress via mt-mRNA metabolism and the circANKHD1/FOXM1 axis. In addition, the SRA stem-loop interacting RNA binding protein (SLIRP) directly interacted with LRPPRC to protect it from ubiquitination and proteasomal degradation. Notably, we showed that LRPPRC modulated the tumorigenesis of UCB cells in a circANKHD1-FOXM1-dependent manner. In conclusion, LRPPRC exerts critical roles in regulating UCB redox homeostasis and tumorigenesis, and is a prognostic factor for UCB; suggesting that LRPPRC may serve as an exploitable therapeutic target in UCB.
    Keywords:  FOXM1; LRPPRC; ROS; Urothelial carcinoma of the bladder; circRNA
    DOI:  https://doi.org/10.1016/j.redox.2021.102201
  22. Cell Death Discov. 2021 Dec 04. 7(1): 375
      In recent years, many studies have shown that autophagy plays a vital role in the resistance of tumor chemotherapy. However, the interaction between autophagy and cell death has not yet been clarified. In this study, a new specific ERK inhibitor CC90003 was found to suppress colorectal cancer growth by inducing cell death both in vitro and in vivo. Studies have confirmed that higher concentrations of ROS leads to autophagy or cell death. In this research, the role of CC90003-induced ROS was verified. But after inhibiting ROS by two kinds of ROS inhibitors NAC and SFN, the autophagy induced by CC90003 decreased, while cell death strengthened. In parallel, protective autophagy was also induced, while in a p53-dependent manner. After silencing p53 or using the p53 inhibitor PFTα, the autophagy induced by CC90003 was weakened and the rate of cell death increases. Therefore, we confirmed that CC90003 could induce autophagy by activating ROS/p53. Furthermore, in the xenograft mouse model, the effect was obtained remarkably in the combinational treatment group of CC90003 plus CQ, comparing with that of the single treatment groups. In a word, our results demonstrated that targeting ERK leads to cell death and p53/ROS-dependent protective autophagy simultaneously in colorectal cancer, which offers new potential targets for clinical therapy.
    DOI:  https://doi.org/10.1038/s41420-021-00677-9