bims-rehoca Biomed News
on Redox homeostasis in cancer
Issue of 2021‒08‒08
forty papers selected by
Vittoria Raimondi
Veneto Institute of Oncology


  1. Int J Biol Macromol. 2021 Aug 03. pii: S0141-8130(21)01665-2. [Epub ahead of print]
      Herein, a new antioxidant-photosensitizing hydrogel based on chitosan has been developed to control photodynamic therapy (PDT) activity in cancer treatment. In PDT, photosensitizers generate reactive oxygen species (ROS) during photochemical reactions, leading oxidative damage to cancer cells. However, high ROS levels are lethal to non-target healthy cells and tissues such as endothelial cells and blood cells. To mediate these drawbacks, we improved PDT with a natural polyphenolic antioxidant, Tannic acid (TA), to control the ROS level and minimize side effects through singlet oxygen (1O2) scavenging. In this work, chitosan-based hydrogels were designed using tannic acid as an antioxidant cross-linker and loaded with water-soluble N, N'-di-(l-alanine)-3,4,9,10-perylene tetracarboxylic diimide (PDI-Ala) as a photosensitizer. Our results showed that the hydrogel formed a three-dimensional (3D) microstructure with good mechanical strength and significant singlet oxygen production and antioxidant activity. In addition, the behavior of human melanoma cell line A375 and dental pulp stem cells (as normal cells) was compared and studied during an in vitro photodynamic treatment. Normal cells had a higher viability than cancer cells, indicating that the PDT is more effective on cancer cells than on normal cells. The new hydrogels could be applied as an effective new drug to control PDT performance.
    Keywords:  Antioxidant-photosensitizing hydrogel; Perylene diimide; Photodynamic therapy
    DOI:  https://doi.org/10.1016/j.ijbiomac.2021.08.006
  2. J Nucl Med. 2021 Aug 05. pii: jnumed.120.256974. [Epub ahead of print]
      Oxidative stress is the imbalance of harmful reactive oxygen species (ROS) and the action of neutralizing antioxidant mechanisms. If left unchecked, the deleterious effects of oxidative stress results in damage to DNA, proteins, and membranes, ultimately resulting in cell death. Tumors are highly proliferative and consequently generate high levels of mitochondrial ROS. To compensate and maintain redox homeostasis, cancer cells upregulate protective antioxidant pathways, which are further amplified in drug-resistant tumors. This review provides an overview of the latest molecular imaging techniques designed to image oxidative stress in cancer. New probes are now able to assess heterogeneous ROS and antioxidant production within tumors and across lesions. Together, the non-invasive imaging of these dynamic processes holds great promise for treatment response monitoring, prediction of drug resistance, and may provide insight into the metastatic potential of tumors.
    Keywords:  Molecular Biology; Molecular Imaging; Oncology: General; ROS; antioxidant; cancer; molecular imaging; oxidative stress
    DOI:  https://doi.org/10.2967/jnumed.120.256974
  3. Cancers (Basel). 2021 Jul 22. pii: 3670. [Epub ahead of print]13(15):
      Nuclear protein 1 (NUPR1) is a small intrinsically disordered protein (IDP) activated in response to various types of cellular stress, including endoplasmic reticulum (ER) stress and oxidative stress. Reactive oxygen species (ROS) are mainly produced during mitochondrial oxidative metabolism, and directly impact redox homeostasis and oxidative stress. Ferroptosis is a ROS-dependent programmed cell death driven by an iron-mediated redox reaction. Substantial evidence supports a maintenance role of the stress-inducible protein NUPR1 on cancer cell metabolism that confers chemotherapeutic resistance by upregulating mitochondrial function-associated genes and various antioxidant genes in cancer cells. NUPR1, identified as an antagonist of ferroptosis, plays an important role in redox reactions. This review summarizes the current knowledge on the mechanism behind the observed impact of NUPR1 on mitochondrial function, energy metabolism, iron metabolism, and the antioxidant system. The therapeutic potential of genetic or pharmacological inhibition of NUPR1 in cancer is also discussed. Understanding the role of NUPR1 in the antioxidant system and the mechanisms behind its regulation of ferroptosis may promote the development of more efficacious strategies for cancer therapy.
    Keywords:  NUPR1; ROS; cell death; cell stress; ferroptosis
    DOI:  https://doi.org/10.3390/cancers13153670
  4. Cancers (Basel). 2021 Jul 27. pii: 3769. [Epub ahead of print]13(15):
      Pheochromocytoma (PHEO) and paraganglioma (PGL) are rare neuroendocrine tumors derived from neural crest cells. Germline variants in approximately 20 PHEO/PGL susceptibility genes are found in about 40% of patients, half of which are found in the genes that encode succinate dehydrogenase (SDH). Patients with SDH subunit B (SDHB)-mutated PHEO/PGL exhibit a higher likelihood of developing metastatic disease, which can be partially explained by the metabolic cell reprogramming and redox imbalance caused by the mutation. Reactive oxygen species (ROS) are highly reactive molecules involved in a multitude of important signaling pathways. A moderate level of ROS production can help regulate cellular physiology; however, an excessive level of oxidative stress can lead to tumorigenic processes including stimulation of growth factor-dependent pathways and the induction of genetic instability. Tumor cells effectively exploit antioxidant enzymes in order to protect themselves against harmful intracellular ROS accumulation, which highlights the essential balance between ROS production and scavenging. Exploiting ROS accumulation can be used as a possible therapeutic strategy in ROS-scavenging tumor cells. Here, we focus on the role of ROS production in PHEO and PGL, predominantly in SDHB-mutated cases. We discuss potential strategies and approaches to anticancer therapies by enhancing ROS production in these difficult-to-treat tumors.
    Keywords:  metastatic pheochromocytoma; paraganglioma; reactive oxygen species; succinate dehydrogenase
    DOI:  https://doi.org/10.3390/cancers13153769
  5. Nat Commun. 2021 Aug 06. 12(1): 4777
      The modulation of intracellular reactive oxygen species (ROS) levels is crucial for cellular homeostasis and determination of cellular fate. A sublethal level of ROS sustains cell proliferation, differentiation and promotes tumor metastasis, while a drastic ROS burst directly induces apoptosis. Herein, surface-oxidized arsenene nanosheets (As/AsxOy NSs) with type II heterojunction are fabricated with efficient ·O2- and 1O2 production and glutathione consumption through prolonging the lifetime of photo-excited electron-hole pairs. Moreover, the portion of AsxOy with oxygen vacancies not only catalyzes a Fenton-like reaction, generating ·OH and O2 from H2O2, but also inactivates main anti-oxidants to cut off the "retreat routes" of ROS. After polydopamine (PDA) and cancer cell membrane (M) coating, the engineered As/AsxOy@PDA@M NSs serve as an intelligent theranostic platform with active tumor targeting and long-term blood circulation. Given its narrow-band-gap-enabled in vivo fluorescence imaging properties, As/AsxOy@PDA@M NSs could be applied as an imaging-guided non-invasive and real-time nanomedicine for cancer therapy.
    DOI:  https://doi.org/10.1038/s41467-021-24961-5
  6. Biomolecules. 2021 Jul 11. pii: 1015. [Epub ahead of print]11(7):
      Nanomaterial-mediated cancer therapeutics is a fast developing field and has been utilized in potential clinical applications. However, most effective therapies, such as photodynamic therapy (PDT) and radio therapy (RT), are strongly oxygen-dependent, which hinders their practical applications. Later on, several strategies were developed to overcome tumor hypoxia, such as oxygen carrier nanomaterials and oxygen generated nanomaterials. Among these, oxygen species generation on nanozymes, especially catalase (CAT) mimetic nanozymes, convert endogenous hydrogen peroxide (H2O2) to oxygen (O2) and peroxidase (POD) mimetic nanozymes converts endogenous H2O2 to water (H2O) and reactive oxygen species (ROS) in a hypoxic tumor microenvironment is a fascinating approach. The present review provides a detailed examination of past, present and future perspectives of POD mimetic nanozymes for effective oxygen-dependent cancer phototherapeutics.
    Keywords:  cancer therapy; dual enzyme; enzyme mimetic; nanomaterials; nanozymes; peroxidase mimetic; phototherapy; single atom; theranostics
    DOI:  https://doi.org/10.3390/biom11071015
  7. Int J Nanomedicine. 2021 ;16 5193-5209
      Background: Recently, nanocatalyst-induced endoplasmic reticulum (ER) stress for cancer therapy has been attracting considerable attention. However, cancer cells are often able to overcome ER stress-induced death by activating the unfolded protein response (UPR), making nanocatalytic monotherapy a poor defense against cancer progression.Purpose: In this study, to improve the nanocatalytic treatment efficacy, a phase change material (PCM) was used to encapsulate the upstream ER stress initiator, iron oxide nanoparticles (Fe3O4 NPs), and the downstream UPR modulator, PR-619. Subsequently, the tumor-homing peptide tLyP-1 was coupled to it to form tLyP-1/PR-619/Fe3O4@PCM (tPF@PCM) theranostic platform.
    Materials and Methods: tPF@PCM was synthesized using nanoprecipitation and resolidification methods followed by the EDC/NHS cross-linking method. The targeting capacity of tPF@PCM was evaluated in vitro and in vivo using flow cytometry and magnetic resonance imaging, respectively. The therapeutic efficacy of tPF@PCM was investigated in a renal cell carcinoma mouse model. Moreover, we explored the synergistic anti-tumor mechanism by examining the intracellular reactive oxygen species (ROS), aggregated proteins, ER stress response levels, and type of cell death.
    Results: tPF@PCM had excellent tumor-targeting properties and exhibited satisfactory photothermal-enhanced tumor inhibition efficacy both in vitro and in vivo. Specifically, the phase transition temperature (45 °C) maintained using 808 nm laser irradiation significantly increased the release and catalytic activity of the peroxidase mimic Fe3O4 NPs. This strongly catalyzed the generation of hydroxyl radicals (•OH) via the Fenton reaction in the acidic tumor microenvironment. The redox imbalance subsequently resulted in an increase in the level of damaged proteins in the ER and initiated ER stress. Moreover, the pan-deubiquitinase inhibitor PR-619 blocked the "adaptive" UPR-mediated degradation of these damaged proteins, exacerbating the ER burden. Consequently, irremediable ER stress activated the "terminal" UPR, leading to apoptosis in cancer cells.
    Conclusion: This ER stress-exacerbating strategy effectively suppresses tumorigenesis, offering novel directions for advances in the treatment of conventional therapy-resistant cancers.
    Keywords:  apoptosis; deubiquitinase inhibitor; endoplasmic reticulum stress; nanocatalytic medicine; reactive oxygen species; unfolded protein response
    DOI:  https://doi.org/10.2147/IJN.S321612
  8. Cancers (Basel). 2021 Jul 30. pii: 3852. [Epub ahead of print]13(15):
      Sonodynamic Therapy (SDT) is a new anticancer strategy based on ultrasound (US) technique and is derived from photodynamic therapy (PDT); SDT is still, however, far from clinical application. In order to move this therapy forward from bench to bedside, investigations have been focused on treatment selectivity between cancer cells and normal cells. As a result, the effects of the porphyrin activation by SDT on cancer (HT-29) and normal (HDF 106-05) cells were studied in a co-culture evaluating cell cytotoxicity, reactive oxygen species (ROS) production, mitochondrial function and plasma membrane fluidity according to the bilayer sonophore (BLS) theory. While PDT induced similar effects on both HT-29 and HDF 106-05 cells in co-culture, SDT elicited significant cytotoxicity, ROS production and mitochondrial impairment on HT-29 cells only, whereas HDF 106-05 cells were unaffected. Notably, HT-29 and HDF 106-05 showed different cell membrane fluidity during US exposure. In conclusion, our data demonstrate a marked difference between cancer cells and normal cells in co-culture in term of responsiveness to SDT, suggesting that this different behavior can be ascribed to diversity in plasma membrane properties, such as membrane fluidity, according to the BLS theory.
    Keywords:  cancer cells; membrane fluidity; porphyrin; sonodynamic therapy; ultrasound
    DOI:  https://doi.org/10.3390/cancers13153852
  9. Int J Biol Sci. 2021 ;17(11): 2703-2717
      Rationale: Colorectal cancer (CRC) is a common malignant tumor of the digestive system. However, the efficacy of surgery and chemotherapy is limited. Ferroptosis is an iron- and reactive oxygen species (ROS)-dependent form of regulated cell death (RCD) and plays a vital role in tumor suppression. Ferroptosis inducing agents have been studied extensively as a novel promising way to fight against therapy resistant cancers. The aim of this study is to investigate the mechanism of action of tagitinin C (TC), a natural product, as a novel ferroptosis inducer in tumor suppression. Methods: The response of CRC cells to tagitinin C was assessed by cell viability assay, clonogenic assay, transwell migration assay, cell cycle assay and apoptosis assay. Molecular approaches including Western blot, RNA sequencing, quantitative real-time PCR and immunofluorescence were employed as well. Results: Tagitinin C, a sesquiterpene lactone isolated from Tithonia diversifolia, inhibits the growth of colorectal cancer cells including HCT116 cells, and induced an oxidative cellular microenvironment resulting in ferroptosis of HCT116 cells. Tagitinin C-induced ferroptosis was accompanied with the attenuation of glutathione (GSH) levels and increased in lipid peroxidation. Mechanistically, tagitinin C induced endoplasmic reticulum (ER) stress and oxidative stress, thus activating nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). As a downstream gene (effector) of Nrf2, heme oxygenase-1 (HO-1) expression increased significantly with the treatment of tagitinin C. Upregulated HO-1 led to the increase in the labile iron pool, which promoted lipid peroxidation, meanwhile tagitinin C showed synergistic anti-tumor effect together with erastin. Conclusion: In summary, we provided the evidence that tagitinin C induces ferroptosis in colorectal cancer cells and has synergistic effect together with erastin. Mechanistically, tagitinin C induces ferroptosis through ER stress-mediated activation of PERK-Nrf2-HO-1 signaling pathway. Tagitinin C, identified as a novel ferroptosis inducer, may be effective chemosensitizer that can expand the efficacy and range of chemotherapeutic agents.
    Keywords:  ER stress; Nrf2-HO-1 pathway; ROS; ferroptosis; tagitinin C
    DOI:  https://doi.org/10.7150/ijbs.59404
  10. Nano Lett. 2021 Aug 03.
      Magnetic-based theranostics feature a high efficiency, excellent tissue penetration, and minimal damage to normal tissues, are noninvasive, and are widely used in the diagnosis and therapy of clinical diseases. Herein, a conceptually novel magnetostrictive-piezoelectric nanocatalytic medicine (MPE-NCM) for tumor therapy is proposed by initiating an intratumoral magneto-driven and piezoelectric-catalyzed reaction using core-shell structured CoFe2O4-BiFeO3 magnetostrictive-piezoelectric nanoparticles (CFO-BFO NPs) under an alternating magnetic field. The CFO-BFO NPs catalyze the generation of cytotoxic reactive oxygen species (ROS): superoxide radicals (•O2-) and hydroxyl radicals (•OH). The simulation calculation demonstrates the highly controllable electric polarization, facilitating the above catalytic reactions under the magnetic stimulation. Both a detailed cell-level assessment and the tumor xenograft evaluation evidence the significant tumor eradication efficacy of MPE-NCM. This study proposes an original and novel magneto-responsive nanocatalytic modality for cancer therapy, which displays promising prospects for the future clinic translation owing to its excellent catalytic dynamic responsiveness, high therapeutic efficacy, and biosafety in vivo.
    Keywords:  catalytic medicine; core−shell nanoparticle; magnetic field; magnetostrictive-piezoelectric effect; reactive oxygen species
    DOI:  https://doi.org/10.1021/acs.nanolett.1c01313
  11. Molecules. 2021 Jul 22. pii: 4417. [Epub ahead of print]26(15):
      A novel series of 4-anilinoquinazoline analogues, DW (1-10), were evaluated for anticancer efficacy in human breast cancer (BT-20) and human colorectal cancer (CRC) cell lines (HCT116, HT29, and SW620). The compound, DW-8, had the highest anticancer efficacy and selectivity in the colorectal cancer cell lines, HCT116, HT29, and SW620, with IC50 values of 8.50 ± 2.53 µM, 5.80 ± 0.92 µM, and 6.15 ± 0.37 µM, respectively, compared to the non-cancerous colon cell line, CRL1459, with an IC50 of 14.05 ± 0.37 µM. The selectivity index of DW-8 was >2-fold in colon cancer cells incubated with vehicle. We further determined the mechanisms of cell death induced by DW-8 in SW620 CRC cancer cells. DW-8 (10 and 30 µM) induced apoptosis by (1) producing cell cycle arrest at the G2 phase; (2) activating the intrinsic apoptotic pathway, as indicated by the activation of caspase-9 and the executioner caspases-3 and 7; (3) nuclear fragmentation and (4) increasing the levels of reactive oxygen species (ROS). Overall, our results suggest that DW-8 may represent a suitable lead for developing novel compounds to treat CRC.
    Keywords:  4-anilino-quinazoline; anticancer compound; colorectal cancer; cytotoxicity; intrinsic apoptosis
    DOI:  https://doi.org/10.3390/molecules26154417
  12. Pharmaceuticals (Basel). 2021 Jul 17. pii: 688. [Epub ahead of print]14(7):
      Combining NSAIDs with conventional therapeutics was recently explored as a new strategy in cancer therapy. Our earlier studies showed that novel oleanolic acid oximes (OAO) conjugated with aspirin or indomethacin may enhance their anti-cancer potential through modulation of the Nrf2 and NF-κB signaling pathways. This study focused on the synthesis and biological evaluation of four diclofenac (DCL)-OAO derivative conjugates in the context of these pathways' modification and hepatic cells survival. Treatment with the conjugates 4d, 3-diclofenacoxyiminoolean-12-en-28-oic acid morpholide, and 4c, 3-diclofenacoxyiminoolean-12-en-28-oic acid benzyl ester significantly reduced cell viability in comparison to the DCL alone. In THLE-2, immortalized normal hepatocytes treated with these conjugates resulted in the activation of Nrf2 and increased expression in SOD-1 and NQO1, while the opposite effect was observed in the HepG2 hepatoma cells. In both cell lines, reduced activation of the NF-κB and COX-2 expression was observed. In HepG2 cells, conjugates increased ROS production resulting from a reduced antioxidant defense, induced apoptosis, and inhibited cell proliferation. In addition, the OAO morpholide derivative and its DCL hybrid reduced the tumor volume in mice bearing xenografts. In conclusion, our study demonstrated that conjugating diclofenac with the OAO morpholide and a benzyl ester might enhance its anti-cancer activity in HCC.
    Keywords:  HCC; HepG2 cells; NF-κB; NOD/SCID mice; Nrf2; THLE-2 cells; apoptosis; diclofenac; inflammation; oleanolic acid derivative conjugates; reactive oxygen species
    DOI:  https://doi.org/10.3390/ph14070688
  13. Cell Rep. 2021 Aug 03. pii: S2211-1247(21)00905-0. [Epub ahead of print]36(5): 109478
      Oxidative stress is a ubiquitous cellular challenge implicated in aging, neurodegeneration, and cancer. By studying pathogenic mutations in the tumor suppressor BRCA2, we identify a general mechanism by which oxidative stress restricts mitochondrial (mt)DNA replication. BRCA2 inactivation induces R-loop accumulation in the mtDNA regulatory region and diminishes mtDNA replication initiation. In BRCA2-deficient cells, intracellular reactive oxygen species (ROS) are elevated, and ROS scavengers suppress the mtDNA defects. Conversely, wild-type cells exposed to oxidative stress by pharmacologic or genetic manipulation phenocopy these defects. Mechanistically, we find that 8-oxoguanine accumulation in mtDNA caused by oxidative stress suffices to impair recruitment of the mitochondrial enzyme RNaseH1 to sites of R-loop accrual, restricting mtDNA replication initiation. Thus, oxidative stress impairs RNaseH1 function to cripple mtDNA maintenance. Our findings highlight a molecular mechanism that links oxidative stress to mitochondrial dysfunction and is elicited by the inactivation of genes implicated in neurodegeneration and cancer.
    Keywords:  BRCA2; PRPF8; R-loops; RNaseH1; SETX; cancer; mitochondrial DNA replication; neurodegeneration; oxidative stress
    DOI:  https://doi.org/10.1016/j.celrep.2021.109478
  14. PLoS One. 2021 ;16(8): e0254392
      Conventional chemotherapeutic agents for colorectal cancer (CRC) cause systemic side effects and eventually become less efficacious owing to the development of drug resistance in cancer cells. Therefore, new therapeutic regimens have focused on the use of natural products. The anticancer activity of several parts of Calotropis gigantea has been reported; however, the effects of its stem bark extract on inhibition of cancer cell proliferation have not yet been examined. In this study, the anticancer activity of C. gigantea stem bark extract, both alone and in combination with 5-fluorouracil (5-FU), was evaluated. A crude ethanolic extract was prepared from dry, powdered C. gigantea barks using 95% ethanol. This was then partitioned to obtain dichloromethane (CGDCM), ethyl acetate, and water fractions. Quantitative analysis of the constituent secondary metabolites and calotropin was performed. These fractions exhibited cytotoxicity in HCT116 and HT-29 cells, with CGDCM showing the highest potency in both the cell lines. A combination of CGDCM and 5-FU significantly enhanced the cytotoxic effect. Moreover, the resistance of normal fibroblast, HFF-1, cells to this combination demonstrated its safety in normal cells. The combination significantly enhanced apoptosis through the mitochondria-dependent pathway. Additionally, the combination reduced adenosine triphosphate production and increased the production of reactive oxygen species, demonstrating the mechanisms involved in the induction of apoptosis. Our results suggest that CGDCM is a promising anti-cancer agent and may enhance apoptosis induction by 5-FU in the treatment of CRC, while minimizing toxicity toward healthy cells.
    DOI:  https://doi.org/10.1371/journal.pone.0254392
  15. Molecules. 2021 Jul 21. pii: 4414. [Epub ahead of print]26(15):
      Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor clinical outcome, and currently no effective targeted therapies are available. Indole compounds have been shown to have potential antitumor activity against various cancer cells. In the present study, we found that new four benzo[f]indole-4,9-dione derivatives reduce TNBC cell viability by reactive oxygen species (ROS) accumulation stress in vitro. Further analyses showed that LACBio1, LACBio2, LACBio3 and LACBio4 exert cytotoxic effects on MDA-MB 231 cancer cell line by inducing the intrinsic apoptosis pathway, activating caspase 9 and Bax/Bcl-2 pathway in vitro. These results provide evidence that these new four benzo[f]indole-4,9-dione derivatives could be potential therapeutic agents against TNBC by promoting ROS stress-mediated apoptosis through intrinsic-pathway caspase activation.
    Keywords:  apoptosis; benzo[f]indole-4,9-dione; breast cancer; cancer; cell cycle; triple-negative breast cancer
    DOI:  https://doi.org/10.3390/molecules26154414
  16. Oncoimmunology. 2021 ;10(1): 1952539
      Alternol is a naturally occurring compound that exerts antitumor activity in several cancers. However, whether Alternol induces antitumor immune response remains unknown. In this study, we investigated whether Alternol induced immunogenic cell death (ICD) in prostate cancer cells. Alternol triggered ICD in prostate cancer cells, as evidenced by the release of damage-associated molecular patterns (DAMPs) (i.e., calreticulin, CALR; high mobility group protein B1, HMGB1; and adenosine triphosphate, ATP) and pro-inflammatory cytokine (i.e., interleukin [IL]-1α, IL-1β, IL-6, and IL-8) expression. Alternol facilitated tumor-associated antigen uptake and cross-presentation, CD8 + T-cell priming, and T-cell infiltration in tumor-draining lymph nodes (LNs) and tumors. The presence of Alternol fostered antitumor immune response in vivo, resulting in delayed tumor growth and prolonged survival. Moreover, inhibition of reactive oxygen species (ROS) generation blocked Alternol-induced upregulation of pre-inflammation cytokines, endoplasmic reticulum (ER) stress, and consequent antitumor immune response. Overall, our data indicate that Alternol triggers ICD in prostate cancer cells, which is mediated by ROS generation.
    Keywords:  Prostate cancer; ROS; immunogenic cell death; inflammation
    DOI:  https://doi.org/10.1080/2162402X.2021.1952539
  17. Exp Cell Res. 2021 Jul 29. pii: S0014-4827(21)00308-6. [Epub ahead of print]406(1): 112755
      Liver cancer is one of the most common and high recurrence malignancies. Besides radiotherapy and surgery, chemotherapy also plays an essential role in the treatment of liver cancer. Sorafenib and sorafenib-based combination therapies have been proven efficacy against tumors. However, previous clinical studies have indicated that some patients with liver cancer are resistant to sorafenib treatment and the existing strategies are not satisfactory in the clinic. Therefore, it is urgent to investigate strategies to improve the effectiveness of sorafenib for liver cancer and to explore effective drug combinations. In the present study, we found that dichloroacetate (DCA) could significantly enhance the anti-tumor effect of sorafenib on liver cancer cells, including reduced viability and dramatically promoted apoptosis in liver cancer cells. Moreover, compared to sorafenib alone, the combination of DCA and sorafenib markedly increased the degradation of anti-apoptotic protein Mcl-1 by enhancing its phosphorylation. Overexpression of Mcl-1 could significantly attenuate the synergetic effect of DCA and sorafenib on apoptosis induction in liver cancer cells. Furthermore, we found that the ROS-JNK pathway was obviously activated in the DCA combined sorafenib group. The levels of ROS and p-JNK were dramatically up-regulated in the two drug combination groups. Antioxidant NAC could alleviate the synergetic effects of DCA and sorafenib on ROS generation, JNK activation, Mcl-1 degradation, and cell apoptosis. Moreover, DCA and sorafenib's effects on Mcl-1 degradation and apoptosis could also be inhibited by JNK inhibitor 'SP'600125. Finally, the synergetic effects of DCA and sorafenib on tumor growth suppression, Mcl-1 degradation and induction of apoptosis were also validated in liver cancer xenograft in vivo. These findings indicate that DCA enhances the anti-tumor effect of sorafenib via the ROS-JNK-Mcl-1 pathway in liver cancer cells. This study may provide new insights to improve the chemotherapeutic effect of sorafenib, which may be beneficial for further clinical application of sorafenib in liver cancer treatment.
    Keywords:  Dichloroacetate; JNK; Liver cancer; Mcl-1; ROS; Sorafenib
    DOI:  https://doi.org/10.1016/j.yexcr.2021.112755
  18. Cancers (Basel). 2021 Jul 30. pii: 3855. [Epub ahead of print]13(15):
      Platinum compounds remain the first-line drugs for the treatment of most lethal gynecological malignancies and ovarian cancers. Acquired platinum resistance remains a major challenge in gynecological oncology. Considering the unique physicochemical properties of the metallacarboranes modifier and the significant role of nucleoside derivatives as anticancer antimetabolites, we designed and synthesized a set of adenosine conjugates with metallacarboranes containing iron, cobalt, or chromium as semi-abiotic compounds that influence the cisplatin sensitivity of ovarian cancer cells. Adherent cultures of ovarian carcinoma cell lines and multicellular spheroids, ranging from sensitive to highly resistant including experimental cell lines "not responding" to platinum drugs were used. Iron-containing metallacarborane conjugates showed the best anticancer activity, especially against resistant cells. Compound modified at the C2' nucleoside position showed the best activity in resistant cancer cells and highly resistant cancer spheroids exposed to cisplatin, increasing cell cycle arrest, apoptosis or necrosis, and reactive oxygen species production. Moreover, it showed high cellular accumulation and did not induce cross-resistance to cisplatin, carboplatin, doxorubicin, paclitaxel, or gemcitabine in long-term cultures. The reference nido-carborane derivative (no metal ions) and unmodified nucleosides were not as effective. These findings indicate that metallacarborane modification of adenosine may sensitize ovarian cancer cells to cisplatin in combination treatment.
    Keywords:  apoptosis; cancer spheroids; chemoresistance; cisplatin; metallacarboranes; nucleoside derivatives; ovarian cancer; reactive oxygen species
    DOI:  https://doi.org/10.3390/cancers13153855
  19. Antioxidants (Basel). 2021 Jul 13. pii: 1117. [Epub ahead of print]10(7):
      The anticancer effect of pomegranate polyphenolic extract POMx in oral cancer cells has rarely been explored, especially where its impact on mitochondrial functioning is concerned. Here, we attempt to evaluate the proliferation modulating function and mechanism of POMx against human oral cancer (Ca9-22, HSC-3, and OC-2) cells. POMx induced ATP depletion, subG1 accumulation, and annexin V/Western blotting-detected apoptosis in these three oral cancer cell lines but showed no toxicity to normal oral cell lines (HGF-1). POMx triggered mitochondrial membrane potential (MitoMP) disruption and mitochondrial superoxide (MitoSOX) generation associated with the differential downregulation of several antioxidant gene mRNA/protein expressions in oral cancer cells. POMx downregulated mitochondrial mass, mitochondrial DNA copy number, and mitochondrial biogenesis gene mRNA/protein expression in oral cancer cells. Moreover, POMx induced both PCR-based mitochondrial DNA damage and γH2AX-detected nuclear DNA damage in oral cancer cells. In conclusion, POMx provides antiproliferation and apoptosis of oral cancer cells through mechanisms of mitochondrial impairment.
    Keywords:  DNA damage; apoptosis; mitochondrial DNA; oral cancer; pomegranate
    DOI:  https://doi.org/10.3390/antiox10071117
  20. Adv Cancer Res. 2021 ;pii: S0065-230X(21)00033-6. [Epub ahead of print]152 383-413
      Reductive stress is defined as a condition characterized by excess accumulation of reducing equivalents (e.g., NADH, NADPH, GSH), surpassing the activity of endogenous oxidoreductases. Excessive reducing equivalents can perturb cell signaling pathways, change the formation of disulfide bonding in proteins, disturb mitochondrial homeostasis or decrease metabolism. Reductive stress is influenced by cellular antioxidant load, its flux and a subverted homeostasis that paradoxically can result in excess ROS induction. Balanced reducing equivalents and antioxidant enzymes that contribute to reductive stress can be regulated by Nrf2, typically considered as an oxidative stress induced transcription factor. Cancer cells may coordinate distinct pools of redox couples under reductive stress and these may link to biological consequences from both molecular and translational standpoints. In cancer, there is recent interest in understanding how selective induction of reductive stress may influence therapeutic management and disease progression.
    Keywords:  Cellular homeostasis; GSH; NADH; NADPH; Oxidative stress; ROS; Reducing equivalents; Reductive stress
    DOI:  https://doi.org/10.1016/bs.acr.2021.03.009
  21. Int J Mol Sci. 2021 Jul 31. pii: 8268. [Epub ahead of print]22(15):
      Hinokitiol is a natural tropolone derivative that is present in the heartwood of cupressaceous plants, and has been extensively investigated for its anti-inflammatory, antioxidant, and antitumor properties in the context of various diseases. To date, the effects of hinokitiol on endometrial cancer (EC) has not been explored. The purpose of our study was to investigate the anti-proliferative effects of hinokitiol on EC cells. Cell viability was determined with an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and the quantification of apoptosis and reactive oxygen species (ROSs) was performed by using flow cytometry, while protein expression was measured with the Western blotting technique. Hinokitiol significantly suppressed cell proliferation through the inhibition of the expression of cell-cycle mediators, such as cyclin D1 and cyclin-dependent kinase 4 (CDK4), as well as the induction of the tumor suppressor protein p53. In addition, hinokitiol increased the number of apoptotic cells and increased the protein expression of cleaved-poly-ADP-ribose polymerase (PARP) and active cleaved-caspase-3, as well as the ratio of Bcl-2-associated X protein (Bax) to B-cell lymphoma 2 (Bcl-2). Interestingly, except for KLE cells, hinokitiol induced autophagy by promoting the accumulation of the microtubule-associated protein light chain 3B (LC3B) and reducing the sequestosome-1 (p62/SQSTM1) protein level. Furthermore, hinokitiol triggered ROS production and upregulated the phosphorylation of extracellular-signal-regulated kinase (p-ERK1/2) in EC cells. These results demonstrate that hinokitiol has potential anti-proliferative and pro-apoptotic benefits in the treatment of endometrial cancer cell lines (Ishikawa, HEC-1A, and KLE).
    Keywords:  apoptosis; endometrial cancer; hinokitiol; reactive oxygen species
    DOI:  https://doi.org/10.3390/ijms22158268
  22. Oncol Lett. 2021 Sep;22(3): 680
      Following surgery and chemoradiation, ~50% of patients with locally advanced head and neck tumors experience relapse within the first two years, with a poor prognosis. Therefore, a novel therapeutic approach is required. The aim of the present study was to investigate the effect of combination treatment with the proteasome inhibitor bortezomib (BTZ), and ricolinostat (RCS), a specific inhibitor of histone deacetylase 6 (HDAC6), on CAL27 and Detroit562 head and neck cancer cells. BTZ and RCS exhibited cytotoxicity in a dose- and time-dependent manner. Simultaneous treatment with BTZ and RCS resulted in the synergistic enhancement of non-apoptotic cell death and autophagy. The receptor-interacting serine/threonine-protein kinase 1 (RIPK1) inhibitor, necrostatin, but not the autophagy inhibitor, 3-methyladenine, attenuated the cytotoxicity of combined BTZ and RCS treatment. Thus, necroptosis [type-III programmed cell death (PCD)], but not autophagic cell death (type-II PCD), appeared to contribute to the pronounced cytotoxicity. However, no phosphorylation of RIPK1 or mixed lineage kinase domain-like protein was detectable in response to BTZ or RCS. Furthermore, RCS induced α-tubulin acetylation and inhibited BTZ-induced aggresome formation along with endoplasmic reticulum stress loading. Combined treatment with BTZ and RCS enhanced the production of reactive oxygen species (ROS). The ROS scavenger, N-acetyl cysteine, abrogated the increase in cytotoxicity. These results suggest the potential therapeutic value of the dual targeting of the proteasome and HDCA6 for head and neck cancers through the induction of necroptosis-like cell death along with ROS generation.
    Keywords:  bortezomib; head and neck tumor; histone deacetylase 6; necroptosis; proteasome; ricolinostat; squamous cell carcinoma
    DOI:  https://doi.org/10.3892/ol.2021.12941
  23. Sci Rep. 2021 Aug 03. 11(1): 15699
      Three novel Tl(III) complexes (C1), (C2) and (C3) were synthesized using the one-pot reactions of pyridine dicarboxylic acid derivatives, 2-aminobenzimidazole and/or 4-aminopyridine, and also thallium(III) nitrate trihydrate metal salt. The structure of all three complexes was determined by the single-crystal X-ray diffraction. C1 and C2 were realized to be isostructural with disordered square anti-prismatic geometry and for C3 arrangement of the distorted tricapped triangular prism was proposed. Cyclic voltammetry measurements on the complexes exhibited that formal potential values are more positive for C1 (E0' 0.109 V) and C3 (E0' 0.244 V) compared to C2 (E0' -0.051 V), versus Ag/AgCl under argon. Moreover, cytotoxicity of the compounds was evaluated in vitro against two cancer cell lines including a human melanoma (A375), a human colon adenocarcinoma (HT29), and also one normal cell human foreskin fibroblast (HFF). The selective and potent cytotoxicity effect was exhibited by C1 and C3 on cancer cell lines. The apoptosis through a caspase-dependent mitochondrion pathway was confirmed by ROS production, MMP reduction, p53 activation, Bax up-regulation, and Bcl-2 down-regulation, cytochrome c release, procaspase-9, and 3 expression, for A375 cells treated to C1 and C3. According to similar cellular uptake of the complexes in A375 cell line, the generation of ROS was considered as an effective agent to justify the inhibition effect C1 and C3 on mentioned cells. Furthermore, arresting the cell cycle in the G2-M phase and inducing apoptosis were indicated by these two complexes.
    DOI:  https://doi.org/10.1038/s41598-021-95278-y
  24. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2021 Aug;29(4): 1109-1118
      OBJECTIVE: To investigate the effect and involved mechanism of RSL3 on ferroptosis action in acute leukemia cells MOLM13 and its drug-resistant cells.METHODS: After MOLM13 treated with RSL3, CCK-8 assay was performed to detect cell viability, flow cytometry was used to detect the reactive oxygen species (ROS) level of the cells, RT-qPCR and Western blot were used to detect the expression of glutathione peroxidase 4 (GPX4). After MOLM13/IDA and MOLM13/Ara-C, the drug-resistant cell lines were constructed, the ferroptosis induced by RSL3 was observed. Bone marrow samples were collected from patients with acute monocytic leukemia. RT-qPCR and Western blot were performed to detect the expression of related genes and proteins involved in ferroptosis pathway.
    RESULTS: RSL3 significantly inhibited the cell viability of MOLM13 and increased the intracellular ROS level, which were partially reversed by ferrostatin-1. The mRNA and protein expression of GPX4 decreased in MOLM13 treated with RSL3. RSL3 inhibited the viability of MOLM13/IDA and MOLM13/Ara-C cells more strongly than that of non-drug resistant cells, also increased the intracellular ROS level . The cytotoxic effects were partially reversed by ferrostatin-1. The mRNA and protein expressions of GPX4 in MOLM13/IDA and MOLM13/Ara-C cells were higher than those in non-drug resistant cells. The mRNA and protein levels of GPX4 in bone marrow of relapsed/refractory acute mononuclear leukemia patients were higher than those of ordinary acute mononuclear leukemia patients.
    CONCLUSION: RSL3 can induce non-drug resistant cells MOLM13 ferroptosis by inhibiting GPX4 activity. MOLM13/IDA and MOLM13/Ara-C are more sensitive to RSL3 compared with non-drug resistant cells MOLM13, which may be caused by the differences in GPX4 expression. The expressions of GPX4 mRNA and protein in relapsed/refractory acute mononuclear leukemia are higher than those in ordinary acute mononuclear leukemia.
    DOI:  https://doi.org/10.19746/j.cnki.issn.1009-2137.2021.04.014
  25. Oncogene. 2021 Aug 04.
      Although the role of isocitrate dehydrogenase (IDH) mutation in promoting cancer development has been well-characterized, the impact of wild-type IDH on cancer cells remains unclear. Here we show that the wild-type isocitrate dehydrogenase 2 (IDH2) is highly expressed in colorectal cancer (CRC) cells, and plays an unexpected role in protecting the cancer cells from oxidative damage. Genetic abrogation of IDH2 in CRC cells leads to reactive oxygen species (ROS)-mediated DNA damage and an accumulation of 8-oxoguanine with DNA strand breaks, which activates DNA damage response (DDR) with elevated γH2AX and phosphorylation of ataxia telangiectasia-mutated (ATM) protein, leading to a partial cell cycle arrest and eventually cell senescence. Mechanistically, the suppression of IDH2 results in a reduction of the tricarboxylic acid (TCA) cycle activity due to a decrease in the conversion of isocitrate to α-ketoglutarate (α-KG) with a concurrent decrease in NADPH production, leading to ROS accumulation and oxidative DNA damage. Importantly, abrogation of IDH2 inhibits CRC cell growth in vitro and in vivo, and renders CRC cells more vulnerable to DNA-damaging drugs. Screening of an FDA-approved drug library has identified oxaliplatin as a compound highly effective against CRC cells when IDH2 was suppressed. Our study has uncovered an important role of the wild-type IDH2 in protecting DNA from oxidative damage, and provides a novel biochemical basis for developing metabolic intervention strategy for cancer treatment.
    DOI:  https://doi.org/10.1038/s41388-021-01968-2
  26. Int J Mol Sci. 2021 Aug 02. pii: 8300. [Epub ahead of print]22(15):
      In cancer therapy, radioresistance or chemoresistance cells are major problems. We established clinically relevant radioresistant (CRR) cells that can survive over 30 days after 2 Gy/day X-ray exposures. These cells also show resistance to anticancer agents and hydrogen peroxide (H2O2). We have previously demonstrated that all the CRR cells examined had up-regulated miR-7-5p and after miR-7-5p knockdown, they lost radioresistance. However, the mechanism of losing radioresistance remains to be elucidated. Therefore, we investigated the role of miR-7-5p in radioresistance by knockdown of miR-7-5p using CRR cells. As a result, knockdown of miR-7-5p increased reactive oxygen species (ROS), mitochondrial membrane potential, and intracellular Fe2+ amount. Furthermore, miR-7-5p knockdown results in the down-regulation of the iron storage gene expression such as ferritin, up-regulation of the ferroptosis marker ALOX12 gene expression, and increases of Liperfluo amount. H2O2 treatment after ALOX12 overexpression led to the enhancement of intracellular H2O2 amount and lipid peroxidation. By contrast, miR-7-5p knockdown seemed not to be involved in COX-2 and glycolysis signaling but affected the morphology of CRR cells. These results indicate that miR-7-5p control radioresistance via ROS generation that leads to ferroptosis.
    Keywords:  ALOX12; Fe2+; clinically relevant radioresistant (CRR) cells; ferroptosis; microRNA; reactive oxygen species (ROS)
    DOI:  https://doi.org/10.3390/ijms22158300
  27. J Bone Oncol. 2021 Oct;30 100380
      Osteosarcoma (OS) is the most common primary bone tumour in children and adolescents, with high degree of malignancy and an extremely poor prognosis. Ferroptosis, a non-traditional mode of regulated cell death (RCD) characterised by iron-dependent accumulation of lipid reactive oxygen species (ROS), is closely associated with a variety of cancers. It has been demonstrated that ferroptosis can regulate OS progression and exert an essential role in the treatment of OS, which is potentially of great value. By targeting ferroptosis in OS, the present review article summarises the relevant mechanisms and therapeutic applications along with discussing current limitations and future directions, which may provide a new strategy for the treatment of OS.
    Keywords:  Ferroptosis; Iron; Osteosarcoma; Reactive oxygen species; Treatment
    DOI:  https://doi.org/10.1016/j.jbo.2021.100380
  28. J Mater Chem B. 2021 Aug 04.
      Phototherapy, such as photodynamic therapy (PDT) and photothermal therapy (PTT), possesses unique characteristics of non-invasiveness and minimal side effects in cancer treatment, compared with conventional therapies. However, the ubiquitous tumor hypoxia microenvironments could severely reduce the efficacy of oxygen-consuming phototherapies. Perfluorocarbon (PFC) nanomaterials have shown great practical value in carrying and transporting oxygen, which makes them promising agents to overcome tumor hypoxia and extend reactive oxygen species (ROS) lifetime to improve the efficacy of phototherapy. In this review, we summarize the latest advances in PFC-based PDT and PTT, and combined multimodal imaging technologies in various cancer types, aiming to facilitate their application-oriented clinical translation in the future.
    DOI:  https://doi.org/10.1039/d1tb00554e
  29. Int J Mol Sci. 2021 Jul 28. pii: 8052. [Epub ahead of print]22(15):
      Photodynamic therapy (PDT) has become an alternative to standard cancer treatment methods such as surgery, chemotherapy and radiotherapy. The uniqueness of this method relies on the possibility of using various photosensitizers (PS) that absorb and convert light emission in radical oxygen-derived species (ROS). They can be present alone or in the presence of other compounds such as metal organic frameworks (MOFs), non-tubules or polymers. The interaction between DNA and metal-based complexes plays a key role in the development of new anti-cancer drugs. The use of coordination compounds in PDT has a significant impact on the amount ROS generated, quantum emission efficiency (Φem) and phototoxic index (PI). In this review, we will attempt to systematically review the recent literature and analyze the coordination complexes used as PS in PDT. Finally, we compared the anticancer activities of individual coordination complexes and discuss future perspectives. So far, only a few articles link so many transition metal ion coordination complexes of varying degrees of oxidation, which is why this review is needed by the scientific community to further expand this field worldwide. Additionally, it serves as a convenient collection of important, up-to-date information.
    Keywords:  cancer therapy; copper(0,I)-based complexes; iridium(III)-based complexes; osmium(0,II)-based complexes; photodynamic therapy; photosensitizers; platinum(0)-based complexes; reactive oxygen species; reactive singlet oxygen; ruthenium(II)-based complexes
    DOI:  https://doi.org/10.3390/ijms22158052
  30. Int J Radiat Biol. 2021 Jul 31. 1-48
      PURPOSE: Excessive exposure of skin to solar radiation is associated with greatly increased production of reactive oxygen and nitrogen species (ROS, RNS) resulting in oxidative stress (OS), inflammation, immunosuppression, the production of matrix-metalloproteases, DNA damage and mutations. These events lead to increased incidence of various skin disorders including photoageing and both non-melanoma and melanoma skin cancers. The ultraviolet (UV) part of sunlight, in particular, is responsible for structural and cellular changes across the different layers of the skin. Among other effects, UV photons stimulate oxidative damage to biomolecules via the generation of unstable and highly reactive compounds. In response to oxidative damage, cytoprotective pathways are triggered. One of these is the pathway driven by the nuclear factor erythroid-2 related factor 2 (Nrf2). This transcription factor translocates to the nucleus and drives the expression of numerous genes, among them various detoxifying and antioxidant enzymes. Several studies concerning the effects of UV radiation on Nrf2 activation have been published, but different UV wavelengths, skin cells or tissues and incubation periods were used in the experiments that complicate the evaluation of UV radiation effects.CONCLUSIONS: This review summarizes the effects of UVB (280-315 nm) and UVA (315-400 nm) radiation on the Nrf2 signalling pathway in dermal fibroblasts and epidermal keratinocytes and melanocytes. The effects of natural compounds (pure compounds or mixtures) on Nrf2 activity and level as well as on Nrf2-driven genes in UV irradiated human skin fibroblasts, keratinocytes and melanocytes are briefly mentioned as well.HighlightsUVB radiation is a rather poor activator of the Nrf2-driven pathway in fibroblastsUVA radiation stimulates Nrf2 activation in dermal fibroblastsEffects of UVA on the Nrf2 pathway in keratinocytes and melanocytes remain unclearLong-term Nrf2 activation in keratinocytes disturbs their normal differentiationPharmacological activation of Nrf2 in skin needs to be performed carefully.
    Keywords:  Nrf2; UV radiation; oxidative stress; photoprotection; phytochemicals; skin
    DOI:  https://doi.org/10.1080/09553002.2021.1962566
  31. Cancers (Basel). 2021 Jul 31. pii: 3871. [Epub ahead of print]13(15):
      Although cisplatin is very effective as a treatment strategy in triple-negative breast cancer (TNBC), it has unwarranted outcomes owing to recurrence, chemoresistance and neurotoxicity. There is critically important to find new, effective and safe therapeutics for TNBC. We determined if SP-receptor antagonism in combination with cisplatin may serve as a novel, more efficacious and safer therapeutic option than existing therapies for TNBC. We used a neuronal cell line (PC12) and two TNBC cell lines (Sum 185 and Sum 159) for these studies. We determined that the levels of cells expressing the high-affinity SP-receptor (neurokinin 1 receptor (NK1R)), as determined by flow-cytometry was significantly elevated in response to cisplatin in all three cells. We determined that treatment with aprepitant, an SP-receptor antagonist decreased cisplatin-induced, loss of viability (studied by MTT assay), production of reactive oxygen species (by DCFDA assay) and apoptosis (by flow-cytometry) in PC12 cells while it was increased in the two TNBC cells. Furthermore, we demonstrated that important genes associated with metastases, inflammation, chemoresistance and cell cycle progression are attenuated by SP-receptor antagonism in the TNBC cell line, Sum 185. These studies implicate that SP-receptor antagonism in combination with cisplatin may possibly serve as a novel, more efficacious and safer therapeutic option than existing therapies for TNBC.
    Keywords:  Substance P; cisplatin; triple negative breast cancer
    DOI:  https://doi.org/10.3390/cancers13153871
  32. Front Oncol. 2021 ;11 703878
      Multiple myeloma (MM) is an incurable cancer arising from malignant plasma cells that engraft in the bone marrow (BM). The physiology of these cancer cells within the BM microenvironment (TME) plays a critical role in MM development. These processes may be similar to what has been observed in the TME of other (non-hematological) solid tumors. It has been long reported that within the BM, vascular endothelial growth factor (VEGF), increased angiogenesis and microvessel density, and activation of hypoxia-induced transcription factors (HIF) are correlated with MM progression but despite a great deal of effort and some modest preclinical success the overall clinical efficacy of using anti-angiogenic and hypoxia-targeting strategies, has been limited. This review will explore the hypothesis that the TME of MM engrafted in the BM is distinctly different from non-hematological-derived solid tumors calling into question how effective these strategies may be against MM. We further identify other hypoxia-mediated effectors, such as hypoxia-mediated acidification of the TME, oxygen-dependent metabolic changes, and the generation of reactive oxygen species (ROS), that may prove to be more effective targets against MM.
    Keywords:  acid base regulation; bone marrow microenvironment; hypoxia and apoptosis; multiple myeloma; pH balance
    DOI:  https://doi.org/10.3389/fonc.2021.703878
  33. Int J Mol Sci. 2021 Jul 28. pii: 8106. [Epub ahead of print]22(15):
      Despite the numerous available treatments for cancer, many patients succumb to side effects and reoccurrence. Zinc oxide (ZnO) quantum dots (QDs) are inexpensive inorganic nanomaterials with potential applications in photodynamic therapy. To verify the photoluminescence of ZnO QDs and determine their inhibitory effect on tumors, we synthesized and characterized ZnO QDs modified with polyvinylpyrrolidone. The photoluminescent properties and reactive oxygen species levels of these ZnO/PVP QDs were also measured. Finally, in vitro and in vivo experiments were performed to test their photodynamic therapeutic effects in SW480 cancer cells and female nude mice. Our results indicate that the ZnO QDs had good photoluminescence and exerted an obvious inhibitory effect on SW480 tumor cells. These findings illustrate the potential applications of ZnO QDs in the fields of photoluminescence and photodynamic therapy.
    Keywords:  SW480 cancer cell; nanoparticle; photodynamic therapy; photosensitizers; polyvinylpyrrolidone; quantum dot; reactive oxygen species; zinc oxide
    DOI:  https://doi.org/10.3390/ijms22158106
  34. Chem Sci. 2021 Jul 14. 12(27): 9500-9505
      Current cancer therapy has been restricted by the hypoxic microenvironment of tumors, especially for strongly oxygen-dependent photodynamic therapy. To defeat tumor hypoxia, an oxygen-irrelevant radical nanogenerator, PI/FBC, is developed by the co-assembly of iodized polymer PI and NIR photosensitizer FBC, and further evaluated as a remote controllable free radical generation platform for enhancing antitumor efficiency. The PI/FBC radical nanogenerator can be excited by NIR light to produce ROS through transfer of energy to oxygen and induce the formation of toxic iodine radicals via electron transfer to PI. Notably, unlike conventional tumor treatments, such a radical nanogenerator is controllable and insusceptible to oxygen concentration. Moreover, benefiting from the strong NIR emission of FBC, the distribution of the PI/FBC radical nanogenerator can be monitored without incorporating other imaging agents. This PI/FBC radical nanogenerator treatment will no doubt broaden the family of antitumor strategies by using non-oxygen radicals, which is significant for reference in the development of promising anticancer agents.
    DOI:  https://doi.org/10.1039/d1sc01220g
  35. Front Oncol. 2021 ;11 683589
      Ferroptosis, a newly discovered form of programmed cell death characterized by lipid peroxidation, crafts a new perspective on cancer treatment. Serine and arginine rich splicing factor 9 (SFRS9) is frequently described as a proto-oncogene in cervical and bladder cancer. However, the role of SFRS9 in colorectal cancer (CRC) and whether SFRS9 exerts its function associated with ferroptosis is largely unknown. Herein, we found that the expression of SFRS9 mRNA and protein in the CRC tissues was obviously higher than that in the paracancerous tissues. Function assays revealed that SFRS9 overexpression (SFRS9-OE) significantly promoted cell viability, cell cycle progression and colony formation of CRC cells. While SFRS9 knockdown by shRNAs transfection inhibited these progressions. Furthermore, cell death and lipid peroxidation induced by ferroptosis inducers erastin and sorafenib were suppressed by SFRS9-OE. Bioinformatics analysis indicated that SFRS9 can bind to peroxidase 4 (GPX4) mRNA which is a central regulator of ferroptosis. Western blot showed that GPX4 protein expression was clearly elevated upon SFRS9-OE, while it was decreased in SFRS9-inhibited CRC cells. RNA immunoprecipitation experiment was carried out in HCT116 cells to confirm the binding of SFRS9 and GPX4 mRNA specifically. SiGPX4 transfection reversed the inhibitory effects of SFRS9-OE on the erastin and sorafenib-induced ferroptosis. Consistent with our in vitro observations, SFRS9 promoted the growth of tumors while SFRS9 knockdown significantly inhibited tumor growth in nude mice. In conclusion, SFRS9 represents an obstructive factor to ferroptosis by upregulating GPX4 protein expression, and knocking down SFRS9 might be an effective treatment for CRC.
    Keywords:  colorectal cancer; ferroptosis; glutathione peroxidase 4; progression; serine and arginine rich splicing factor 9
    DOI:  https://doi.org/10.3389/fonc.2021.683589
  36. ACS Appl Mater Interfaces. 2021 Aug 05.
      Photodynamic therapy (PDT) holds tantalizing prospects of a prominent cancer treatment strategy. However, its efficacy remains limited by virtue of the hypoxic tumor microenvironment and the inadequate tumor-targeted delivery of photosensitizers, and these can be further exacerbated by the lack of development of a well-controlled nitric oxide (NO) release system at the target site. Inspired by Chinese medicine, we propose a revealing new keratin application. Keratin has garnered attention as an NO generator; however, its oncological use has rarely been investigated. We hypothesized that the incorporation of a phenylboronic acid (PBA) targeting ligand/methylene blue (MB) photosensitizer with a keratin NO donor would facilitate precise tumor delivery, enhancing PDT. Herein, we demonstrated that MB@keratin/PBA/d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) nanoparticles (MB@KPTNPs) specifically targeted breast cancer cells and effectively suppressed their growth. Through MB-mediated biometabolism, the endocytic MB@KPTNPs produced a sufficient amount of intracellular NO that reduced the glutathione level while boosting the efficiency of PDT. A therapeutic combination of NO/PDT was therefore achieved, resulting in significant inhibition of both in vivo tumor growth and lung metastasis. These findings underscore the importance of utilizing keratin-based nanoparticles that simultaneously combine targeting of the tumor and self-generating NO with a cascading catalytic ability as a novel oxidation therapeutic strategy for enhancing PDT.
    Keywords:  biomass human hair keratin; glutathione depletion; nitric oxide generation; photodynamic therapy; reactive nitrogen species; tumor targeting
    DOI:  https://doi.org/10.1021/acsami.1c10160
  37. Oxid Med Cell Longev. 2021 ;2021 9996040
      Araloside A is a pentacyclic triterpenoid saponin, and L-ascorbic acid is a globally recognized antioxidant. In this study, coadministered araloside A and L-ascorbic acid were found to have a strong synergistic antioxidant effect, and correlations between cellular antioxidant indexes and free radical scavenging ability were found. Individual and combined pretreatment with araloside A and L-ascorbic acid increased both cell viability and antioxidant enzyme activity and inhibited the release of lactate dehydrogenase (LDH); the accumulation of malondialdehyde (MDA), lipid peroxidation (LPO) products, and H2O2; and the production of intracellular reactive oxygen species (ROS), protein carbonyls, and 8-hydroxy-2-deoxy guanosine (8-OHdG). Free radical scavenging ability was positively correlated with superoxide dismutase (SOD) and catalase (CAT) activity, the glutathione (GSH)/oxidized glutathione (GSSG) ratio, and total antioxidant capacity (T-AOC). Our study is the first investigation of araloside A and L-ascorbic acid coadministration for the treatment of diseases caused by oxidative stress. The synergistic antioxidant effects of araloside A and L-ascorbic acid support their potential as functional food ingredients for the elimination of oxidative stress-induced adverse reactions.
    DOI:  https://doi.org/10.1155/2021/9996040
  38. Food Chem Toxicol. 2021 Aug 01. pii: S0278-6915(21)00493-2. [Epub ahead of print]156 112460
      Gongolaria baccata (S.G. Gmelin) is marine brown seaweed mainly found on the coasts of the Baltic Sea south to the Mediterranean Sea, Canary Islands, Mauritania and Western Sahara. Herein, we report the cell viability and protective effects attributed to molecular mechanisms underlying antioxidant response to survive oxidative stress injuries. Caco-2 cells were submitted to oxidative stress by treatment with tert-butylhydroperoxide (tert-BOOH). The extract prevented cell damage and enhanced activity of antioxidant defenses (NQO1 and GST activities and GSH levels) reduced by treatment with tert-BOOH. The increases of MDA levels, the amount of intracellular ROS and caspase 3/7 activity induced by tert-BOOH were prevented when cells were treated with the G. baccata extract. Moreover, G. baccata extract caused up-regulation of GSTM2, Nrf2, and AKT1 gene expressions, as well as G. baccata extract reduced significantly Bax, BNIP3, APAF1, ERK1, JNK1, MAPK1, P38, P53, NFκB1, TNFα, IL-6, IL-1β and HO-1 gene expressions related to apoptosis, proinflammation and oxidative stress induced by tert-BOOH. These results suggest that G.baccata extract protected the cells against oxidative damage and inflammation; protective effects that could be linked to their bioactive constituents. Hence, this brown seaweed G.baccata extract could be used for the development of functional foods and/or nutraceuticals.
    Keywords:  Caco-2 cells; G. baccata extract; Oxidative stress; Phenolic and carbohydrate derivatives
    DOI:  https://doi.org/10.1016/j.fct.2021.112460
  39. Int J Mol Sci. 2021 Jul 30. pii: 8223. [Epub ahead of print]22(15):
      Nrf2 (nuclear factor erythroid 2-related factor 2) and NF-κB (nuclear factor-kappa B) signaling pathways play a central role in suppressing or inducing inflammation and angiogenesis processes. Therefore, they are involved in many steps of carcinogenesis through cooperation with multiple signaling molecules and pathways. Targeting both transcription factors simultaneously may be considered an equally important strategy for cancer chemoprevention and therapy. Several hundreds of phytochemicals, mainly edible plant and vegetable components, were shown to activate Nrf2 and mediate antioxidant response. A similar number of phytochemicals was revealed to affect NF-κB. While activation of Nrf2 and inhibition of NF-κB may protect normal cells against cancer initiation and promotion, enhanced expression and activation in cancer cells may lead to resistance to conventional chemo- or radiotherapy. Most phytochemicals, through different mechanisms, activate Nrf2, but others, such as luteolin, can act as inhibitors of both Nrf2 and NF-κB. Despite many experimental data confirming the above mechanisms currently, limited evidence exists demonstrating such activity in humans. Combinations of phytochemicals resembling that in a natural food matrix but allowing higher concentrations may improve their modulating effect on Nrf2 and NF-κB and ultimately cancer prevention and therapy. This review presents the current knowledge on the effect of selected phytochemicals and their combinations on Nrf2 and NF-κB activities in the above context.
    Keywords:  NF-κB; Nrf2; cancer chemoprevention; cancer therapy; inflammation; naturally occurring compounds; phytochemical combinations; polyphenols
    DOI:  https://doi.org/10.3390/ijms22158223
  40. Oxid Med Cell Longev. 2021 ;2021 9314342
      1-Nitropyrene (1-NP), one of the most abundant nitropolycyclic aromatic hydrocarbons (nitro-PAHs), is generated from the incomplete combustion of carbonaceous organic compounds. 1-NP is a specific marker of diesel exhaust and is an environmental pollutant and a probable carcinogen. Macrophages participate in immune defense against the invasive pathogens in heart, lung, and kidney infection diseases. However, no evidence has indicated that 1-NP induces apoptosis in macrophages. In the present study, 1-NP was found to induce concentration-dependent changes in various cellular functions of RAW264.7 macrophages including cell viability reduction; apoptosis generation; mitochondrial dysfunction; apoptosis-inducing factor (AIF) nuclear translocation; intracellular ROS generation; activation of the AMPK/Nrf-2/HO-1 pathway; changes in the expression of BCL-2 family proteins; and depletion of antioxidative enzymes (AOE), such as glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) These results indicate that 1-NP induced apoptosis in macrophages through AIF nuclear translocation and ROS generation due to mitochondrial dysfunction and to the depletion of AOE from the activation of the AMPK/Nrf-2/HO-1 pathway.
    DOI:  https://doi.org/10.1155/2021/9314342