bims-proteo Biomed News
on Proteostasis
Issue of 2023–04–02
forty papers selected by
Eric Chevet, INSERM



  1. bioRxiv. 2023 Mar 24. pii: 2023.03.22.533681. [Epub ahead of print]
      Lysosomal degradation of autophagy receptors is a common proxy for selective autophagy. However, we find that two established mitophagy receptors, BNIP3 and BNIP3L/NIX, violate this assumption. Rather, BNIP3 and NIX are constitutively delivered to lysosomes in an autophagy-independent manner. This alternative lysosomal delivery of BNIP3 accounts for nearly all of its lysosome-mediated degradation, even upon mitophagy induction. To identify how BNIP3, a tail-anchored protein in the outer mitochondrial membrane, is delivered to lysosomes, we performed a genome-wide CRISPR screen for factors influencing BNIP3 flux. By this approach, we revealed both known modifiers of BNIP3 stability as well as a pronounced reliance on endolysosomal components, including the ER membrane protein complex (EMC). Importantly, the endolysosomal system regulates BNIP3 alongside, but independent of, the ubiquitin-proteosome system (UPS). Perturbation of either mechanism is sufficient to modulate BNIP3-associated mitophagy and affect underlying cellular physiology. In short, while BNIP3 can be cleared by parallel and partially compensatory quality control pathways, non-autophagic lysosomal degradation of BNIP3 is a strong post-translational modifier of BNIP3 function. More broadly, these data reveal an unanticipated connection between mitophagy and TA protein quality control, wherein the endolysosomal system provides a critical axis for regulating cellular metabolism. Moreover, these findings extend recent models for tail-anchored protein quality control and install endosomal trafficking and lysosomal degradation in the canon of pathways that ensure tight regulation of endogenous TA protein localization.
    DOI:  https://doi.org/10.1101/2023.03.22.533681
  2. Cell Rep. 2023 Mar 26. pii: S2211-1247(23)00322-4. [Epub ahead of print]42(4): 112311
      Transmembrane proteins must adopt proper topology to perform their functions. We previously demonstrated that ceramide regulates TM4SF20 (transmembrane 4 L6 family 20) by altering the topology of the transmembrane protein, but the underlying mechanism remains obscure. Here we report that TM4SF20 is synthesized in the endoplasmic reticulum (ER) with a cytosolic C terminus and a luminal loop before the last transmembrane helix where N132, N148, and N163 are glycosylated. In the absence of ceramide, the sequence surrounding glycosylated N163 but not N132 is retrotranslocated from lumen to cytosol independent of ER-associated degradation. Accompanying this retrotranslocation, the C terminus of the protein is relocated from cytosol to lumen. Ceramide delays the retrotranslocation process, causing accumulation of the protein that is originally synthesized. Our findings suggest that N-linked glycans, although synthesized in the lumens, may be exposed to cytosol through retrotranslocation, a reaction that may play a crucial role in topological regulation of transmembrane proteins.
    Keywords:  CP: Molecular biology; N-linked glycosylation; TM4SF20; retrotranslocation; topology; transmembrane proteins
    DOI:  https://doi.org/10.1016/j.celrep.2023.112311
  3. iScience. 2023 Apr 21. 26(4): 106307
      Post-transcriptional regulation by RNA-binding proteins (RBPs) is a major mode of controlling gene expression under stress conditions. The RBP HuR regulates the translation/turnover of multiple mRNAs in stress responses. HuR is degraded in response to heat stress consequent to ubiquitination of the K182 amino acid residue. We have identified TRIM21 as the E3-ubiquitin ligase causing HuR polyubiquitination at K182 and proteasomal degradation under heat shock. The S100 and E101 residues are required for binding of TRIM21 to HuR. Heat shock-induced phosphorylation of S100 is necessary for TRIM21 interaction with HuR and subsequent degradation. We identified AKT1 as the kinase which phosphorylates S100, allowing the recognition of HuR by TRIM21. Sequential phosphorylation by AKT1 and ubiquitination by TRIM21 therefore determine a "phosphodegron" in HuR that is required for regulating the cellular level of HuR under heat shock, thereby enabling a crucial adaptive mechanism allowing cell survival in response to heat stress.
    Keywords:  Cell biology; Genetics; Molecular biology
    DOI:  https://doi.org/10.1016/j.isci.2023.106307
  4. Genes (Basel). 2023 Mar 19. pii: 749. [Epub ahead of print]14(3):
      High temperatures severely affect plant growth and pose a threat to global crop production. Heat causes the accumulation of misfolded proteins in the endoplasmic reticulum(ER), as well as triggering the heat-shock response (HSR) in the cytosol and the unfolded protein response (UPR) in the ER. Excessive misfolded proteins undergo further degradation through ER-associated degradation (ERAD). Although much research on the plant heat stress response has been conducted, the regulation of ER-localized proteins has not been well-studied thus far. We isolated the microsome fraction from heat-treated and untreated maize seedlings and performed proteome and ubiquitylome analyses. Of the 8306 total proteins detected in the proteomics analysis, 1675 proteins were significantly up-regulated and 708 proteins were significantly down-regulated. Global ubiquitination analysis revealed 1780 proteins with at least one ubiquitination site. Motif analysis revealed that alanine and glycine are the preferred amino acids upstream and downstream of ubiquitinated lysine sites. ERAD components were found to be hyper-ubiquitinated after heat treatment, implying the feedback regulation of ERAD activity through protein degradation.
    Keywords:  endoplasmic reticulum; heat stress; maize; proteomics; ubiquitination
    DOI:  https://doi.org/10.3390/genes14030749
  5. Proc Natl Acad Sci U S A. 2023 Apr 04. 120(14): e2210745120
      Cells respond to stress by synthesizing chaperone proteins that seek to correct protein misfolding and maintain function. However, abrogation of protein homeostasis is a hallmark of aging, leading to loss of function and the formation of proteotoxic aggregates characteristic of pathology. Consequently, discovering the underlying molecular causes of this deterioration in proteostasis is key to designing effective interventions to disease or to maintaining cell health in regenerative medicine strategies. Here, we examined primary human mesenchymal stem cells, cultured to a point of replicative senescence and subjected to heat shock, as an in vitro model of the aging stress response. Multi -omics analysis showed how homeostasis components were reduced in senescent cells, caused by dysregulation of a functional network of chaperones, thereby limiting proteostatic competence. Time-resolved analysis of the primary response factors, including those regulating heat shock protein 70 kDa (HSPA1A), revealed that regulatory control is essentially translational. Senescent cells have a reduced capacity for chaperone protein translation and misfolded protein (MFP) turnover, driven by downregulation of ribosomal proteins and loss of the E3 ubiquitin ligase CHIP (C-terminus of HSP70 interacting protein) which marks MFPs for degradation. This limits the cell's stress response and subsequent recovery. A kinetic model recapitulated these reduced capacities and predicted an accumulation of MFP, a hypothesis supported by evidence of systematic changes to the proteomic fold state. These results thus establish a specific loss of regulatory capacity at the protein, rather than transcript, level and uncover underlying systematic links between aging and loss of protein homeostasis.
    Keywords:  mesenchymal stem cells; molecular chaperones; proteomics; proteostasis network; senescence
    DOI:  https://doi.org/10.1073/pnas.2210745120
  6. EMBO J. 2023 Mar 27. e111980
      Homologous recombination (HR) is a key DNA damage repair pathway that is tightly adjusted to the state of a cell. A central regulator of homologous recombination is the conserved helicase-containing Bloom syndrome complex, renowned for its crucial role in maintaining genome integrity. Here, we show that in Arabidopsis thaliana, Bloom complex activity is controlled by selective autophagy. We find that the recently identified DNA damage regulator KNO1 facilitates K63-linked ubiquitination of RMI1, a structural component of the complex, thereby triggering RMI1 autophagic degradation and resulting in increased homologous recombination. Conversely, reduced autophagic activity makes plants hypersensitive to DNA damage. KNO1 itself is also controlled at the level of proteolysis, in this case mediated by the ubiquitin-proteasome system, becoming stabilized upon DNA damage via two redundantly acting deubiquitinases, UBP12 and UBP13. These findings uncover a regulatory cascade of selective and interconnected protein degradation steps resulting in a fine-tuned HR response upon DNA damage.
    Keywords:  DNA damage response; autophagy; homologous recombination; proteasome; ubiquitination
    DOI:  https://doi.org/10.15252/embj.2022111980
  7. FEBS Lett. 2023 Mar 27.
      Upon heat shock, activated heat shock transcription factor 1 (HSF1) binds to the heat shock response elements (HSEs) in the promoters of mammalian heat shock protein (HSP)-encoding genes and recruits the preinitiation complex and coactivators, including Mediator. These transcriptional regulators may be concentrated in phase-separated condensates around the promoters, but they are too minute to be characterized in detail. We herein established HSF1-/- mouse embryonic fibroblasts harboring HSP72-derived multiple HSE arrays and visualized the condensates of fluorescent protein-tagged HSF1 with liquid-like properties upon heat shock. Using this experimental system, we demonstrate that endogenous MED12, a subunit of Mediator, is concentrated in artificial HSF1 condensates upon heat shock. Furthermore, the knockdown of MED12 markedly reduces the size of condensates, suggesting an important role for MED12 in HSF1 condensate formation.
    Keywords:  HSF1; MED12; heat shock; phase separation; reporter array; transcription
    DOI:  https://doi.org/10.1002/1873-3468.14617
  8. Biochim Biophys Acta Gene Regul Mech. 2023 Mar 27. pii: S1874-9399(23)00029-9. [Epub ahead of print] 194934
      The N-degron pathway is a degradative system in which single N-terminal (Nt) amino acids regulate the half-lives of proteins and other biological materials. These determinants, called N-degrons, are recognized by N-recognins that link them to the ubiquitin (Ub)-proteasome system (UPS) or autophagy-lysosome system (ALS). In the UPS, the Arg/N-degron pathway targets the Nt-arginine (Nt-Arg) and other N-degrons to assemble Lys48 (K48)-linked Ub chains by UBR box N-recognins for proteasomal proteolysis. In the ALS, Arg/N-degrons are recognized by the N-recognin p62/SQSTSM-1/Sequestosome-1 to induce cis-degradation of substrates and trans-degradation of various cargoes such as protein aggregates and subcellular organelles. This crosstalk between the UPS and ALP involves reprogramming of the Ub code. Eukaryotic cells developed diverse ways to target all 20 principal amino acids for degradation. Here we discuss the components, regulation, and functions of the N-degron pathways, with an emphasis on the basic mechanisms and therapeutic applications of Arg/N-degrons and N-recognins.
    Keywords:  Autophagy-lysosome system; E3 ligase; N-recognin; Nt-arginylation; The N-degron pathway; Ubiquitin-proteasome system
    DOI:  https://doi.org/10.1016/j.bbagrm.2023.194934
  9. Res Sq. 2023 Mar 17. pii: rs.3.rs-2652351. [Epub ahead of print]
      Co-assembly of the multilayered coat protein complex II (COPII) with the Sar1 GTPase at subdomains of the endoplasmic reticulum (ER) enables secretory cargoes to be concentrated efficiently within nascent transport intermediates, which subsequently deliver their contents to ER-Golgi intermediate compartments. Here, we define the spatiotemporal accumulation of native COPII subunits and secretory cargoes at ER subdomains under differing nutrient availability conditions using a combination of CRISPR/Cas9-mediated genome editing and live cell imaging. Our findings demonstrate that the rate of inner COPII coat assembly serves as a determinant for the pace of cargo export, irrespective of COPII subunit expression levels. Moreover, increasing inner COPII coat assembly kinetics is sufficient to rescue cargo trafficking deficits caused by acute nutrient limitation in a manner dependent on Sar1 GTPase activity. Our findings are consistent with a model in which the rate of inner COPII coat formation acts as an important control point to regulate cargo export from the ER.
    DOI:  https://doi.org/10.21203/rs.3.rs-2652351/v1
  10. bioRxiv. 2023 Mar 24. pii: 2023.03.22.533675. [Epub ahead of print]
    Proteostasis Consortium
      The condition of having a healthy, functional proteome is known as protein homeostasis, or proteostasis. Establishing and maintaining proteostasis is the province of the proteostasis network, approximately 2,700 components that regulate protein synthesis, folding, localization, and degradation. The proteostasis network is a fundamental entity in biology that is essential for cellular health and has direct relevance to many diseases of protein conformation. However, it is not well defined or annotated, which hinders its functional characterization in health and disease. In this series of manuscripts, we aim to operationally define the human proteostasis network by providing a comprehensive, annotated list of its components. We provided in a previous manuscript a list of chaperones and folding enzymes as well as the components that make up the machineries for protein synthesis, protein trafficking into and out of organelles, and organelle-specific degradation pathways. Here, we provide a curated list of 838 unique high-confidence components of the autophagy-lysosome pathway, one of the two major protein degradation systems in human cells.
    DOI:  https://doi.org/10.1101/2023.03.22.533675
  11. ACS Chem Biol. 2023 Mar 27.
      The important roles played by branched polyubiquitin chains were recently uncovered in proteasomal protein degradation, mitotic regulation, and NF-κB signaling. With the new realization of a wide presence of branched ubiquitin chains in mammalian cells, there is an urgent need of identifying the reader and eraser proteins of the various branched ubiquitin chains. In this work, we report the generation of noncleavable branched triubiquitin probes with combinations of K11-, K48-, and K63-linkages. Through a pulldown approach using the branched triUb probes, we identified human proteins that recognize branched triubiquitin structures including ubiquitin-binding proteins and deubiquitinases (DUBs). Proteomics analysis of the identified proteins enriched by the branched triubiquitin probes points to possible roles of branched ubiquitin chains in cellular processes including DNA damage response, autophagy, and receptor endocytosis. In vitro characterization of several identified UIM-containing proteins demonstrated their binding to branch triubiquitin chains with moderate to high affinities. Availability of this new class of branched triubiquitin probes will enable future investigation into the roles of branched polyubiquitin chains through identification of specific reader and eraser proteins, and the modes of branched ubiquitin chain recognition and processing using biochemical and biophysical methods.
    DOI:  https://doi.org/10.1021/acschembio.2c00898
  12. Cell Rep. 2023 Mar 26. pii: S2211-1247(23)00317-0. [Epub ahead of print]42(4): 112306
      STING is an endoplasmic reticulum-resident protein regulating innate immunity. After binding with cyclic guanosine monophosphate-AMP (cGAMP), STING translocates from the endoplasmic reticulum (ER) to the Golgi apparatus to stimulate TBK1 and IRF3 activation, leading to expression of type I interferon. However, the exact mechanism concerning STING activation remains largely enigmatic. Here, we identify tripartite motif 10 (TRIM10) as a positive regulator of STING signaling. TRIM10-deficient macrophages exhibit reduced type I interferon production upon double-stranded DNA (dsDNA) or cGAMP stimulation and decreased resistance to herpes simplex virus 1 (HSV-1) infection. Additionally, TRIM10-deficient mice are more susceptible to HSV-1 infection and exhibit faster melanoma growth. Mechanistically, TRIM10 associates with STING and catalyzes K27- and K29-linked polyubiquitination of STING at K289 and K370, which promotes STING trafficking from the ER to the Golgi apparatus, formation of STING aggregates, and recruitment of TBK1 to STING, ultimately enhancing the STING-dependent type I interferon response. Our study defines TRIM10 as a critical activator in cGAS-STING-mediated antiviral and antitumor immunity.
    Keywords:  CP: Cell biology; CP: Immunology; STING; TRIM10; innate immunity; polyubiquitination
    DOI:  https://doi.org/10.1016/j.celrep.2023.112306
  13. J Med Chem. 2023 Mar 30.
      Proteolysis targeting chimeras (PROTACs) represent a new pharmacological modality to inactivate disease-causing proteins. PROTACs operate via recruiting E3 ubiquitin ligases, which enable the transfer of ubiquitin tags onto their target proteins, leading to proteasomal degradation. However, several E3 ligases are validated pharmacological targets themselves, of which inhibitor of apoptosis (IAP) proteins are considered druggable in cancer. Here, we report three series of heterobifunctional PROTACs, which consist of an IAP antagonist linked to either von Hippel-Lindau- or cereblon-recruiting ligands. Hijacking E3 ligases against each other led to potent, rapid, and preferential depletion of cellular IAPs. In addition, these compounds caused complete X-chromosome-linked IAP knockdown, which was rarely observed for monovalent and homobivalent IAP antagonists. In cellular assays, hit degrader 9 outperformed antagonists and showed potent inhibition of cancer cell viability. The hetero-PROTACs disclosed herein are valuable tools to facilitate studies of the biological roles of IAPs and will stimulate further efforts toward E3-targeting therapies.
    DOI:  https://doi.org/10.1021/acs.jmedchem.2c01817
  14. bioRxiv. 2023 Mar 15. pii: 2023.03.15.532082. [Epub ahead of print]
      Pathogenic variants in VCP cause multisystem proteinopathy (MSP), a disease characterized by multiple clinical phenotypes including inclusion body myopathy, Paget’s disease of the bone, and frontotemporal dementia (FTD). How such diverse phenotypes are driven by pathogenic VCP variants is not known. We found that these diseases exhibit a common pathologic feature, ubiquitinated intranuclear inclusions affecting myocytes, osteoclasts and neurons. Moreover, knock-in cell lines harboring MSP variants show a reduction in nuclear VCP. Given that MSP is associated with neuronal intranuclear inclusions comprised of TDP-43 protein, we developed a cellular model whereby proteostatic stress results in the formation of insoluble intranuclear TDP-43 aggregates. Consistent with a loss of nuclear VCP function, cells harboring MSP variants or cells treated with VCP inhibitor exhibited decreased clearance of insoluble intranuclear TDP-43 aggregates. Moreover, we identified four novel compounds that activate VCP primarily by increasing D2 ATPase activity whereby pharmacologic VCP activation appears to enhance clearance of insoluble intranuclear TDP-43 aggregate. Our findings suggest that VCP function is important for nuclear protein homeostasis, that MSP may be the result of impaired nuclear proteostasis, and that VCP activation may be potential therapeutic by virtue of enhancing the clearance of intranuclear protein aggregates.
    DOI:  https://doi.org/10.1101/2023.03.15.532082
  15. EMBO J. 2023 Mar 27. e111241
      The accumulation of senescent cells is recognised as a driver of tissue and organismal ageing. One of the gold-standard hallmarks of a senescent cell is an increase in lysosomal content, as measured by senescence-associated β-galactosidase (Senβ-Gal) activity. The lysosome plays a central role in integrating mitogenic and stress cues to control cell metabolism, which is known to be dysregulated in senescence. Despite this, little is known about the cause and consequence of lysosomal biogenesis in senescence. We find here that lysosomes in senescent cells are dysfunctional; they have higher pH, increased evidence of membrane damage and reduced proteolytic capacity. The significant increase in lysosomal content is however sufficient to maintain degradative capacity of the cell to a level comparable to proliferating control cells. We demonstrate that increased nuclear TFEB/TFE3 supports lysosome biogenesis, is a hallmark of multiple forms of senescence and is required for senescent cell survival. TFEB/TFE3 are hypo-phosphorylated and show constitutive nuclear localisation in senescence. Evidence suggests that several pathways may contribute to TFEB/TFE3 dysregulation in senescence.
    Keywords:  TFEB; autophagy; lysosome; senescence
    DOI:  https://doi.org/10.15252/embj.2022111241
  16. bioRxiv. 2023 Mar 24. pii: 2023.03.23.533914. [Epub ahead of print]
      Aberrantly slow mRNA translation leads to ribosome stalling and subsequent collision with the trailing neighbor. Ribosome collisions have recently been shown to act as stress sensors in the cell, with the ability to trigger stress responses balancing survival and apoptotic cell-fate decisions depending on the stress level. However, we lack a molecular understanding of the reorganization of translation processes over time in mammalian cells exposed to an unresolved collision stress. Here we visualize the effect of a persistent collision stress on translation using in situ cryo electron tomography. We observe that low dose anisomycin collision stress leads to the stabilization of Z-site bound tRNA on elongating 80S ribosomes, as well as to the accumulation of an off-pathway 80S complex possibly resulting from collision splitting events. We visualize collided disomes in situ , occurring on compressed polysomes and revealing a stabilized geometry involving the Z-tRNA and L1 stalk on the stalled ribosome, and eEF2 bound to its collided rotated-2 neighbor. In addition, non-functional post-splitting 60S complexes accumulate in the stressed cells, indicating a limiting Ribosome associated Quality Control clearing rate. Finally, we observe the apparition of tRNA-bound aberrant 40S complexes shifting with the stress timepoint, suggesting a succession of different initiation inhibition mechanisms over time. Altogether, our work visualizes the changes of translation complexes under persistent collision stress in mammalian cells, indicating how perturbations in initiation, elongation and quality control processes contribute to an overall reduced protein synthesis.
    Summary: Using in situ cryo electron tomography we visualized the reorganization of mammalian translation processes during a persistent collision stress.
    DOI:  https://doi.org/10.1101/2023.03.23.533914
  17. Hum Mol Genet. 2023 Mar 27. pii: ddad047. [Epub ahead of print]
      Conformational diseases, such as Alzheimer, Parkinson and Huntington diseases, are part of a common class of neurological disorders characterized by the aggregation and progressive accumulation of proteins bearing aberrant conformations. Huntington disease (HD) has autosomal dominant inheritance and is caused by mutations leading to an abnormal expansion in the polyglutamine (polyQ) tract of the huntingtin (HTT) protein, leading to the formation of HTT inclusion bodies in neurons of affected patients. Interestingly, recent experimental evidence is challenging the conventional view by which the disease pathogenesis is solely a consequence of the intracellular accumulation of mutant protein aggregates. These studies reveal that transcellular transfer of mutated huntingtin protein is able to seed oligomers involving even the wild type forms of the protein. To date, there is still no successful strategy to treat HD. Here we describe a novel functional role for the HSPB1-p62/SQSTM1 complex, which acts as a cargo loading platform, allowing the unconventional secretion of mutant HTT by extracellular vesicles (EVs). HSPB1 interacts preferentially with polyQ-expanded HTT compared with the wild type protein and affects its aggregation. Furthermore, HSPB1 levels correlate with the rate of mutant HTT secretion, which is controlled by the activity of the PI3K/AKT/mTOR signalling pathway. Finally, we show that these HTT-containing vesicular structures are biologically active and able to be internalised by recipient cells, therefore providing an additional mechanism to explain the prion-like spreading properties of mutant HTT. These findings have implications for turn-over of disease-associated, aggregation-prone proteins.
    Keywords:  Huntington disease; PI3K/AKT pathway; macroautophagy; neurodegenerative diseases; protein oligomerization and aggregation; small heat shock proteins; transcellular spreading; unconventional secretion
    DOI:  https://doi.org/10.1093/hmg/ddad047
  18. PLoS Pathog. 2023 Mar 31. 19(3): e1011281
      During the blood stage of a malaria infection, malaria parasites export both soluble and membrane proteins into the erythrocytes in which they reside. Exported proteins are trafficked via the parasite endoplasmic reticulum and secretory pathway, before being exported across the parasitophorous vacuole membrane into the erythrocyte. Transport across the parasitophorous vacuole membrane requires protein unfolding, and in the case of membrane proteins, extraction from the parasite plasma membrane. We show that trafficking of the exported Plasmodium protein, Pf332, differs from that of canonical eukaryotic soluble-secreted and transmembrane proteins. Pf332 is initially ER-targeted by an internal hydrophobic sequence that unlike a signal peptide, is not proteolytically removed, and unlike a transmembrane segment, does not span the ER membrane. Rather, both termini of the hydrophobic sequence enter the ER-lumen and the ER-lumenal species is a productive intermediate for protein export. Furthermore, we show in intact cells, that two other exported membrane proteins, SBP1 and MAHRP2, assume a lumenal topology within the parasite secretory pathway. Although the addition of a C-terminal ER-retention sequence, recognised by the lumenal domain of the KDEL receptor, does not completely block export of SBP1 and MAHRP2, it does enhance their retention in the parasite ER. This indicates that a sub-population of each protein adopts an ER-lumenal state that is an intermediate in the export process. Overall, this suggests that although many exported proteins traverse the parasite secretory pathway as typical soluble or membrane proteins, some exported proteins that are ER-targeted by a transmembrane segment-like, internal, non-cleaved hydrophobic segment, do not integrate into the ER membrane, and form an ER-lumenal species that is a productive export intermediate. This represents a novel means, not seen in typical membrane proteins found in model systems, by which exported transmembrane-like proteins can be targeted and trafficked within the lumen of the secretory pathway.
    DOI:  https://doi.org/10.1371/journal.ppat.1011281
  19. Cold Spring Harb Protoc. 2023 Mar 30.
      The ubiquitin signaling cascade plays a crucial role in human cells. Consistent with this, malfunction of ubiquitination and deubiquitination is implicated in the initiation and progression of numerous human diseases, including cancer. Therefore, the development of potent and specific modulators of ubiquitin signal transduction has been at the forefront of drug development. In the past decade, a structure-based combinatorial protein-engineering approach has been used to generate ubiquitin variants (UbVs) as protein-based modulators of multiple components in the ubiquitin-proteasome system. Here, we review the design and generation of phage-displayed UbV libraries, including the processes of binder selection and library improvement. We also provide a comprehensive overview of the general in vitro and cellular methodologies involved in characterizing UbV binders. Finally, we describe two recent applications of UbVs for developing molecules with therapeutic potential.
    DOI:  https://doi.org/10.1101/pdb.over107784
  20. bioRxiv. 2023 Mar 20. pii: 2023.03.19.533379. [Epub ahead of print]
      Legionella pneumophila grows intracellularly within a host membrane-bound vacuole that is formed in response to a bacterial type IV secretion system (T4SS). T4SS translocated Sde proteins promote phosphoribosyl-linked ubiquitination of endoplasmic reticulum protein Rtn4, but the role played by this modification is obscure due to lack of clear growth defects of mutants. To identify the steps in vacuole biogenesis promoted by these proteins, mutations were identified that unmasked growth defects in Δ sde strains. Mutations in the sdhA , ridL and legA3 genes aggravated the Δ sde fitness defect, resulting in disruption of the Legionella -containing vacuole (LCV) membrane within 2 hrs of bacterial contact with host cells. Depletion of Rab5B and sorting nexin 1 partially bypassed loss of Sde proteins, consistent with Sde blocking early endosome and retrograde trafficking, similar to roles previously demonstrated for SdhA and RidL proteins. Sde protein protection of LCV lysis was only observed shortly after infection, presumably because Sde proteins are inactivated by the metaeffector SidJ during the course of infection. Deletion of SidJ extended the time that Sde proteins could prevent vacuole disruption, indicating that Sde proteins are negatively regulated at the posttranslational level and are limited to protecting membrane integrity at the earliest stages of replication. Transcriptional analysis was consistent with this timing model for an early point of execution of Sde protein. Therefore, Sde proteins act as temporally-regulated vacuole guards during establishment of the replication niche, possibly by constructing a physical barrier that blocks access of disruptive host compartments early during biogenesis of the LCV.
    Significance statement: Maintaining replication compartment integrity is critical for growth of intravacuolar pathogens within host cells. By identifying genetically redundant pathways, Legionella pneumophila Sde proteins that promote phosphoribosyl-linked ubiquitination of target eukaryotic proteins are shown to be temporally-regulated vacuole guards, preventing replication vacuole dissolution during early stages of infection. As targeting of reticulon 4 by these proteins leads to tubular endoplasmic reticulum aggregation, Sde proteins are likely to construct a barrier that blocks access of disruptive early endosomal compartments to the replication vacuole. Our study provides a new framework for how vacuole guards function to support biogenesis of the L. pneumophila replicative niche.
    DOI:  https://doi.org/10.1101/2023.03.19.533379
  21. Biomedicines. 2023 Mar 13. pii: 884. [Epub ahead of print]11(3):
      Autophagy is a conserved cellular process involved in the degradation of intercellular materials. During this process, double-membrane vesicles called autophagosomes engulf cytoplasmic components ready for degradation. A key component in the formation of autophagosomes are the autophagy-related (Atg) proteins, including microtubule-associated protein light chain 3A (LC3A) and 3B (LC3B). After the C-terminus of LC3 is conjugated to a phospholipid, it promotes the elongation of the phagosome and provides a docking station for the delivery of proteins ready for degradation. Since dysregulation of the autophagy pathway has been associated with a variety of human diseases, components of this process have been considered as potential therapeutic targets. However, the mechanistic details of LC3-specific ligases and deconjugation enzymes are far from unraveled and chemical tools for activity profiling could aid in affording more insights into this process. Herein, we describe a native chemical ligation approach for the synthesis of two LC3 activity-based probes (ABPs). Initial studies show that the probes covalently interact with the cysteine protease ATG4B, showcasing the potential of these probes to unravel mechanistic and structural details.
    Keywords:  activity-based probe; chemical synthesis; protein chemistry
    DOI:  https://doi.org/10.3390/biomedicines11030884
  22. Cell Rep. 2023 Mar 25. pii: S2211-1247(23)00320-0. [Epub ahead of print]42(4): 112309
      Cyclic GMP-AMP synthase (cGAS), as the major DNA sensor, initiates DNA-stimulated innate immune responses and is essential for a healthy immune system. Although some regulators of cGAS have been reported, it still remains largely unclear how cGAS is precisely and dynamically regulated and how many potential regulators govern cGAS. Here we carry out proximity labeling of cGAS with TurboID in cells and identify a number of potential cGAS-interacting or -adjacent proteins. Deubiquitinase OTUD3, one candidate identified in cytosolic cGAS-DNA complex, is further validated to not only stabilize cGAS but also enhance cGAS enzymatic activity, which eventually promotes anti-DNA virus immune response. We show that OTUD3 can directly bind DNA and is recruited to the cytosolic DNA complex, increasing its association with cGAS. Our findings reveal OTUD3 as a versatile cGAS regulator and find one more layer of regulatory mechanism in DNA-stimulated innate immune responses.
    Keywords:  CP: Immunology; CP: Molecular biology; DNA binding; OTUD3; TurboID; cGAS; cytosolic DNA complex; deubiquitinase; innate immune response; proximity labeling; ubiquitination
    DOI:  https://doi.org/10.1016/j.celrep.2023.112309
  23. Nature. 2023 Mar 29.
      Repression of gene expression by protein complexes of the Polycomb group is a fundamental mechanism that governs embryonic development and cell-type specification1-3. The Polycomb repressive deubiquitinase (PR-DUB) complex removes the ubiquitin moiety from monoubiquitinated histone H2A K119 (H2AK119ub1) on the nucleosome4, counteracting the ubiquitin E3 ligase activity of Polycomb repressive complex 1 (PRC1)5 to facilitate the correct silencing of genes by Polycomb proteins and safeguard active genes from inadvertent silencing by PRC1 (refs. 6-9). The intricate biological function of PR-DUB requires accurate targeting of H2AK119ub1, but PR-DUB can deubiquitinate monoubiquitinated free histones and peptide substrates indiscriminately; the basis for its exquisite nucleosome-dependent substrate specificity therefore remains unclear. Here we report the cryo-electron microscopy structure of human PR-DUB, composed of BAP1 and ASXL1, in complex with the chromatosome. We find that ASXL1 directs the binding of the positively charged C-terminal extension of BAP1 to nucleosomal DNA and histones H3-H4 near the dyad, an addition to its role in forming the ubiquitin-binding cleft. Furthermore, a conserved loop segment of the catalytic domain of BAP1 is situated near the H2A-H2B acidic patch. This distinct nucleosome-binding mode displaces the C-terminal tail of H2A from the nucleosome surface, and endows PR-DUB with the specificity for H2AK119ub1.
    DOI:  https://doi.org/10.1038/s41586-023-05841-y
  24. FEBS J. 2023 Mar 28.
      Linear ubiquitination is an important post-translational modification regulating the activation of numerous proinflammatory signalling mediators. Deregulated linear ubiquitination has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. In this issue, Miao et al. have identified a novel role for linear ubiquitination in the stabilisation of the NFAT1 transcription factor, leading to enhanced NFAT1-mediated gene expression, which might have functional implications in patients with Kawasaki disease.
    Keywords:  Kawasaki disease; LUBAC; NFAT1; linear ubiquitination; protein stabilisation
    DOI:  https://doi.org/10.1111/febs.16776
  25. Angew Chem Int Ed Engl. 2023 Mar 27. e202303818
      Protein tyrosine phosphatase 1B (PTP1B) and T-cell protein tyrosine phosphatase (TC-PTP) play non-redundant negative regulatory roles in T-cell activation, tumor antigen presentation, insulin and leptin signaling, and are potential targets for several therapeutic applications. Here, we report the development of a highly potent and selective small molecule degrader DU-14 for both PTP1B and TC-PTP. DU-14 mediated PTP1B and TC-PTP degradation requires both target protein(s) and VHL E3 ligase engagement and is also ubiquitination- and proteasome-dependent. DU-14 enhances IFN-γ induced JAK1/2-STAT1 pathway activation and promotes MHC-I expression in tumor cells. DU-14 also activates CD8+ T-cells and augments STAT1 and STAT5 phosphorylation. Importantly, DU-14 induces PTP1B and TC-PTP degradation in vivo and suppresses MC38 syngeneic tumor growth. The results indicate that DU-14, as the first PTP1B and TC-PTP dual degrader, merits further development for treating cancer and other indications.
    Keywords:  Inhibitor, PROTAC degrader; PTP1B; TC-PTP; immunotherapy
    DOI:  https://doi.org/10.1002/anie.202303818
  26. bioRxiv. 2023 Mar 25. pii: 2023.03.25.534211. [Epub ahead of print]
      Protein phosphorylation is an essential regulatory mechanism that controls most cellular processes, including cell cycle progression, cell division, and response to extracellular stimuli, among many others, and is deregulated in many diseases. Protein phosphorylation is coordinated by the opposing activities of protein kinases and protein phosphatases. In eukaryotic cells, most serine/threonine phosphorylation sites are dephosphorylated by members of the Phosphoprotein Phosphatase (PPP) family. However, we only know for a few phosphorylation sites which specific PPP dephosphorylates them. Although natural compounds such as calyculin A and okadaic acid inhibit PPPs at low nanomolar concentrations, no selective chemical PPP inhibitors exist. Here, we demonstrate the utility of endogenous tagging of genomic loci with an auxin-inducible degron (AID) as a strategy to investigate specific PPP signaling. Using Protein Phosphatase 6 (PP6) as an example, we demonstrate how rapidly inducible protein degradation can be employed to identify dephosphorylation SITES and elucidate PP6 biology. Using genome editing, we introduce AID-tags into each allele of the PP6 catalytic subunit (PP6c) in DLD-1 cells expressing the auxin receptor Tir1. Upon rapid auxin-induced degradation of PP6c, we perform quantitative mass spectrometry-based proteomics and phosphoproteomics to identify PP6 substrates in mitosis. PP6 is an essential enzyme with conserved roles in mitosis and growth signaling. Consistently, we identify candidate PP6c-dependent phosphorylation sites on proteins implicated in coordinating the mitotic cell cycle, cytoskeleton, gene expression, and mitogen-activated protein kinase (MAPK) and Hippo signaling. Finally, we demonstrate that PP6c opposes the activation of large tumor suppressor 1 (LATS1) by dephosphorylating Threonine 35 (T35) on Mps One Binder (MOB1), thereby blocking the interaction of MOB1 and LATS1. Our analyses highlight the utility of combining genome engineering, inducible degradation, and multiplexed phosphoproteomics to investigate signaling by individual PPPs on a global level, which is currently limited by the lack of tools for specific interrogation.
    DOI:  https://doi.org/10.1101/2023.03.25.534211
  27. Nat Commun. 2023 Mar 27. 14(1): 1698
      Hypusination is a unique post-translational modification of the eukaryotic translation factor 5A (eIF5A) that is essential for overcoming ribosome stalling at polyproline sequence stretches. The initial step of hypusination, the formation of deoxyhypusine, is catalyzed by deoxyhypusine synthase (DHS), however, the molecular details of the DHS-mediated reaction remained elusive. Recently, patient-derived variants of DHS and eIF5A have been linked to rare neurodevelopmental disorders. Here, we present the cryo-EM structure of the human eIF5A-DHS complex at 2.8 Å resolution and a crystal structure of DHS trapped in the key reaction transition state. Furthermore, we show that disease-associated DHS variants influence the complex formation and hypusination efficiency. Hence, our work dissects the molecular details of the deoxyhypusine synthesis reaction and reveals how clinically-relevant mutations affect this crucial cellular process.
    DOI:  https://doi.org/10.1038/s41467-023-37305-2
  28. Nat Methods. 2023 Mar 30.
      The ability to quantify structural changes of the endoplasmic reticulum (ER) is crucial for understanding the structure and function of this organelle. However, the rapid movement and complex topology of ER networks make this challenging. Here, we construct a state-of-the-art semantic segmentation method that we call ERnet for the automatic classification of sheet and tubular ER domains inside individual cells. Data are skeletonized and represented by connectivity graphs, enabling precise and efficient quantification of network connectivity. ERnet generates metrics on topology and integrity of ER structures and quantifies structural change in response to genetic or metabolic manipulation. We validate ERnet using data obtained by various ER-imaging methods from different cell types as well as ground truth images of synthetic ER structures. ERnet can be deployed in an automatic high-throughput and unbiased fashion and identifies subtle changes in ER phenotypes that may inform on disease progression and response to therapy.
    DOI:  https://doi.org/10.1038/s41592-023-01815-0
  29. Sci Adv. 2023 Mar 31. 9(13): eabq7585
      The elimination of aberrant inclusions is regarded as a therapeutic approach in neurodegeneration. In amyotrophic lateral sclerosis (ALS), mutations in proteins found within cytoplasmic condensates called stress granules (SGs) are linked to the formation of pathological SGs, aberrant protein inclusions, and neuronal toxicity. We found that inhibition of NEDP1, the enzyme that processes/deconjugates the ubiquitin-like molecule NEDD8, promotes the disassembly of physiological and pathological SGs. Reduction in poly(ADP-ribose) polymerase1 activity through hyper-NEDDylation is a key mechanism for the observed phenotype. These effects are related to improved cell survival in human cells, and in C. elegans, nedp1 deletion ameliorates ALS phenotypes related to animal motility. Our studies reveal NEDP1 as potential therapeutic target for ALS, correlated to the disassembly of pathological SGs.
    DOI:  https://doi.org/10.1126/sciadv.abq7585
  30. J Am Chem Soc. 2023 Mar 27.
      Event-driven bifunctional molecules, typified by proteolysis targeting chimera (PROTAC) technology, have been successfully applied in degrading many proteins of interest (POI). Due to the unique catalytic mechanism, PROTACs will induce multiple cycles of degradation until the elimination of the target protein. Here, we propose a versatile "Ligation to scavenging" approach to terminate event-driven degradation for the first time. Ligation to the scavenging system consists of a TCO-modified dendrimer (PAMAM-G5-TCO) and tetrazine-modified PROTACs (Tz-PROTACs). PAMAM-G5-TCO can rapidly scavenge intracellular free PROTACs via an inverse electron demand Diels-Alder reaction and terminate the degradation of certain proteins in living cells. Thus, this work proposes a flexible chemical knockdown approach to adjust the levels of POI on-demand in living cells, which paves the way for controlled target protein degradation.
    DOI:  https://doi.org/10.1021/jacs.2c12809
  31. Nat Commun. 2023 Mar 25. 14(1): 1661
      Deubiquitinating enzymes are key regulators in the ubiquitin system and an emerging class of drug targets. These proteases disassemble polyubiquitin chains and many deubiquitinases show selectivity for specific polyubiquitin linkages. However, most biochemical insights originate from studies of single diubiquitin linkages in isolation, whereas in cells all linkages coexist. To better mimick this diubiquitin substrate competition, we develop a multiplexed mass spectrometry-based deubiquitinase assay that can probe all ubiquitin linkage types simultaneously to quantify deubiquitinase activity in the presence of all potential diubiquitin substrates. For this, all eight native diubiquitins are generated and each linkage type is designed with a distinct molecular weight by incorporating neutron-encoded amino acids. Overall, 22 deubiquitinases are profiled, providing a three-dimensional overview of deubiquitinase linkage selectivity over time and enzyme concentration.
    DOI:  https://doi.org/10.1038/s41467-023-37363-6
  32. bioRxiv. 2023 Mar 27. pii: 2023.03.19.533325. [Epub ahead of print]
      Cellular stresses elicit signaling cascades that are capable of both mitigating the inciting dysfunction and initiating cell death when the stress cannot be overcome. During endoplasmic reticulum (ER) stress, the transcription factor CHOP is widely recognized to promote cell death. Yet CHOP carries out this function largely by augmenting protein synthesis, which is an essential component of recovery from stress. In addition, the mechanisms that drive cell fate during ER stress have largely been explored under super-physiological experimental conditions that do not permit cellular adaptation. Thus, it is not clear whether CHOP also has a beneficial role during that adaptation. Here, we have created a new, versatile, genetically modified Chop allele, which we combined with single cell analysis and stresses of physiological intensity, to rigorously examine the contribution of CHOP to cell fate. Surprisingly, we found that, within the cell population, CHOP paradoxically promoted death in some cells but proliferation-and hence recovery-in others. Strikingly, this function of CHOP conferred a stress-specific competitive growth advantage to wild-type cells over cells lacking CHOP. The dynamics of CHOP expression and UPR activation at the single cell level suggested that, by promoting protein synthesis, CHOP maximizes UPR activation which in turn favors stress resolution, subsequent UPR deactivation, and proliferation. Taken together, these findings suggest that CHOP's function can be better described as a "stress test" that drives cells into either of two mutually exclusive fates-adaptation or death-during stress. They point to a previously unappreciated pro-survival function of CHOP during stresses of physiological intensity.
    DOI:  https://doi.org/10.1101/2023.03.19.533325
  33. J Proteomics. 2023 Mar 24. pii: S1874-3919(23)00075-1. [Epub ahead of print]279 104886
      Proximity biotinylation screens are a widely used strategy for the unbiased identification of interacting or vicinal proteins. The latest generation biotin ligase TurboID has broadened the range of potential applications, as this ligase promotes an intense and faster biotinylation, even in subcellular compartments like the endoplasmic reticulum. On the other hand, the uncontrollable high basal biotinylation rates deny the system's inducibility and are often associated with cellular toxicity precluding its use in proteomics. We report here an improved method for TurboID-dependent biotinylation reactions based on the tight control of free biotin levels. Blockage of free biotin with a commercial biotin scavenger reversed the high basal biotinylation and toxicity of TurboID, as shown by pulse-chase experiments. Accordingly, the biotin-blockage protocol restored the biological activity of a bait protein fused to TurboID in the endoplasmic reticulum and rendered the biotinylation reaction inducible by exogenous biotin. Importantly, the biotin-blockage protocol was more effective than biotin removal with immobilized avidin and did not affect the cellular viability of human monocytes over several days. The method presented should be useful to researchers interested in exploiting the full potential of biotinylation screens with TurboID and other high-activity ligases for challenging proteomics questions. SIGNIFICANCE: Proximity biotinylation screens using the last generation biotin ligase TurboID represent a powerful approach for the characterisation of transient protein-protein interaction and signaling networks. However, a constant and high basal biotinylation rate and the associated cytotoxicity often preclude the use of this method in proteomic studies. We report a protocol based on modulation of free biotin levels that prevents the deleterious effects of TurboID while allowing inducible biotinylation, even in subcellular compartments such as the endoplasmic reticulum. This optimised protocol greatly expands the applications of TurboID in proteomic screens.
    Keywords:  Biotinylation; Protein-protein interactions; Proteomics; Proximity ligation screens
    DOI:  https://doi.org/10.1016/j.jprot.2023.104886
  34. bioRxiv. 2023 Mar 26. pii: 2023.03.26.534250. [Epub ahead of print]
      To facilitate our understanding of the often rapid and nuanced dynamics of extracellularly exposed proteomes during signaling events, it is important to devise robust workflows affording fast time resolution without biases and confounding factors. Here, we present S urface-exposed protein La beling using P eroxida S e, H 2 O 2 , and T yramide-derivative (SLAPSHOT), to label extracellularly exposed proteins in a rapid, sensitive, and specific manner, while preserving cellular integrity. This experimentally simple and flexible method utilizes recombinant soluble APEX2 peroxidase that is applied to cells, thus circumventing biological perturbations, tedious engineering of tools and cells, and labeling biases. APEX2 neither requires metal cations for activity nor contains disulfide bonds, conferring versatility for a wide spectrum of experimental setups. We applied SLAPSHOT followed by quantitative mass spectrometry-based proteomics analysis to examine the immediate and extensive cell surface expansion and ensuing restorative membrane shedding upon the activation of Scott syndrome-linked TMEM16F, a ubiquitously expressed calcium-dependent phospholipid scramblase and ion channel. Time-course data ranging from one to thirty minutes of calcium stimulation using wild-type and TMEM16F deficient cells revealed intricate co-regulation of known protein families, including those in the integrin and ICAM families. Crucially, we identified proteins that are known to reside in intracellular organelles, including ER, as occupants of the freshly deposited membrane, and mitovesicles as an abundant component and contributor to the extracellularly exposed proteome. Our study not only provides the first accounts of the immediate consequences of calcium signaling on the extracellularly exposed proteome, but also presents a blueprint for the application of SLAPSHOT as a general approach for monitoring extracellularly exposed protein dynamics.
    Highlights: An enzyme-driven method to tag extracellularly exposed proteins in an unbiased manner with a superior combination of temporal resolution, spatial specificity, and sensitivityA general approach applicable to primary and scarce cells without involving cellular engineeringShort time scale proteome dynamics of Jurkat cells with and without TMEM16F revealed by SLAPSHOT coupled with quantitative mass spectrometry provide insights into phospholipid scrambling-mediated plasma membrane remodeling.
    DOI:  https://doi.org/10.1101/2023.03.26.534250
  35. Biochim Biophys Acta Mol Basis Dis. 2023 Mar 29. pii: S0925-4439(23)00069-8. [Epub ahead of print] 166703
      This study examined autophagy-lysosome pathway (ALP) perturbations in synovial monocytes/macrophages from patients with gouty arthritis (GA) and the associations of ALP perturbations with cell death. Synovial fluid mononuclear cells (SFMCs) and synovial tissues (STs) from patients with GA, as well as monosodium urate (MSU) crystal-exposed macrophages, underwent immunoblotting, quantitative polymerase chain reaction, and immunofluorescence analyses of markers linked to the ALP (microtubule-associated protein 1 light chain 3B [LC3B], p62, cathepsin D [CTSD], and lysosome-associated membrane protein 2 [LAMP2]) and cell death (caspase-3). GA STs underwent immunohistochemistry and immunofluorescence analyses to determine the distributions of LC3B-positive autophagosomes and macrophages. GA SFMCs and STs exhibited impaired autophagic degradation, indicated by elevated levels of LC3B and p62, along with CTSD upregulation and caspase-3 activation. Macrophages from GA STs exhibited significant accumulation of LC3B-positive autophagosomes. The temporal effects of MSU crystals on the ALP and the associations of these effects with cell death were investigated using a macrophage model of GA. MSU crystal-exposed macrophages exhibited early (2 h) autophagosome formation but later (6-24 h) autophagic flux impairment, demonstrated by p62 accumulation, lysosomal inhibitor failure to increase LC3B accumulation, and LC3B colocalization with p62. These macrophages exhibited autophagic flux impairment because of CTSD inactivation-mediated lysosomal dysfunction, which caused immature CTSD to accumulate within damaged LAMP2-positive lysosomes. This accumulation coincided with caspase-3-dependent cell death (24 h) that was unaffected by CTSD inhibition. These findings indicate that GA involves MSU crystal-induced impairment of autophagic degradation via CTSD inactivation-mediated lysosomal dysfunction, which promotes apoptosis in macrophages.
    Keywords:  Acute gouty arthritis; Autophagy-lysosome pathway perturbation; Chronic gouty arthritis; Monosodium urate crystals; Synovial fluid mononuclear cells; Synovial tissues
    DOI:  https://doi.org/10.1016/j.bbadis.2023.166703
  36. ACS Synth Biol. 2023 Mar 29.
      De novo peptides and proteins that switch state in response to chemical and physical cues would advance protein design and synthetic biology. Here we report two designed systems that disassemble and reassemble upon site-specific phosphorylation and dephosphorylation, respectively. As starting points, we use hyperthermostable de novo antiparallel and parallel coiled-coil heterotetramers, i.e., A2B2 systems, to afford control in downstream applications. The switches are incorporated by adding protein kinase A phosphorylation sites, R-R-X-S, with the phosphoacceptor serine residues placed to maximize disruption of the coiled-coil interfaces. The unphosphorylated peptides assemble as designed and unfold reversibly when heated. Addition of kinase to the assembled states unfolds them with half-lives of ≤5 min. Phosphorylation is reversed by Lambda Protein Phosphatase resulting in tetramer reassembly. We envisage that the new de novo designed coiled-coil components, the switches, and a mechanistic model for them will be useful in synthetic biology, biomaterials, and biotechnology applications.
    Keywords:  coiled coil; inducible conformational switch; phosphorylation; protein design; rational peptide design; synthetic biology
    DOI:  https://doi.org/10.1021/acssynbio.3c00064
  37. RSC Med Chem. 2023 Mar 22. 14(3): 501-506
      Thalidomide and its derivatives are molecular glues that bind cereblon (CRBN), a component of an E3 ubiquitin ligase complex, and mediate protein interactions with neosubstrates resulting in their polyubiquitination and proteasomal degradation. The structural features of neosubstrate binding have been elucidated that highlight key interactions with a β-hairpin degron containing a glycine, which is present in a wide-range of proteins, including zinc-finger transcription factors such as IKZF1, and the translation termination factor GSPT1. Here, we profile 14 closely-related thalidomide derivatives in CRBN occupancy, and IKZF1 and GSPT1 degradation cell-based assays, and use crystal structures, computational docking and molecular dynamics to delineate subtle structure-activity relationships. Our findings will enable the rational design of CRBN modulators in the future, and help avoid the degradation of GSPT1 which is broadly cytotoxic.
    DOI:  https://doi.org/10.1039/d2md00347c
  38. Microbiol Spectr. 2023 Mar 30. e0388622
      Invasion of host cells is an important feature of Staphylococcus aureus. The main internalization pathway involves binding of the bacteria to host cells, e.g., endothelial cells, via a fibronectin (Fn) bridge between S. aureus Fn binding proteins and α5β1-integrin, followed by phagocytosis. The secreted extracellular adherence protein (Eap) has been shown to promote this cellular uptake pathway of not only S. aureus, but also of bacteria otherwise poorly taken up by host cells, such as Staphylococcus carnosus. The exact mechanisms are still unknown. Previously, we demonstrated that Eap induces platelet activation by stimulation of the protein disulfide isomerase (PDI), a catalyst of thiol-disulfide exchange reactions. Here, we show that Eap promotes PDI activity on the surface of endothelial cells, and that this contributes critically to Eap-driven staphylococcal invasion. PDI-stimulated β1-integrin activation followed by increased Fn binding to host cells likely accounts for the Eap-enhanced uptake of S. aureus into non-professional phagocytes. Additionally, Eap supports the binding of S. carnosus to Fn-α5β1 integrin, thereby allowing its uptake into endothelial cells. To our knowledge, this is the first demonstration that PDI is crucial for the uptake of bacteria into host cells. We describe a hitherto unknown function of Eap-the promotion of an enzymatic activity with subsequent enhancement of bacterial uptake-and thus broaden mechanistic insights into its importance as a driver of bacterial pathogenicity. IMPORTANCE Staphylococcus aureus can invade and persist in non-professional phagocytes, thereby escaping host defense mechanisms and antibiotic treatment. The intracellular lifestyle of S. aureus contributes to the development of infection, e.g., in infective endocarditis or chronic osteomyelitis. The extracellular adherence protein secreted by S. aureus promotes its own internalization as well as that of bacteria that are otherwise poorly taken up by host cells, such as Staphylococcus carnosus. In our study, we demonstrate that staphylococcal uptake by endothelial cells requires catalytic disulfide exchange activity by the cell-surface protein disulfide isomerase, and that this critical enzymatic function is enhanced by Eap. The therapeutic application of PDI inhibitors has previously been investigated in the context of thrombosis and hypercoagulability. Our results add another intriguing possibility: therapeutically targeting PDI, i.e., as a candidate approach to modulate the initiation and/or course of S. aureus infectious diseases.
    Keywords:  Staphylococcus aureus host cell invasion; extracellular adherence protein; protein disulfide isomerase
    DOI:  https://doi.org/10.1128/spectrum.03886-22
  39. bioRxiv. 2023 Mar 17. pii: 2023.03.16.531341. [Epub ahead of print]
      Secreted proteins are extracellular ligands that play key roles in paracrine and endocrine signaling, classically by binding cell surface receptors. Experimental assays to identify new extracellular ligand-receptor interactions are challenging, which has hampered the rate of novel ligand discovery. Here, using AlphaFold-multimer, we developed and applied an approach for extracellular ligand-binding prediction to a structural library of 1,108 single-pass transmembrane receptors. We demonstrate high discriminatory power and a success rate of close to 90 % for known ligand-receptor pairs where no a priori structural information is required. Importantly, the prediction was performed on de novo ligand-receptor pairs not used for AlphaFold training and validated against experimental structures. These results demonstrate proof-of-concept of a rapid and accurate computational resource to predict high-confidence cell-surface receptors for a diverse set of ligands by structural binding prediction, with potentially wide applicability for the understanding of cell-cell communication.
    DOI:  https://doi.org/10.1101/2023.03.16.531341
  40. Mol Biol Cell. 2023 Mar 29. mbcE23010035
      The centromere is a unique chromatin domain that links sister chromatids and forms the attachment site for spindle microtubules in mitosis. Centromere inheritance is largely DNA sequence-independent but strongly reliant on a self-propagating chromatin domain featuring nucleosomes containing the H3 variant CENP-A. Unlike other histones, CENP-A is maintained with unusually high stability in chromatin. Previously, we have shown that mitotic maintenance of CENP-A and other CCAN proteins is controlled by a dynamic SUMO cycle and that the deSUMOylase SENP6 is necessary for stable maintenance of CENP-A at the centromere. Here, we discover that the removal of SENP6 leads to a rapid loss of the constitutive centromere-associated network (CCAN), followed by a delayed loss of centromeric CENP-A, indicating that the CCAN is the primary SUMO target. We found the ATP-dependent segregase p97/VCP removes centromeric CENP-A in a SUMO-dependent manner and physically interacts with the CCAN and CENP-A chromatin. Our data suggest a direct role of p97 in removing centromeric CENP-A via SUMOylated CCAN proteins thereby ensuring centromere homeostasis and potentially preventing ectopic CENP-A accumulation.
    DOI:  https://doi.org/10.1091/mbc.E23-01-0035