bims-proteo Biomed News
on Proteostasis
Issue of 2022–06–05
thirty-two papers selected by
Eric Chevet, INSERM



  1. Nat Commun. 2022 Jun 01. 13(1): 3041
      Protein degradation, a major eukaryotic response to cellular signals, is subject to numerous layers of regulation. In yeast, the evolutionarily conserved GID E3 ligase mediates glucose-induced degradation of fructose-1,6-bisphosphatase (Fbp1), malate dehydrogenase (Mdh2), and other gluconeogenic enzymes. "GID" is a collection of E3 ligase complexes; a core scaffold, RING-type catalytic core, and a supramolecular assembly module together with interchangeable substrate receptors select targets for ubiquitylation. However, knowledge of additional cellular factors directly regulating GID-type E3s remains rudimentary. Here, we structurally and biochemically characterize Gid12 as a modulator of the GID E3 ligase complex. Our collection of cryo-EM reconstructions shows that Gid12 forms an extensive interface sealing the substrate receptor Gid4 onto the scaffold, and remodeling the degron binding site. Gid12 also sterically blocks a recruited Fbp1 or Mdh2 from the ubiquitylation active sites. Our analysis of the role of Gid12 establishes principles that may more generally underlie E3 ligase regulation.
    DOI:  https://doi.org/10.1038/s41467-022-30803-9
  2. J Biol Chem. 2022 May 30. pii: S0021-9258(22)00528-2. [Epub ahead of print] 102087
      Protein disulfide isomerases (PDIs) constitute a family of oxidoreductases promoting redox protein folding and quality control in the endoplasmic reticulum (ER). PDIs catalyze disulfide bond formation, isomerization and reduction, operating in concert with molecular chaperones to fold secretory cargoes in addition to directing misfolded proteins to be refolded or degraded. Importantly, PDIs are emerging as key components of the proteostasis network, integrating protein folding status with central surveillance mechanisms to balance proteostasis according to cellular needs. Recent advances in the field driven by the generation of new mouse models, human genetic studies, and omics methodologies, in addition to interventions using small molecules and gene therapy, have revealed the significance of PDIs to the physiology of the nervous system and their implications in pathologies, ranging from neurodevelopmental conditions to neurodegenerative diseases and traumatic injuries. Here, we review the principles of redox protein folding in the ER with a focus on current evidence linking genetic mutations and biochemical alterations to PDIs in the etiology of neurological conditions.
    Keywords:  endoplasmic reticulum; nervous system; neurodegenerative diseases; neurodevelopmental disorders; protein aggregation; protein disulfide isomerase; proteostasis; redox protein folding
    DOI:  https://doi.org/10.1016/j.jbc.2022.102087
  3. Essays Biochem. 2022 May 30. pii: EBC20210064. [Epub ahead of print]
      The proteasome plays vital roles in eukaryotic cells by orchestrating the regulated degradation of large repertoires of substrates involved in numerous biological processes. Proteasome dysfunction is associated with a wide variety of human pathologies and in plants severely affects growth, development and responses to stress. The activity of E3 ubiquitin ligases marks proteins fated for degradation with chains of the post-translational modifier, ubiquitin. Proteasomal processing of ubiquitinated substrates involves ubiquitin chain recognition, deubiquitination, ATP-mediated unfolding and translocation, and proteolytic digestion. This complex series of steps is made possible not only by the many specialised subunits of the 1.5 MDa proteasome complex but also by a range of accessory proteins that are recruited to the proteasome. A surprising class of accessory proteins are members of the HECT-type family of ubiquitin ligases that utilise a unique mechanism for post-translational attachment of ubiquitin to their substrates. So why do proteasomes that already contain all the necessary machinery to recognise ubiquitinated substrates, harbour HECT ligase activity? It is now clear that some ubiquitin ligases physically relay their substrates to proteasome-associated HECT ligases, which prevent substrate stalling at the proteasome. Moreover, HECT ligases ubiquitinate proteasome subunits, thereby modifying the proteasome's ability to recognise substrates. They may therefore enable proteasomes to be both non-specific and extraordinarily selective in a complex substrate environment. Understanding the relationship between the proteasome and accessory HECT ligases will reveal how the proteasome controls so many diverse plant developmental and stress responses.
    Keywords:  HECT ligases; plant signal transduction; ubiquitin ligases; ubiquitin proteasome system; ubiquitin signalling
    DOI:  https://doi.org/10.1042/EBC20210064
  4. J Vis Exp. 2022 May 10.
      Ubiquitylation is a post-translational modification which occurs in eukaryotic cells that is critical for several biological pathways' regulation, including cell survival, proliferation, and differentiation. It is a reversible process that consists of a covalent attachment of ubiquitin to the substrate through a cascade reaction of at least three different enzymes, composed of E1 (Ubiquitin-activation enzyme), E2 (Ubiquitin-conjugating enzyme), and E3 (Ubiquitin-ligase enzyme). The E3 complex plays an important role in substrate recognition and ubiquitylation. Here, a protocol is described to evaluate substrate ubiquitylation in mammalian cells using transient co-transfection of a plasmid encoding the selected substrate, an E3 ubiquitin ligase, and a tagged ubiquitin. Before lysis, the transfected cells are treated with the proteasome inhibitor MG132 (carbobenzoxy-leu-leu-leucinal) to avoid substrate proteasomal degradation. Furthermore, the cell extract is submitted to small-scale immunoprecipitation (IP) to purify the polyubiquitylated substrate for subsequent detection by western blotting (WB) using specific antibodies for ubiquitin tag. Hence, a consistent and uncomplicated protocol for ubiquitylation assay in mammalian cells is described to assist scientists in addressing ubiquitylation of specific substrates and E3 ubiquitin ligases.
    DOI:  https://doi.org/10.3791/63561
  5. BMB Rep. 2022 Jun 02. pii: 5601. [Epub ahead of print]
      Ubiquitin is relatively modest in size but involves almost entire cellular signaling pathways. The primary role of ubiquitin is maintaining cellular protein homeostasis. Ubiquitination regulates the fate of target proteins by means of the proteasome- or autophagy-mediated degradation of ubiquitinated substrates, which can be either intracellular or foreign proteins from invading pathogens. Legionella, a gram-negative intracellular pathogen, hinders the host-ubiquitin system by translocating hundreds of effector proteins into the cytoplasm of the host cell. In this review we describe the current understanding of ubiquitin machinery from Legionella. We summarize structural and biochemical differences between the host-ubiquitin system and ubiquitin-related effectors of Legionella. Some of these effectors act much like canonical host-ubiquitin machinery, whereas others have distinctive structures and accomplish noncanonical ubiquitination via novel biochemical mechanisms.
  6. Small. 2022 May 29. e2201585
      To overcome the autophagy compromised mechanism of protective cellular processes by "eating"/"digesting" damaged organelles or potentially toxic materials with autolysosomes in tumor cells, lysosomal impairment can be utilized as a traditional autophagy dysfunction route for tumor therapy; however, this conventional one-way autophagy dysfunction approach is always limited by the therapeutic efficacy. Herein, an innovative pharmacological strategy that can excessively provoke autophagy via endoplasmic reticulum (ER) stress is implemented along with lysosomal impairment to enhance autophagy dysfunction. In this work, the prepared tellurium double-headed nanobullets (TeDNBs) with controllable morphology are modified with human serum albumin (HSA) which facilitates internalization by tumor cells. On the one hand, ER stress can be stimulated by upregulating the phosphorylation eukaryotic translation initiation factor 2 (P-eIF2α) owing to the production of tellurite (TeO3 2- ) in the specifical hydrogen peroxide-rich tumor environment; thus, autophagy overstimulation occurs. On the other hand, OME can deacidify and impair lysosomes by downregulating lysosomal-associated membrane protein 1 (LAMP1), therefore blocking autolysosome formation. Both in vitro and in vivo results demonstrate that the synthesized TeDNBs-HSA/OME (TeDNBs-HO) exhibit excellent therapeutic efficacy by autophagy dysfunction through ER stress induction and lysosomal damnification. Thus, TeDNBs-HO is verified to be a promising theranostic nanoagent for effective tumor therapy.
    Keywords:  Te double-headed nanobullets; boosted autophagy dysfunction; endoplasmic reticulum stress activation; lysosomal impairment; omeprazole
    DOI:  https://doi.org/10.1002/smll.202201585
  7. J Biol Chem. 2022 May 27. pii: S0021-9258(22)00524-5. [Epub ahead of print] 102083
      The ubiquitin-proteasome-system (UPS) fulfills an essential role in regulating protein homeostasis by spatially and temporally controlling proteolysis in an ATP- and ubiquitin-dependent manner. However, the localization of proteasomes is highly variable under diverse cellular conditions. In yeast, newly synthesized proteasomes are primarily localized to the nucleus during cell proliferation. Yeast proteasomes are transported into the nucleus through the nuclear pore either as immature subcomplexes or as mature enzymes via adaptor proteins Sts1 and Blm10, while in mammalian cells, post-mitotic uptake of proteasomes into the nucleus is mediated by AKIRIN2, an adaptor protein essentially required for nuclear protein degradation. Stressful growth conditions and the reversible halt of proliferation, i.e. quiescence, are associated with a decline in ATP and the re-organization of proteasome localization. Cellular stress leads to proteasome accumulation in membraneless granules either in the nucleus or in the cytoplasm. In quiescence, yeast proteasomes are sequestered in a ubiquitin-dependent manner into motile and reversible proteasome storage granules (PSGs) in the cytoplasm. In cancer cells upon amino acid deprivation, heat shock, osmotic stress, oxidative stress, or the inhibition of either proteasome activity or nuclear export, reversible proteasome foci containing poly-ubiquitinated substrates are formed by liquid-liquid phase separation in the nucleus. In this review, we summarize recent literature revealing new links between nuclear transport, ubiquitin signaling and the intracellular organization of proteasomes during cellular stress conditions.
    Keywords:  liquid-liquid phase separation; nuclear transport; proteasome foci; proteasome storage granule; protein quality control; stress response; ubiquitin-proteasome-system
    DOI:  https://doi.org/10.1016/j.jbc.2022.102083
  8. J Extracell Vesicles. 2022 Jun;11(6): e12233
      The formation of extracellular vesicles (EVs) is induced by the sphingolipid ceramide. How this pathway is regulated is not entirely understood. Here, we report that the ceramide transport protein (CERT) mediates a non-vesicular transport of ceramide between the endoplasmic reticulum (ER) and the multivesicular endosome at contact sites. The process depends on the interaction of CERT's PH domain with PI4P generated by PI4KIIα at endosomes. Furthermore, a complex is formed between the START domain of CERT, which carries ceramide, and the Tsg101 protein, which is part of the endosomal sorting complex required for transport (ESCRT-I). Inhibition of ceramide biosynthesis reduces CERT-Tsg101 complex formation. Overexpression of CERT increases EV secretion while its inhibition reduces EV formation and the concentration of ceramides and sphingomyelins in EVs. In conclusion, we discovered a function of CERT in regulating the sphingolipid composition and biogenesis of EVs, which links ceramide to the ESCRT-dependent pathway.
    Keywords:  AlphaFold2; CERT; ER-endosome contact sites; HPA-12; NC03; PI4KIIIβ; PI4KIIIβ-IN-10; PI4KIIα; PI4P; Tsg101; ceramide; extracellular vesicles; sphingomyelin
    DOI:  https://doi.org/10.1002/jev2.12233
  9. JCI Insight. 2022 May 31. pii: e157465. [Epub ahead of print]
      Women of African ancestry suffer higher rates of breast cancer mortality compared to all other groups in the United States. Though the precise reasons for these disparities remain unclear, many recent studies have implicated a role for differences in tumor biology. Using an epitope-validated antibody against the endoplasmic reticulum-associated degradation (ERAD) E3 ubiquitin ligase, gp78, we show that elevated levels of gp78 in patient breast cancer cells predict poor survival. Moreover, high levels of gp78 are associated with poor outcomes in both ER-positive and ER-negative tumors, and breast cancers expressing elevated amounts of gp78 protein are enriched in gene expression pathways that influence cell cycle, metabolism, receptor-mediated signaling, and cell stress response pathways. In multivariate analysis adjusted for subtype and grade, gp78 protein is an independent predictor of poor outcomes in women of African ancestry. Furthermore, gene expression signatures, derived from patients stratified by gp78 protein expression, are strong predictors of recurrence and pathological complete response in retrospective clinical trial data and share many common features with gene sets previously identified to be overrepresented in breast cancers based on race. These findings implicate a prominent role for gp78 in tumor progression and offer new insights into our understanding of racial differences in breast cancer outcomes.
    Keywords:  Breast cancer; Cell Biology; Oncology
    DOI:  https://doi.org/10.1172/jci.insight.157465
  10. Nat Commun. 2022 Jun 02. 13(1): 3074
      The formation of membraneless organelles can be a proteotoxic stress control mechanism that locally condenses a set of components capable of mediating protein degradation decisions. The breadth of mechanisms by which cells respond to stressors and form specific functional types of membraneless organelles, is incompletely understood. We found that Bcl2-associated athanogene 2 (BAG2) marks a distinct phase-separated membraneless organelle, triggered by several forms of stress, particularly hyper-osmotic stress. Distinct from well-known condensates such as stress granules and processing bodies, BAG2-containing granules lack RNA, lack ubiquitin and promote client degradation in a ubiquitin-independent manner via the 20S proteasome. These organelles protect the viability of cells from stress and can traffic to the client protein, in the case of Tau protein, on the microtubule. Components of these ubiquitin-independent degradation organelles include the chaperone HSP-70 and the 20S proteasome activated by members of the PA28 (PMSE) family. BAG2 condensates did not co-localize with LAMP-1 or p62/SQSTM1. When the proteasome is inhibited, BAG2 condensates and the autophagy markers traffic to an aggresome-like structure.
    DOI:  https://doi.org/10.1038/s41467-022-30751-4
  11. Cell Rep. 2022 May 31. pii: S2211-1247(22)00678-7. [Epub ahead of print]39(9): 110903
      Selective autophagy receptors and adapters contain short linear motifs called LIR motifs (LC3-interacting region), which are required for the interaction with the Atg8-family proteins. LIR motifs bind to the hydrophobic pockets of the LIR motif docking site (LDS) of the respective Atg8-family proteins. The physiological significance of LDS docking sites has not been clarified in vivo. Here, we show that Atg8a-LDS mutant Drosophila flies accumulate autophagy substrates and have reduced lifespan. Using quantitative proteomics to identify the proteins that accumulate in Atg8a-LDS mutants, we identify the cis-Golgi protein GMAP (Golgi microtubule-associated protein) as a LIR motif-containing protein that interacts with Atg8a. GMAP LIR mutant flies exhibit accumulation of Golgi markers and elongated Golgi morphology. Our data suggest that GMAP mediates the turnover of Golgi by selective autophagy to regulate its morphology and size via its LIR motif-mediated interaction with Atg8a.
    Keywords:  CP: Cell biology; CP: Immunology; Golgi; Golgiphagy Drosophila; LIR motif; LIR motif docking site; autophagy
    DOI:  https://doi.org/10.1016/j.celrep.2022.110903
  12. Nat Commun. 2022 Jun 02. 13(1): 3084
      Mitochondrial protein import in the parasitic protozoan Trypanosoma brucei is mediated by the atypical outer membrane translocase, ATOM. It consists of seven subunits including ATOM69, the import receptor for hydrophobic proteins. Ablation of ATOM69, but not of any other subunit, triggers a unique quality control pathway resulting in the proteasomal degradation of non-imported mitochondrial proteins. The process requires a protein of unknown function, an E3 ubiquitin ligase and the ubiquitin-like protein (TbUbL1), which all are recruited to the mitochondrion upon ATOM69 depletion. TbUbL1 is a nuclear protein, a fraction of which is released to the cytosol upon triggering of the pathway. Nuclear release is essential as cytosolic TbUbL1 can bind mislocalised mitochondrial proteins and likely transfers them to the proteasome. Mitochondrial quality control has previously been studied in yeast and metazoans. Finding such a pathway in the highly diverged trypanosomes suggests such pathways are an obligate feature of all eukaryotes.
    DOI:  https://doi.org/10.1038/s41467-022-30748-z
  13. Nat Commun. 2022 May 31. 13(1): 3021
      Neddylation-mediated activation of Cullin-RING E3 Ligases (CRLs) are necessary for the degradation of specific immune regulatory proteins. However, little is known about how these processes govern the function of regulatory T (Treg) cells. Here we show that mice with Treg cell-specific deletion of Rbx1, a dual E3 for both neddylation and ubiquitylation by CRLs, develop an early-onset fatal inflammatory disorder, characterized by disrupted Treg cell homeostasis and suppressive functions. Specifically, Rbx1 is essential for the maintenance of an effector Treg cell subpopulation, and regulates several inflammatory pathways. Similar but less severe phenotypes are observed in mice having Ube2m, a neddylation E2 conjugation enzyme, deleted in their Treg cells. Interestingly, Treg-specific deletion of Rbx2/Sag or Ube2f, components of a similar but distinct neddylation-CRL complex, yields no obvious phenotype. Thus, our work demonstrates that the Ube2m-Rbx1 axis is specifically required for intrinsic regulatory processes in Treg cells; and that Rbx1 might also play Ube2m-independent roles in maintaining the fitness of Treg cells, suggesting a layer of complexity in neddylation-dependent activation of CRLs.
    DOI:  https://doi.org/10.1038/s41467-022-30707-8
  14. J Clin Invest. 2022 Jun 02. pii: e149906. [Epub ahead of print]
      Mitochondrial proteostasis, regulated by the mitochondrial unfolded protein response (UPRmt), is crucial for maintenance of cellular functions and survival. Elevated oxidative and proteotoxic stress in mitochondria must be attenuated by the activation of ubiquitous UPRmt to promote prostate cancer (PCa) growth. Here we show that the two key components of the UPRmt, heat shock protein 60 (HSP60, a mitochondrial chaperonin) and caseinolytic protease (ClpP, a mitochondrial protease) were required for the development of advanced PCa. HSP60 regulated ClpP expression via c-Myc and physically interacted with ClpP to restore mitochondrial functions promoting cancer cell survival. HSP60 maintained the ATP-producing functions of mitochondria, which activated β-catenin pathway leading to the upregulation of c-Myc. We identified an UPRmt inhibitor that blocked HSP60 interaction with ClpP and abrogated survival signaling without altering HSP60 chaperonin function. Disruption of HSP60-ClpP interaction by UPRmt inhibitor triggered metabolic stress and impeded PCa promoting signaling. Treatment with UPRmt inhibitor, or genetic ablation of Hsp60, inhibited PCa growth and progression. Together, our findings identify that HSP60-ClpP mediated UPRmt is essential for prostate tumorigenesis and HSP60-ClpP interaction represents a therapeutic vulnerability in PCa.
    Keywords:  Cell Biology; Cell stress; Mitochondria; Oncology; Prostate cancer
    DOI:  https://doi.org/10.1172/JCI149906
  15. IUBMB Life. 2022 May 30.
      Mitochondrial E3 ubiquitin ligase (MUL1) is a mitochondrial outer membrane-anchored protein-containing transmembrane domains in both its N- and C-terminal regions, where both are exposed to the cytosol. Interestingly the C-terminal region has a RING finger domain responsible for its E3 ligase activity, as ubiquitin or in SUMOylation, interacting with proteins related to mitochondrial fusion and fission, cell survival, and tumor suppressor proteins, such as Akt. Therefore, MUL1 is involved in various cellular processes, such as mitochondrial dynamics, inter-organelle communication, proliferation, mitophagy, immune response, inflammation and cell apoptosis. MUL1 is expressed at a higher basal level in the heart, immune system organs, and blood. Here, we discuss the role of MUL1 in mitochondrial dynamics and its function in various pathological models, both in vitro and in vivo. In this context, we describe the role of MUL1 in: (1) the inflammatory response, by regulating NF-κB activity, (2) cancer, by promoting cell death and regulating exonuclear function of proteins, such as p53 (3) neurological diseases, by maintaining communication with other organelles and interacting with proteins to eliminate damaged organelles and (4) cardiovascular diseases, by maintaining mitochondrial fusion/fission homeostasis. In this review, we summarize the latest advances in the physiological and pathological functions of MUL1. We also describe the different substrates of MUL1, acting as a positive or negative regulator in various pathologies associated with mitochondrial dysfunction. In conclusion, MUL1 could be a potential key target for the development of therapies that focus on ensuring the functionality of the mitochondrial network and, furthermore, the quality control of intracellular components by synchronously modulating the activity of different cellular mechanisms involved in the aforementioned pathologies. This, in turn, will guide the development of targeted therapies. This article is protected by copyright. All rights reserved.
    Keywords:  Akt; C1orf166; FLJ12875; GIDE; MAPL; MULAN; Mitochondrial E3 ubiquitin ligase 1; RNF218; cell death; inflammation; mitochondria morphology
    DOI:  https://doi.org/10.1002/iub.2657
  16. J Extracell Vesicles. 2022 Jun;11(6): e12232
      Although cancer-derived extracellular vesicles (cEVs) are thought to play a pivotal role in promoting cancer progression events, their precise effect on neighbouring normal cells is unknown. In this study, we investigated the impact of pancreatic cancer ductal adenocarcinoma (PDAC) derived EVs on recipient non-tumourigenic pancreatic normal epithelial cells upon internalization. We demonstrate that cEVs are readily internalized and induce endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in treated normal pancreatic epithelial cells within 24 h. We further show that PDAC cEVs increase cell proliferation, migration, and invasion and that these changes are regulated at least in part, by the UPR mediator DDIT3. Subsequently, these cells release several inflammatory cytokines. Leveraging a layered multi-omics approach, we analysed EV cargo from a panel of six PDAC and two normal pancreas cell lines, using multiple EV isolation methods. We found that cEVs were enriched for an array of biomolecules which can induce or regulate ER stress and the UPR, including palmitic acid, sphingomyelins, metabolic regulators of tRNA charging and proteins which regulate trafficking and degradation. We further show that palmitic acid, at doses relevant to those found in cEVs, is sufficient to induce ER stress in normal pancreas cells. These results suggest that cEV cargo packaging may be designed to disseminate proliferative and invasive characteristics upon internalization by distant recipient normal cells, hitherto unreported. This study is among the first to highlight a major role for PDAC cEVs to induce stress in treated normal pancreas cells that may modulate a systemic response leading to altered phenotypes. These findings highlight the importance of EVs in mediating disease aetiology and open potential areas of investigation toward understanding the role of cEV lipids in promoting cell transformation in the surrounding microenvironment.
    Keywords:  ER stress; extracellular vesicles; multi-omics; pancreatic cancer
    DOI:  https://doi.org/10.1002/jev2.12232
  17. Mol Cell. 2022 May 26. pii: S1097-2765(22)00442-7. [Epub ahead of print]
      Stress-induced cleavage of transfer RNAs (tRNAs) into tRNA-derived fragments (tRFs) occurs across organisms from yeast to humans; yet, its mechanistic underpinnings and pathological consequences remain poorly defined. Small RNA profiling revealed increased abundance of a cysteine tRNA fragment (5'-tRFCys) during breast cancer metastatic progression. 5'-tRFCys was required for efficient breast cancer metastatic lung colonization and cancer cell survival. We identified Nucleolin as the direct binding partner of 5'-tRFCys. 5'-tRFCys promoted the oligomerization of Nucleolin and its bound metabolic transcripts Mthfd1l and Pafah1b1 into a higher-order transcript stabilizing ribonucleoprotein complex, which protected these transcripts from exonucleolytic degradation. Consistent with this, Mthfd1l and Pafah1b1 mediated pro-metastatic and metabolic effects downstream of 5'-tRFCys-impacting folate, one-carbon, and phosphatidylcholine metabolism. Our findings reveal that a tRF can promote oligomerization of an RNA-binding protein into a transcript stabilizing ribonucleoprotein complex, thereby driving specific metabolic pathways underlying cancer progression.
    Keywords:  Mthfd1l; Pafah1b1; breast cancer; metastasis; nucleolin; oligomerization; post-transcriptional; tRF; tRNA fragment; transcript stability
    DOI:  https://doi.org/10.1016/j.molcel.2022.05.008
  18. Autophagy. 2022 Jun 02. 1-2
      During macroautophagy/autophagy, autophagosomes fuse with lysosomes to form autolysosomes. After fusion, the autophagosome inner membrane and enclosed substrates are degraded and transported out of lysosomes for recycling. The lysosomal membrane components are recycled by autophagic lysosome reformation (ALR) to generate new lysosomes. However, the fate of autophagosome outer membrane components on autolysosomes remains unknown. Our recent work discovered that autophagosome outer membrane components are not degraded but are recycled through an unidentified process which we named autophagosomal components recycling (ACR). Further investigation revealed the recycler complex (SNX4-SNX5-SNX17) responsible for ACR. The discovery of ACR not only fills a missing part in autophagy, but also reveals a new recycling pathway on autolysosomes.
    Keywords:  ATG9A; STX17; autophagosomal components recycling; autophagy; lysosome
    DOI:  https://doi.org/10.1080/15548627.2022.2083807
  19. Mol Cell Proteomics. 2022 May 27. pii: S1535-9476(22)00060-3. [Epub ahead of print] 100252
      Changes in the abundance of individual proteins in the proteome can be elicited by modulation of protein synthesis (the rate of input of newly synthesized proteins into the protein pool) or degradation (the rate of removal of protein molecules from the pool). A full understanding of proteome changes therefore requires a definition of the roles of these two processes in proteostasis, collectively known as protein turnover. Because protein turnover occurs even in the absence of overt changes in pool abundance, turnover measurements necessitate monitoring the flux of stable isotope labeled precursors through the protein pool such as labeled amino acids or metabolic precursors such as ammonium chloride or heavy water. In cells in culture, the ability to manipulate precursor pools by rapid medium changes is simple, but for more complex systems such as intact animals, the approach becomes more convoluted. Individual methods bring specific complications, and the suitability of different methods has not been comprehensively explored. In this study we compare the turnover rates of proteins across four mouse tissues, obtained from the same inbred mouse strain maintained under identical husbandry conditions, measured using either [13C6]lysine or [2H2]O as the labeling precursor. We show that for long-lived proteins, the two approaches yield essentially identical measures of the first order rate constant for degradation. For short-lived proteins, there is a need to compensate for the slower equilibration of lysine through the precursor pools. We evaluate different approaches to provide that compensation. We conclude that both labels are suitable, but careful determination of precursor enrichment kinetics in amino acid labeling is critical and has a considerable influence on the numerical values of the derived protein turnover rates.
    DOI:  https://doi.org/10.1016/j.mcpro.2022.100252
  20. Chem Biol Interact. 2022 May 30. pii: S0009-2797(22)00204-6. [Epub ahead of print] 109999
      Pulmonary fibrosis is a highly aggressive and lethal disease that currently lacks effective targeting therapies. Herein, we established a mouse model of pulmonary fibrosis induced by intratracheal instillation of bleomycin (BLM) in wild-type (WT) and 8-oxoguanine DNA glycosylase-1 (OGG1) knockout (Ogg1-/-) mice. TH5487, a specific small-molecule inhibitor of OGG1, was found to ameliorate BLM-induced pulmonary fibrosis in WT mice. Concomitantly, TH5487 treatment markedly suppressed the BLM-mediated alveolar epithelial-mesenchymal transition (EMT) and increase in OGG1 protein level in the lungs of WT mice. However, administration of TH5487 did not further improve this fibrotic transformation in Ogg1-/- mice. More importantly, adeno-associated virus-mediated lung-specific OGG1 overexpression accelerated alveolar EMT and the resultant fibrosis progression antagonized by TH5487 in the fibrotic lungs of WT mice, suggesting that the down-regulation of OGG1 protein level could be essential for TH5487 to exert its anti-fibrogenic function. Mechanism study in alveolar epithelial cells demonstrated that TH5487 treatment canceled TGF-β1-mediated suppression of NEDD4-like E3 ubiquitin ligase (NEDD4L), which ubiquitinated OGG1 and targeted it for proteasomal degradation. Furthermore, TH5487-mediated suppression of alveolar EMT and the fibrotic processes was counteracted by silencing OGG1 in TGF-β1-induced alveolar epithelial cells. Collectively, these data underline the potential of TH5487 as an effective anti-fibrotic agent for pulmonary fibrosis.
    Keywords:  8-Oxoguanine DNA glycosylase-1; NEDD4-like E3 ubiquitin ligase; Pulmonary fibrosis; TH5487; Ubiquitin
    DOI:  https://doi.org/10.1016/j.cbi.2022.109999
  21. Biochim Biophys Acta Mol Basis Dis. 2022 May 26. pii: S0925-4439(22)00123-5. [Epub ahead of print] 166453
      Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. The FA proteins have functions in genome maintenance and in the cytoplasmic process of selective autophagy, beyond their canonical roles of repairing DNA interstrand cross-links. FA core complex proteins FANCC, FANCF, FANCL, FANCA, FANCD2, BRCA1 and BRCA2, which previously had no known direct functions outside the nucleus, have recently been implicated in mitophagy. Although mutations in FANCL account for only a very small number of cases in FA families, it plays a key role in the FA pathophysiology and might drive carcinogenesis. Here, we demonstrate that FANCL protein is present in mitochondria in the control and Oligomycin and Antimycin (OA)-treated cells and its ubiquitin ligase activity is not required for its localization to mitochondria. CRISPR/Cas9-mediated knockout of FANCL in HeLa cells overexpressing parkin results in increased sensitivity to mitochondrial stress and defective clearing of damaged mitochondria upon OA treatment. This defect was reversed by the reintroduction of either wild-type FANCL or FANCL(C307A), a mutant lacking ubiquitin ligase activity. To summarize, FANCL protects from mitochondrial stress and supports Parkin-mediated mitophagy in a ubiquitin ligase-independent manner.
    Keywords:  FANCL; Fanconi anemia; Mitophagy; Parkin; Ubiquitin ligase
    DOI:  https://doi.org/10.1016/j.bbadis.2022.166453
  22. Nat Commun. 2022 Jun 02. 13(1): 3081
      Some misfolded protein conformations can bypass proteostasis machinery and remain soluble in vivo. This is an unexpected observation, as cellular quality control mechanisms should remove misfolded proteins. Three questions, then, are: how do long-lived, soluble, misfolded proteins bypass proteostasis? How widespread are such misfolded states? And how long do they persist? We address these questions using coarse-grain molecular dynamics simulations of the synthesis, termination, and post-translational dynamics of a representative set of cytosolic E. coli proteins. We predict that half of proteins exhibit misfolded subpopulations that bypass molecular chaperones, avoid aggregation, and will not be rapidly degraded, with some misfolded states persisting for months or longer. The surface properties of these misfolded states are native-like, suggesting they will remain soluble, while self-entanglements make them long-lived kinetic traps. In terms of function, we predict that one-third of proteins can misfold into soluble less-functional states. For the heavily entangled protein glycerol-3-phosphate dehydrogenase, limited-proteolysis mass spectrometry experiments interrogating misfolded conformations of the protein are consistent with the structural changes predicted by our simulations. These results therefore provide an explanation for how proteins can misfold into soluble conformations with reduced functionality that can bypass proteostasis, and indicate, unexpectedly, this may be a wide-spread phenomenon.
    DOI:  https://doi.org/10.1038/s41467-022-30548-5
  23. Nat Chem Biol. 2022 May 30.
      The selenoprotein glutathione peroxidase 4 (GPX4) prevents ferroptosis by converting lipid peroxides into nontoxic lipid alcohols. GPX4 has emerged as a promising therapeutic target for cancer treatment, but some cancer cells are resistant to ferroptosis triggered by GPX4 inhibition. Using a chemical-genetic screen, we identify LRP8 (also known as ApoER2) as a ferroptosis resistance factor that is upregulated in cancer. Loss of LRP8 decreases cellular selenium levels and the expression of a subset of selenoproteins. Counter to the canonical hierarchical selenoprotein regulatory program, GPX4 levels are strongly reduced due to impaired translation. Mechanistically, low selenium levels result in ribosome stalling at the inefficiently decoded GPX4 selenocysteine UGA codon, leading to ribosome collisions, early translation termination and proteasomal clearance of the N-terminal GPX4 fragment. These findings reveal rewiring of the selenoprotein hierarchy in cancer cells and identify ribosome stalling and collisions during GPX4 translation as ferroptosis vulnerabilities in cancer.
    DOI:  https://doi.org/10.1038/s41589-022-01033-3
  24. Nat Chem. 2022 May 30.
      Liquid-liquid phase separation (LLPS) of SynGAP and PSD-95, two abundant proteins that interact in the postsynaptic density (PSD) of neurons, has been implicated in modulating SynGAP PSD enrichment in excitatory synapses. However, the underlying regulatory mechanisms remain enigmatic. Here we report that O-GlcNAcylation of SynGAP acts as a suppressor of LLPS of the SynGAP/PSD-95 complex. We identified multiple O-GlcNAc modification sites for the endogenous SynGAP isolated from rat brain and the recombinantly expressed protein. Protein semisynthesis was used to generate site-specifically O-GlcNAcylated forms of SynGAP, and in vitro and cell-based LLPS assays demonstrated that T1306 O-GlcNAc of SynGAP blocks the interaction with PSD-95, thus inhibiting LLPS. Furthermore, O-GlcNAcylation suppresses SynGAP/PSD-95 LLPS in a dominant-negative manner, enabling sub-stoichiometric O-GlcNAcylation to exert effective regulation. We also showed that O-GlcNAc-dependent LLPS is reversibly regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). These findings demonstrate that OGT- and OGA-catalysed O-GlcNAc cycling may serve as an LLPS-regulating post-translational modification.
    DOI:  https://doi.org/10.1038/s41557-022-00946-9
  25. Life Sci Alliance. 2022 Oct;pii: e202000745. [Epub ahead of print]5(10):
      Turnover of synaptic vesicle (SV) proteins is vital for the maintenance of healthy and functional synapses. SV protein turnover is driven by neuronal activity in an endosomal sorting complex required for transport (ESCRT)-dependent manner. Here, we characterize a critical step in this process: axonal transport of ESCRT-0 component Hrs, necessary for sorting proteins into the ESCRT pathway and recruiting downstream ESCRT machinery to catalyze multivesicular body (MVB) formation. We find that neuronal activity stimulates the formation of presynaptic endosomes and MVBs, as well as the motility of Hrs+ vesicles in axons and their delivery to SV pools. Hrs+ vesicles co-transport ESCRT-0 component STAM1 and comprise a subset of Rab5+ vesicles, likely representing pro-degradative early endosomes. Furthermore, we identify kinesin motor protein KIF13A as essential for the activity-dependent transport of Hrs to SV pools and the degradation of SV membrane proteins. Together, these data demonstrate a novel activity- and KIF13A-dependent mechanism for mobilizing axonal transport of ESCRT machinery to facilitate the degradation of SV membrane proteins.
    DOI:  https://doi.org/10.26508/lsa.202000745
  26. Cell Chem Biol. 2022 May 24. pii: S2451-9456(22)00165-9. [Epub ahead of print]
      We describe a generalizable time-resolved Förster resonance energy transfer (TR-FRET)-based platform to profile the cellular action of heterobifunctional degraders (or proteolysis-targeting chimeras [PROTACs]) that is capable of both accurately quantifying protein levels in whole-cell lysates in less than 1 h and measuring small-molecule target engagement to endogenous proteins, here specifically for human bromodomain-containing protein 4 (BRD4). The detection mix consists of a single primary antibody targeting the protein of interest, a luminescent donor-labeled anti-species nanobody, and a fluorescent acceptor ligand. Importantly, our strategy can readily be applied to other targets of interest and will greatly facilitate the cell-based profiling of small-molecule inhibitors and PROTACs in a high-throughput format with unmodified cell lines. We furthermore validate our platform in the characterization of celastrol, a p-quinone methide-containing pentacyclic triterpenoid, as a broad cysteine-targeting E3 ubiquitin ligase warhead for potent and efficient targeted protein degradation.
    Keywords:  PROTAC; TR-FRET; celastrol; covalent; degrader; high-throughput; protein quantification; reversible; small molecules; targeted protein degradation
    DOI:  https://doi.org/10.1016/j.chembiol.2022.05.003
  27. J Cell Sci. 2022 May 30. pii: jcs.259280. [Epub ahead of print]
      NFAT5 is the only known mammalian tonicity-responsive transcription factor with essential role in cellular adaptation to hypertonic stress. It is also implicated in diverse physiological and pathological processes. NFAT5 activity is tightly regulated by extracellular tonicity, but the underlying mechanisms remain elusive. We demonstrated that NFAT5 enters the nucleus via the nuclear pore complex. We found that NFAT5 utilizes a unique nuclear localization signal (NFAT5-NLS) for nuclear import. siRNA screening revealed that only karyopherin β1 (KPNB1), but not karyopherin alpha, is responsible for the nuclear import of NFAT5 via direct interaction with the NFAT5-NLS. Proteomics analysis and siRNA screening further revealed that nuclear export of NFAT5 under hypotonicity is driven by Exportin-T, where the process requires RuvB-Like AAA type ATPase 2 (RUVBL2) as an indispensable chaperone. Our findings have identified an unconventional tonicity-dependent nucleocytoplasmic trafficking pathway for NFAT5, a critical step in orchestrating rapid cellular adaptation to change in extracellular tonicity. These findings offer an opportunity for the development of novel NFAT5 targeting strategies that are potentially useful for the treatment of diseases associated with NFAT5 dysregulation.
    Keywords:  KPNB1; NFAT5; RUVBL2; Tonicity; XPOT; nucleocytoplasmic trafficking
    DOI:  https://doi.org/10.1242/jcs.259280
  28. Nucleic Acids Res. 2022 May 27. pii: gkac366. [Epub ahead of print]
      During translation, nascent polypeptide chains travel from the peptidyl transferase center through the nascent polypeptide exit tunnel (NPET) to emerge from 60S subunits. The NPET includes portions of five of the six 25S/5.8S rRNA domains and ribosomal proteins uL4, uL22, and eL39. Internal loops of uL4 and uL22 form the constriction sites of the NPET and are important for both assembly and function of ribosomes. Here, we investigated the roles of eL39 in tunnel construction, 60S biogenesis, and protein synthesis. We show that eL39 is important for proper protein folding during translation. Consistent with a delay in processing of 27S and 7S pre-rRNAs, eL39 functions in pre-60S assembly during middle nucleolar stages. Our biochemical assays suggest the presence of eL39 in particles at these stages, although it is not visualized in them by cryo-electron microscopy. This indicates that eL39 takes part in assembly even when it is not fully accommodated into the body of pre-60S particles. eL39 is also important for later steps of assembly, rotation of the 5S ribonucleoprotein complex, likely through long range rRNA interactions. Finally, our data strongly suggest the presence of alternative pathways of ribosome assembly, previously observed in the biogenesis of bacterial ribosomal subunits.
    DOI:  https://doi.org/10.1093/nar/gkac366
  29. Mol Metab. 2022 May 27. pii: S2212-8778(22)00087-4. [Epub ahead of print] 101518
       OBJECTIVE: Regulation of proteasomal activity is an essential component of cellular proteostasis and function. This is evident in patients with mutations in proteasome subunits and associated regulators, who suffer from proteasome-associated autoinflammatory syndromes (PRAAS). These patients display lipodystrophy and fevers, which may be partly related to adipocyte malfunction and abnormal thermogenesis in adipose tissue. However, the cell-intrinsic pathways that could underlie these symptoms are unclear. Here, we investigate the impact of two proteasome subunits implicated in PRAAS, Psmb4 and Psmb8, on differentiation, function and proteostasis of brown adipocytes.
    METHODS: In immortalized mouse brown pre-adipocytes, levels of Psmb4, Psmb8, and downstream effectors genes were downregulated through reverse transfection with siRNA. Adipocytes were differentiated and analyzed with various assays of adipogenesis, lipogenesis, lipolysis, inflammation, and respiration.
    RESULTS: Loss of Psmb4, but not Psmb8, disrupted proteostasis and adipogenesis. Proteasome function was reduced upon Psmb4 loss, but partly recovered by the activation of Nuclear factor, erythroid-2, like-1 (Nfe2l1). In addition, cells displayed higher levels of surrogate inflammation and stress markers, including Activating transcription factor-3 (Atf3). Simultaneous silencing of Psmb4 and Atf3 lowered inflammation and restored adipogenesis.
    CONCLUSIONS: Our study shows that Psmb4 is required for adipocyte development and function in cultured adipocytes. These results imply that in humans with PSMB4 mutations, PRAAS-associated lipodystrophy is partly caused by disturbed adipogenesis. While we uncover a role for Nfe2l1 in the maintenance of proteostasis under these conditions, Atf3 is a key effector of inflammation and blocking adipogenesis. In conclusion, our work highlights how proteasome dysfunction is sensed and mitigated by the integrated stress response in adipocytes with potential relevance for PRAAS patients and beyond.
    Keywords:  ATF3; NFE2L1; PSMB4; adipocytes; brown adipose tissue; proteasome; proteostasis; ubiquitin
    DOI:  https://doi.org/10.1016/j.molmet.2022.101518
  30. Nat Cancer. 2022 Jun 02.
      Triple-negative breast cancer (TNBC) has a poor clinical outcome, due to a lack of actionable therapeutic targets. Herein we define lysosomal acid lipase A (LIPA) as a viable molecular target in TNBC and identify a stereospecific small molecule (ERX-41) that binds LIPA. ERX-41 induces endoplasmic reticulum (ER) stress resulting in cell death, and this effect is on target as evidenced by specific LIPA mutations providing resistance. Importantly, we demonstrate that ERX-41 activity is independent of LIPA lipase function but dependent on its ER localization. Mechanistically, ERX-41 binding of LIPA decreases expression of multiple ER-resident proteins involved in protein folding. This targeted vulnerability has a large therapeutic window, with no adverse effects either on normal mammary epithelial cells or in mice. Our study implicates a targeted strategy for solid tumors, including breast, brain, pancreatic and ovarian, whereby small, orally bioavailable molecules targeting LIPA block protein folding, induce ER stress and result in tumor cell death.
    DOI:  https://doi.org/10.1038/s43018-022-00389-8
  31. Curr Opin Neurobiol. 2022 May 29. pii: S0959-4388(22)00048-4. [Epub ahead of print]75 102554
      Macroautophagy (hereafter referred to as autophagy) is an essential quality-control pathway in neurons, which face unique functional and morphological challenges in maintaining the integrity of organelles and the proteome. To overcome these challenges, neurons have developed compartment-specific pathways for autophagy. In this review, we discuss the organization of the autophagy pathway, from autophagosome biogenesis, trafficking, to clearance, in the neuron. We dissect the compartment-specific mechanisms and functions of autophagy in axons, dendrites, and the soma. Furthermore, we highlight examples of how steps along the autophagy pathway are impaired in the context of aging and neurodegenerative disease, which underscore the critical importance of autophagy in maintaining neuronal function and survival.
    DOI:  https://doi.org/10.1016/j.conb.2022.102554
  32. Mol Cell Proteomics. 2022 May 30. pii: S1535-9476(22)00062-7. [Epub ahead of print] 100254
      All human diseases involve proteins, yet our current tools to characterize and quantify them are limited. To better elucidate proteins across space, time, and molecular composition, we provide a >10 year projection for technologies to meet the challenges that protein biology presents. With a broad perspective, we discuss grand opportunities to transition the science of proteomics into a more propulsive enterprise. Extrapolating recent trends, we describe a next generation of approaches to define, quantify and visualize the multiple dimensions of the proteome, thereby transforming our understanding and interactions with human disease in the coming decade.
    Keywords:  biotechnology; proteins; proteomics; single molecule sequencing; single-cell biology
    DOI:  https://doi.org/10.1016/j.mcpro.2022.100254