bims-proteo Biomed News
on Proteostasis
Issue of 2022–05–22
35 papers selected by
Eric Chevet, INSERM



  1. Nat Plants. 2022 May;8(5): 481-490
      Through dynamic activities of conserved master transcription factors (mTFs), the unfolded protein response (UPR) relieves proteostasis imbalance of the endoplasmic reticulum (ER), a condition known as ER stress1,2. Because dysregulated UPR is lethal, the competence for fate changes of the UPR mTFs must be tightly controlled3,4. However, the molecular mechanisms underlying regulatory dynamics of mTFs remain largely elusive. Here, we identified the abscisic acid-related regulator G-class bZIP TF2 (GBF2) and the cis-regulatory element G-box as regulatory components of the plant UPR led by the mTFs, bZIP28 and bZIP60. We demonstrate that, by competing with the mTFs at G-box, GBF2 represses UPR gene expression. Conversely, a gbf2 null mutation enhances UPR gene expression and suppresses the lethality of a bzip28 bzip60 mutant in unresolved ER stress. By demonstrating that GBF2 functions as a transcriptional repressor of the UPR, we address the long-standing challenge of identifying shared signalling components for a better understanding of the dynamic nature and complexity of stress biology. Furthermore, our results identify a new layer of UPR gene regulation hinged upon an antagonistic mTFs-GFB2 competition for proteostasis and cell fate determination.
    DOI:  https://doi.org/10.1038/s41477-022-01150-w
  2. Biochim Biophys Acta Proteins Proteom. 2022 May 12. pii: S1570-9639(22)00039-5. [Epub ahead of print] 140792
      As a misfolding protein, almost all of F508del-CFTR is degraded by the ubiquitin-proteasome system before its maturation, which results in no membrane expression of cystic fibrosis transmembrane conductance regulator (CFTR) and therefore, no chloride secretion across epithelial cells of cystic fibrosis (CF) patients. The conjugation of ubiquitin (Ub) chains to protein substrates is necessary for the proteasomal degradation of F508del-CFTR. Ubiquitin contains seven lysine (K) residues, all of which can be conjugated to one another, forming poly-ubiquitin chains on substrates, either by mixing together, or by only one type of lysine providing sorting signals for different pathways. Here, we report that four lysine-linked poly-Ub chains (LLPUCs) were involved in F508del-CFTR biogenesis: LLPUCs linked by K11 or K48 facilitated F508del-CFTR degradation, whereas the other two linked by K63 and K33 protected F508del-CFTR from degradation. LLPUC K11 is more potent for F508del-CFTR degradation than K48. F508del-CFTR utilizes four specific lysine-linked poly-Ub chains during its biogenesis for opposite destiny through different identification by proteasomal shuttle protein or receptors. These findings provide new insights into the CF pathogenesis and are expected to facilitate the development of therapies for this devastating disease.
    Keywords:  F508del-CFTR; Lysine linked polyubiquitin chain; Proteasomal degradation
    DOI:  https://doi.org/10.1016/j.bbapap.2022.140792
  3. J Cell Biol. 2022 Jun 06. pii: e202201036. [Epub ahead of print]221(6):
      The guided entry of tail-anchored proteins (GET) pathway targets C-terminally anchored transmembrane proteins and protects cells from lipotoxicity. Here, we reveal perturbed ergosterol production in ∆get3 cells and demonstrate the sensitivity of GET pathway mutants to the sterol synthesis inhibiting drug terbinafine. Our data uncover a key enzyme of sterol synthesis, the hairpin membrane protein squalene monooxygenase (Erg1), as a non-canonical GET pathway client, thus rationalizing the lipotoxicity phenotypes of GET pathway mutants. Get3 recognizes the hairpin targeting element of Erg1 via its classical client-binding pocket. Intriguingly, we find that the GET pathway is especially important for the acute upregulation of Erg1 induced by low sterol conditions. We further identify several other proteins anchored to the endoplasmic reticulum (ER) membrane exclusively via a hairpin as putative clients of the GET pathway. Our findings emphasize the necessity of dedicated targeting pathways for high-efficiency targeting of particular clients during dynamic cellular adaptation and highlight hairpin proteins as a potential novel class of GET clients.
    DOI:  https://doi.org/10.1083/jcb.202201036
  4. Nat Commun. 2022 May 18. 13(1): 2736
      The ubiquitin-proteasome axis has been extensively explored at a system-wide level, but the impact of deubiquitinating enzymes (DUBs) on the ubiquitinome remains largely unknown. Here, we compare the contributions of the proteasome and DUBs on the global ubiquitinome, using UbiSite technology, inhibitors and mass spectrometry. We uncover large dynamic ubiquitin signalling networks with substrates and sites preferentially regulated by DUBs or by the proteasome, highlighting the role of DUBs in degradation-independent ubiquitination. DUBs regulate substrates via at least 40,000 unique sites. Regulated networks of ubiquitin substrates are involved in autophagy, apoptosis, genome integrity, telomere integrity, cell cycle progression, mitochondrial function, vesicle transport, signal transduction, transcription, pre-mRNA splicing and many other cellular processes. Moreover, we show that ubiquitin conjugated to SUMO2/3 forms a strong proteasomal degradation signal. Interestingly, PARP1 is hyper-ubiquitinated in response to DUB inhibition, which increases its enzymatic activity. Our study uncovers key regulatory roles of DUBs and provides a resource of endogenous ubiquitination sites to aid the analysis of substrate specific ubiquitin signalling.
    DOI:  https://doi.org/10.1038/s41467-022-30376-7
  5. J Biol Chem. 2022 May 11. pii: S0021-9258(22)00466-5. [Epub ahead of print] 102026
      Long-term activation of inositol 1,4,5-trisphosphate receptors (IP3Rs) leads to their degradation by the ubiquitin-proteasome pathway. The first and rate-limiting step in this process is thought to be the association of conformationally active IP3Rs with the erlin1/2 complex, an endoplasmic reticulum-located oligomer of erlin1 and erlin2 that recruits the E3 ubiquitin ligase RNF170, but the molecular determinants of this interaction remain unknown. Here, through mutation of IP3R1, we show that the erlin1/2 complex interacts with the IP3R1 intralumenal loop 3 (IL3), the loop between transmembrane (TM) helices 5 and 6, and in particular, with a region close to TM5, since mutation of amino acids D-2471 and R-2472 can specifically block erlin1/2 complex association. Surprisingly, we found that additional mutations in IL3 immediately adjacent to TM5 (e.g., D2465N) almost completely abolish IP3R1 Ca2+ channel activity, indicating that the integrity of this region is critical to IP3R1 function. Finally, we demonstrate that inhibition of the ubiquitin-activating enzyme UBE1 by the small molecule inhibitor TAK-243 completely blocked IP3R1 ubiquitination and degradation without altering erlin1/2 complex association, confirming that association of the erlin1/2 complex is the primary event that initiates IP3R1 processing and that IP3R1 ubiquitination mediates IP3R1 degradation. Overall, these data localize the erlin1/2 complex binding site on IP3R1 to IL3 and show that the region immediately adjacent to TM5 is key to the events that facilitate channel opening.
    Keywords:  calcium channel; endoplasmic reticulum‐associated degradation; erlin1/2 complex; inositol trisphosphate receptor; protein‐protein interaction; ubiquitination
    DOI:  https://doi.org/10.1016/j.jbc.2022.102026
  6. Bioessays. 2022 May 19. e2200026
      The integrated stress response (ISR) is a key determinant of tumorigenesis in response to oncogenic forms of stress like genotoxic, proteotoxic and metabolic stress. ISR relies on the phosphorylation of the translation initiation factor eIF2 to promote the translational and transcriptional reprogramming of gene expression in stressed cells. While ISR promotes tumor survival under stress, its hyperactivation above a level of tolerance can also cause tumor death. The tumorigenic function of ISR has been recently demonstrated for lung adenocarcinomas (LUAD) with KRAS mutations. ISR mediates the translational repression of the dual-specificity phosphatase DUSP6 to stimulate ERK activity and LUAD growth. The significance of this finding is highlighted by the strong anti-tumor responses of ISR inhibitors in pre-clinical LUAD models. Elucidation of the mechanisms of ISR action in LUAD progression via cell-autonomous and immune regulatory mechanisms will provide a better understanding of its tumorigenic role to fully exploit its therapeutic potential in the treatment of a deadly form of cancer.
    Keywords:  KRAS oncogene; cancer therapeutics; lung adenocarcinoma; mRNA translation; oncogenic stress; transgenic mouse; translation initiation factor eIF2
    DOI:  https://doi.org/10.1002/bies.202200026
  7. Nat Commun. 2022 May 16. 13(1): 2703
      Protein sorting in the secretory pathway is essential for cellular compartmentalization and homeostasis in eukaryotic cells. The endoplasmic reticulum (ER) is the biosynthetic and folding factory of secretory cargo proteins. The cargo transport from the ER to the Golgi is highly selective, but the molecular mechanism for the sorting specificity is unclear. Here, we report that three ER membrane localized proteins, SUN3, SUN4 and SUN5, regulate ER sorting of leucine-rich repeat receptor kinases (LRR-RKs) to the plasma membrane. The triple mutant sun3/4/5 displays mis-sorting of these cargo proteins to acidic compartments and therefore impairs the growth of pollen tubes and the whole plant. Furthermore, the extracellular LRR domain of LRR-RKs is responsible for the correct sorting. Together, this study reports a mechanism that is important for the sorting of cell surface receptors.
    DOI:  https://doi.org/10.1038/s41467-022-30179-w
  8. Front Mol Biosci. 2022 ;9 871121
      Nascent polypeptides emerging from the ribosome during translation are rapidly scanned and processed by ribosome-associated protein biogenesis factors (RPBs). RPBs cleave the N-terminal formyl and methionine groups, assist cotranslational protein folding, and sort the proteins according to their cellular destination. Ribosomes translating inner-membrane proteins are recognized and targeted to the translocon with the help of the signal recognition particle, SRP, and SRP receptor, FtsY. The growing nascent peptide is then inserted into the phospholipid bilayer at the translocon, an inner-membrane protein complex consisting of SecY, SecE, and SecG. Folding of membrane proteins requires that transmembrane helices (TMs) attain their correct topology, the soluble domains are inserted at the correct (cytoplasmic or periplasmic) side of the membrane, and - for polytopic membrane proteins - the TMs find their interaction partner TMs in the phospholipid bilayer. This review describes the recent progress in understanding how growing nascent peptides are processed and how inner-membrane proteins are targeted to the translocon and find their correct orientation at the membrane, with the focus on biophysical approaches revealing the dynamics of the process. We describe how spontaneous fluctuations of the translocon allow diffusion of TMs into the phospholipid bilayer and argue that the ribosome orchestrates cotranslational targeting not only by providing the binding platform for the RPBs or the translocon, but also by helping the nascent chains to find their correct orientation in the membrane. Finally, we present the auxiliary role of YidC as a chaperone for inner-membrane proteins. We show how biophysical approaches provide new insights into the dynamics of membrane protein biogenesis and raise new questions as to how translation modulates protein folding.
    Keywords:  N-terminal processing; YidC; cotranslational folding; membrane insertion; membrane protein topology; membrane targeting; translocon
    DOI:  https://doi.org/10.3389/fmolb.2022.871121
  9. Biosci Rep. 2022 May 17. pii: BSR20211699. [Epub ahead of print]
      Eukaryotic initiation factor 2B, eIF2B is a guanine nucleotide exchange, factor with a central role in coordinating the initiation of translation.  During stress and disease, the activity of eIF2B is inhibited via the phosphorylation of its substrate eIF2 (p-eIF2α).  A number of different kinases respond to various stresses leading to the phosphorylation of the alpha subunit of eIF2 and collectively this regulation is known as the Integrated Stress Response, ISR.  This targeting of eIF2B allows the cell to regulate protein synthesis and reprogramme gene expression to restore homeostasis. Advances within structural biology have furthered our understanding of how eIF2B interacts with eIF2 in both the productive GEF active form and the non-productive eIF2ɑ phosphorylated form. Here, current knowledge of the role of eIF2B in the ISR is discussed within the context of normal and disease states focussing particularly on diseases such as Vanishing White Matter Disease (VWMD) and Permanent Neonatal Diabetes Mellitus (PNDM), which are directly linked to mutations in eIF2B.  The role of eIF2B in synaptic plasticity and memory formation is also discussed. In addition, the cellular localisation of eIF2B is reviewed and considered along with the role of additional in vivo eIF2B binding factors and protein modifications that may play a role in modulating eIF2B activity during health and disease.
    Keywords:  Protein synthesis; Translational Control; cellular targeting; eukaryotic gene expression; stress response
    DOI:  https://doi.org/10.1042/BSR20211699
  10. Cancer Drug Resist. 2021 ;4(2): 365-381
      Epithelial cancer of the ovary exhibits the highest mortality rate of all gynecological malignancies in women today, since the disease is often diagnosed in advanced stages. While the treatment of cancer with specific chemical agents or drugs is the favored treatment regimen, chemotherapy resistance greatly impedes successful ovarian cancer chemotherapy. Thus, chemoresistance becomes one of the most critical clinical issues confronted when treating patients with ovarian cancer. Convincing evidence hints that dysregulation of E3 ubiquitin ligases is a key factor in the development and maintenance of ovarian cancer chemoresistance. This review outlines recent advancement in our understanding of the emerging roles of E3 ubiquitin ligases in ovarian cancer chemoresistance. We also highlight currently available inhibitors targeting E3 ligase activities and discuss their potential for clinical applications in treating chemoresistant ovarian cancer patients.
    Keywords:  E3 ubiquitin ligases; Ovarian cancer; chemoresistance; inhibitor
    DOI:  https://doi.org/10.20517/cdr.2020.115
  11. Biochim Biophys Acta Rev Cancer. 2022 May 16. pii: S0304-419X(22)00061-0. [Epub ahead of print] 188736
      The mitogen-activated protein kinase (MAPK) signaling pathway is the primary regulatory module of various cellular processes such as cell proliferation, differentiation, and stress responses. This pathway converts external stimuli to cellular responses via three major kinases: mitogen-activated protein kinase (MAPK), mitogen-activated protein kinase kinase (MAPKK), and mitogen-activated protein kinase kinase kinase (MAPKKK). Ubiquitination is a post-translational modification of proteins with ubiquitin, which results in the formation of mono- or poly-ubiquitin chains of substrate proteins. Conversely, removal of the ubiquitin by deubiquitinating enzymes (DUBs) is known as deubiquitination. This review summarizes mechanisms of the MAPK signaling pathways (ERK1/2, ERK5, p38, and JNK1/2/3 signaling pathway) in cancers, and of E3 ligases and DUBs that target the MAPK signaling components such as Raf, MEK1/2, ERK1/2, MEKK2/3, MEKK1-4, TAK1, DLK1, MLK1-4, ASK1/2, and MKK3-7.
    Keywords:  Cancer therapeutics; Deubiquitination; Mitogen-activated protein kinase; Ubiquitination
    DOI:  https://doi.org/10.1016/j.bbcan.2022.188736
  12. PLoS Biol. 2022 May 16. 20(5): e3001636
      The recent revolution in computational protein structure prediction provides folding models for entire proteomes, which can now be integrated with large-scale experimental data. Mass spectrometry (MS)-based proteomics has identified and quantified tens of thousands of posttranslational modifications (PTMs), most of them of uncertain functional relevance. In this study, we determine the structural context of these PTMs and investigate how this information can be leveraged to pinpoint potential regulatory sites. Our analysis uncovers global patterns of PTM occurrence across folded and intrinsically disordered regions. We found that this information can help to distinguish regulatory PTMs from those marking improperly folded proteins. Interestingly, the human proteome contains thousands of proteins that have large folded domains linked by short, disordered regions that are strongly enriched in regulatory phosphosites. These include well-known kinase activation loops that induce protein conformational changes upon phosphorylation. This regulatory mechanism appears to be widespread in kinases but also occurs in other protein families such as solute carriers. It is not limited to phosphorylation but includes ubiquitination and acetylation sites as well. Furthermore, we performed three-dimensional proximity analysis, which revealed examples of spatial coregulation of different PTM types and potential PTM crosstalk. To enable the community to build upon these first analyses, we provide tools for 3D visualization of proteomics data and PTMs as well as python libraries for data accession and processing.
    DOI:  https://doi.org/10.1371/journal.pbio.3001636
  13. Nat Commun. 2022 May 19. 13(1): 2763
      Nuclear position is central to cell polarization, and its disruption is associated with various pathologies. The nucleus is moved away from the leading edge of migrating cells through its connection to moving dorsal actin cables, and the absence of connections to immobile ventral stress fibers. It is unclear how these asymmetric nucleo-cytoskeleton connections are established. Here, using an in vitro wound assay, we find that remodeling of endoplasmic reticulum (ER) impacts nuclear positioning through the formation of a barrier that shields immobile ventral stress fibers. The remodeling of ER and perinuclear ER accumulation is mediated by the ER shaping protein Climp-63. Furthermore, ectopic recruitment of the ER to stress fibers restores nuclear positioning in the absence of Climp-63. Our findings suggest that the ER mediates asymmetric nucleo-cytoskeleton connections to position the nucleus.
    DOI:  https://doi.org/10.1038/s41467-022-30388-3
  14. Gene. 2022 May 14. pii: S0378-1119(22)00381-X. [Epub ahead of print] 146562
      Ubiquitination of substrates usually have two fates: one is degraded by 26S proteasome, and the other is non-degradative ubiquitination modification which is associated with cell cycle regulation, chromosome inactivation, protein transportation, tumorigenesis, achondroplasia, and neurological diseases. Cullin3 (CUL3), a scaffold protein, binding with the Bric-a-Brac-Tramtrack-Broad-complex (BTB) domain of substrates recognition adaptor and RING-finger protein 1 (RBX1) form ubiquitin ligases (E3). Based on the current researches, this review has summarized the functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
    Keywords:  Cullin3; Non-degradative; Ubiquitin ligases; ubiquitination
    DOI:  https://doi.org/10.1016/j.gene.2022.146562
  15. Redox Biol. 2022 May 13. pii: S2213-2317(22)00101-X. [Epub ahead of print]53 102329
      During metastasis cancer cells must adapt to survive loss of anchorage and evade anoikis. An important pro-survival adaptation is the ability of metastatic tumor cells to increase their antioxidant capacity and restore cellular redox balance. Although much is known about the transcriptional regulation of antioxidant enzymes in response to stress, how cells acutely adapt to alter antioxidant enzyme levels is less well understood. Using ovarian cancer cells as a model, we demonstrate that an increase in mitochondrial superoxide dismutase SOD2 protein expression is a very early event initiated in response to detachment, an important step during metastasis that has been associated with increased oxidative stress. SOD2 protein synthesis is rapidly induced within 0.5-2 h of matrix detachment, and polyribosome profiling demonstrates an increase in the number of ribosomes bound to SOD2 mRNA, indicating an increase in SOD2 mRNA translation in response to anchorage-independence. Mechanistically, we find that anchorage-independence induces cytosolic accumulation of the RNA binding protein HuR/ELAVL1 and promotes HuR binding to SOD2 mRNA. Using HuR siRNA-mediated knockdown, we show that the presence of HuR is necessary for the increase in SOD2 mRNA association with the heavy polyribosome fraction and consequent nascent SOD2 protein synthesis in anchorage-independence. Cellular detachment also activates the stress-response mitogen-activated kinase p38, which is necessary for HuR-SOD2 mRNA interactions and induction of SOD2 protein output. These findings illustrate a novel translational regulatory mechanism of SOD2 by which ovarian cancer cells rapidly increase their mitochondrial antioxidant capacity as an acute stress response to anchorage-independence.
    DOI:  https://doi.org/10.1016/j.redox.2022.102329
  16. J Cell Physiol. 2022 May 16.
      The ubiquitin-specific peptidase 9 X-linked (USP9X) is one of the highly conserved members belonging to the ubiquitin-specific proteases (USPs) family, which has been reported to control substrates-mediated biological functions through deubiquitinating and stabilizing substrates. Here, we have found that TGFBR2, the type II receptor of the transforming growth factor beta (TGF-β) signaling pathway, is a novel substrate and indirect transcription target of deubiquitylase USP9X in granulosa cells (GCs). Mechanically, USP9X positively influences the expression of TGFBR2 at different levels through two independent ways: (i) directly targets and deubiquitinates TGFBR2, which maintains the protein stability of TGFBR2 through avoiding degradation mediated by ubiquitin-proteasome system; (ii) indirectly maintains TGFBR2 messenger RNA (mRNA) expression via SMAD4/miR-143 axis. Specifically, SMAD4, another substrate of USP9X, acts as a transcription factor and suppresses miR-143 which inhibits the mRNA level of TGFBR2 by directly binding to its 3'-untranslated region. Functionally, the maintenance of TGFBR2 by USP9X activates the TGF-β signaling pathway, which further represses GC apoptosis. Our study highlights a functional micro-regulatory network composed of deubiquitinase (USP9X), small noncoding RNA (miR-143) and the TGF-β signaling pathway, which plays a crucial role in the regulation of GC apoptosis and female fertility.
    Keywords:  TGF-β signaling pathway; TGFBR2; USP9X; deubiquitination; granulosa cell apoptosis
    DOI:  https://doi.org/10.1002/jcp.30776
  17. iScience. 2022 May 20. 25(5): 104282
      The major heat shock protein Hsp70 forms a complex with a scaffold protein Bag3 that links it to components of signaling pathways. Via these interactions, the Hsp70-Bag3 module functions as a proteotoxicity sensor that controls cell signaling. Here, to search for pathways regulated by the complex, we utilized JG-98, an allosteric inhibitor of Hsp70 that blocks its interaction with Bag3. RNAseq followed by the pathway analysis indicated that several signaling pathways including UPR were activated by JG-98. Surprisingly, only the eIF2α-associated branch of the UPR was activated, while other UPR branches were not induced, suggesting that the response was unrelated to the ER proteotoxicity and ER-associated kinase PERK1. Indeed, induction of the UPR genes under these conditions was driven by a distinct eIF2α kinase HRI. Hsp70-Bag3 directly interacted with HRI and regulated eIF2α phosphorylation upon cytoplasmic proteotoxicity. Therefore, cytosolic proteotoxicity can activate certain UPR genes via Hsp70-Bag3-HRI-eIF2α axis.
    Keywords:  Molecular biology; Molecular interaction; Protein
    DOI:  https://doi.org/10.1016/j.isci.2022.104282
  18. Elife. 2022 May 16. pii: e75526. [Epub ahead of print]11
      Aneuploidy, a state of chromosome imbalance, is a hallmark of human tumors, but its role in cancer still remains to be fully elucidated. To understand the consequences of whole-chromosome-level aneuploidies on the proteome, we integrated aneuploidy, transcriptomic and proteomic data from hundreds of TCGA/CPTAC tumor samples. We found a surprisingly large number of expression changes happened on other, non-aneuploid chromosomes. Moreover, we identified an association between those changes and co-complex members of proteins from aneuploid chromosomes. This co-abundance association is tightly regulated for aggregation-prone aneuploid proteins and those involved in a smaller number of complexes. On the other hand, we observe that complexes of the cellular core machinery are under functional selection to maintain their stoichiometric balance in aneuploid tumors. Ultimately, we provide evidence that those compensatory and functional maintenance mechanisms are established through post-translational control and that the degree of success of a tumor to deal with aneuploidy-induced stoichiometric imbalance impacts the activation of cellular protein degradation programs and patient survival.
    Keywords:  cancer biology; computational biology; human; systems biology
    DOI:  https://doi.org/10.7554/eLife.75526
  19. Life Sci Alliance. 2022 Sep;pii: e202101241. [Epub ahead of print]5(9):
      Hikeshi mediates the nuclear import of the molecular chaperone HSP70 under heat-shock (acute heat stress) conditions, which is crucial for recovery from cellular damage. The cytoplasmic function of HSP70 is well studied, but its nuclear roles, particularly under nonstressed conditions, remain obscure. Here, we show that Hikeshi regulates the nucleocytoplasmic distribution of HSP70 not only under heat-shock conditions but also under nonstressed conditions. Nuclear HSP70 affects the transcriptional activity of HSF1 and nuclear proteostasis under nonstressed conditions. Depletion of Hikeshi induces a reduction in nuclear HSP70 and up-regulation of the mRNA expression of genes regulated by HSF1 under nonstressed conditions. In addition, the heat-shock response is impaired in Hikeshi-knockout cells. Our results suggest that HSF1 transcriptional activity is tightly regulated by nuclear HSP70 because nuclear-localized Hsp70 effectively suppresses transcriptional activity in a dose-dependent manner. Furthermore, the cytotoxicity of nuclear pathologic polyglutamine proteins was increased by Hikeshi depletion. Thus, proper nucleocytoplasmic distribution of HSP70, mediated by Hikeshi, is required for nuclear proteostasis and adaptive response to heat shock.
    DOI:  https://doi.org/10.26508/lsa.202101241
  20. Blood Rev. 2022 May 16. pii: S0268-960X(22)00045-5. [Epub ahead of print] 100971
      The ubiquitin-proteasome system is the crucial homeostatic mechanism responsible for the degradation and turnover of proteins. As such, alterations at this level are often associated with oncogenic processes, either through accumulation of undegraded pathway effectors or, conversely, excessive degradation of tumor-suppressing factors. Therefore, investigation of the ubiquitin- proteasome system has gained much attraction in recent years, especially in the context of hematological malignancies, giving rise to efficient therapeutics such as bortezomib for multiple myeloma. Current investigations are now focused on manipulating protein degradation via fine-tuning of the ubiquitination process through inhibition of deubiquitinating enzymes or development of PROTAC systems for stimulation of ubiquitination and protein degradation. On the other hand, the efficiency of Thalidomide derivates in myelodysplastic syndromes (MDS), such as Lenalidomide, acted as the starting point for the development of targeted leukemia-associated protein degradation molecules. These novel molecules display high efficiency in overcoming the limitations of current therapeutic regimens, such as refractory diseases. Therefore, in this manuscript we will address the therapeutic opportunities and strategies based on the ubiquitin-proteasome system, ranging from the modulation of deubiquitinating enzymes and, conversely, describing the potential of modern targeted protein degrading molecules and their progress into clinical implementation.
    Keywords:  Lenalidomide; PROTACs; Proteasome; Targeted protein degradation; Ubiquitination
    DOI:  https://doi.org/10.1016/j.blre.2022.100971
  21. Curr Biol. 2022 May 10. pii: S0960-9822(22)00671-6. [Epub ahead of print]
      Autophagy is a conserved, multi-step process of capturing proteolytic cargo in autophagosomes for lysosome degradation. The capacity to remove toxic proteins that accumulate in neurodegenerative disorders attests to the disease-modifying potential of the autophagy pathway. However, neurons respond only marginally to conventional methods for inducing autophagy, limiting efforts to develop therapeutic autophagy modulators for neurodegenerative diseases. The determinants underlying poor autophagy induction in neurons and the degree to which neurons and other cell types are differentially sensitive to autophagy stimuli are incompletely defined. Accordingly, we sampled nascent transcript synthesis and stabilities in fibroblasts, induced pluripotent stem cells (iPSCs), and iPSC-derived neurons (iNeurons), thereby uncovering a neuron-specific stability of transcripts encoding myotubularin-related phosphatase 5 (MTMR5). MTMR5 is an autophagy suppressor that acts with its binding partner, MTMR2, to dephosphorylate phosphoinositides critical for autophagy initiation and autophagosome maturation. We found that MTMR5 is necessary and sufficient to suppress autophagy in iNeurons and undifferentiated iPSCs. Using optical pulse labeling to visualize the turnover of endogenously encoded proteins in live cells, we observed that knockdown of MTMR5 or MTMR2, but not the unrelated phosphatase MTMR9, significantly enhances neuronal degradation of TDP-43, an autophagy substrate implicated in several neurodegenerative diseases. Our findings thus establish a regulatory mechanism of autophagy intrinsic to neurons and targetable for clearing disease-related proteins in a cell-type-specific manner. In so doing, our results not only unravel novel aspects of neuronal biology and proteostasis but also elucidate a strategy for modulating neuronal autophagy that could be of high therapeutic potential for multiple neurodegenerative diseases.
    Keywords:  RNA stability; TDP-43; autophagosome; iPSCs; induced pluripotent stem cells; macroautophagy; myotubularin; neuronal autophagy; optical pulse labeling; phosphoinositide
    DOI:  https://doi.org/10.1016/j.cub.2022.04.053
  22. J Mol Biol. 2022 May 16. pii: S0022-2836(22)00214-5. [Epub ahead of print] 167634
      Ubiquitination, an important posttranslational modification, participates in virtually all aspects of cellular functions and is reversed by deubiquitinating enzymes (DUBs). Ubiquitin-specific protease 34 (USP34) plays an essential role in cancer, neurodegenerative diseases, and osteogenesis. Despite its functional importance, how USP34 recognizes ubiquitin and catalyzes deubiquitination remains structurally uncharacterized. Here, we report the crystal structures of the USP34 catalytic domain in free state and after binding with ubiquitin. In the free state, USP34 adopts an inactive conformation, which contains a misaligned catalytic histidine in the triad. Comparison of USP34 structures before and after ubiquitin binding reveals a structural basis for ubiquitin recognition and elucidates a mechanism by which the catalytic triad is realigned. Transition from an open inactive state to a relatively closed active state is coupled to a process by which the "fingertips" of USP34 intimately grip ubiquitin, and this has not been reported before. Our structural and biochemical analyses provide important insights into the catalytic mechanism and ubiquitin recognition of USP34.
    Keywords:  Ubiquitin-specific protease; catalytic mechanism; crystal structure; ubiquitin recognition
    DOI:  https://doi.org/10.1016/j.jmb.2022.167634
  23. J Cell Sci. 2022 May 18. pii: jcs.259514. [Epub ahead of print]
      Neural precursor cell-expressed developmentally down-regulated 8 (NEDD8), an ubiquitin-like protein, is an essential regulator for the DNA damage response. Numerous studies have shown that neddylation dysfunction causes several human diseases, such as cancer. Hence, clarifying the regulatory mechanism for neddylation could provide insight into the mechanism of genome stability underlying the DNA damage response (DDR) and carcinogenesis. Here, we demonstrate that dual-specificity tyrosine-regulated kinase 2 (DYRK2) is a novel regulator of neddylation and maintains genome stability. Deletion of DYRK2 leads to persistent DNA double-stand breaks (DSBs) and subsequent genome instability. Mechanistically, DYRK2 promotes neddylation through forming a complex with NAE1, which is a component of NEDD8-activating enzyme E1, and maintaining its protein level by suppressing polyubiquitination. The present study is the first to demonstrate that DYRK2 controls neddylation and is necessary for maintaining genome stability.
    Keywords:  DNA damage response; DNA double-stand breaks; DYRK2; Genome stability; NEDD8; Neddylation
    DOI:  https://doi.org/10.1242/jcs.259514
  24. J Biol Chem. 2022 May 17. pii: S0021-9258(22)00478-1. [Epub ahead of print] 102038
      Protein transport to peroxisomes requires various proteins, such as receptors in the cytosol and components of the transport machinery on peroxisomal membranes. The Arabidopsis apem (aberrant peroxisome morphology) mutant apem7 shows decreased efficiency of peroxisome targeting signal 1 (PTS1)-dependent protein transport to peroxisomes. In apem7 mutants, PTS2-dependent protein transport is also disturbed and plant growth is repressed. The APEM7 gene encodes a protein homologous to peroxin 4 (PEX4), which belongs to the ubiquitin-conjugating (UBC) protein family; however, the UBC activity of Arabidopsis PEX4 remains to be investigated. Here we show using electron microscopy and immunoblot analysis using specific PEX4 antibodies and in vitro transcription/translation assay that PEX4 localizes to peroxisomal membranes and possesses UBC activity. We found that the substitution of proline with leucine by apem7 mutation alters ubiquitination of PEX4. Furthermore, substitution of the active-site cysteine residue at position 90 in PEX4, which was predicted to be a ubiquitin-conjugation site, with alanine did not restore the apem7 phenotype. Taken together, these findings indicate that abnormal ubiquitination in the apem7 mutant alters ubiquitin signaling during the process of protein transport, suggesting that the UBC activity of PEX4 is indispensable for efficient protein transport to peroxisomes.
    Keywords:  Arabidopsis thaliana; PEX; apem mutant; peroxisome; protein transport; ubiquitin-conjugating enzyme; ubiquitination
    DOI:  https://doi.org/10.1016/j.jbc.2022.102038
  25. Clin Cancer Res. 2022 May 18. pii: clincanres.3347.2021. [Epub ahead of print]
       PURPOSE: Cereblon (CRBN), a substrate receptor of the E3 ubiquitin ligase complex CRL4CRBN, is the target of the small molecules lenalidomide (Len) and avadomide (Ava). Upon binding of the drugs, Aiolos and Ikaros are recruited to the E3 ligase, ubiquitylated and subsequently degraded. In DLBCL cells, Aiolos and Ikaros are direct transcriptional repressors of interferon stimulated genes (ISG) and degradation of these substrates results in increased ISG protein levels resulting in decreased proliferation and apoptosis. Herein, we aimed to uncover the mechanism(s) Aiolos and Ikaros use to repress ISG transcription and provide a mechanistic rationale for a combination strategy enhance cell autonomous activites of CELMoDs Experimental design: We conducted paired RNAseq with histone modification and Aiolos/Ikaros ChIP-seq to identify genes regulated by these transcription factors and to elucidate correlations to drug sensitivity. We confirmed Aiolos/Ikaros mediated transcriptional complex formation in DLBCL patient samples including those treated with avadomide.
    RESULTS: In DLBCL, the repression of ISG transcription is accomplished in part through recruitment of large transcriptional complexes such as the nucleosome remodeling and deacetylase (NuRD) which modify the chromatin landscape of these promoters. A rational combination approach of Ava with a specific HDAC inhibitor leads to a significant increase in ISG transcription compared to either single agent, and synergistic antiproliferative activity in DLBCL cell lines.
    CONCLUSION: Our results provide a novel role for lineage factors Aiolos and Ikaros in DLBCL as well as further insight into the mechanism(s) of Aiolos and Ikaros mediated transcriptional repression and unique therapeutic combination strategies.
    DOI:  https://doi.org/10.1158/1078-0432.CCR-21-3347
  26. Nat Commun. 2022 May 18. 13(1): 2727
      The biological role of RNA-binding proteins in the secretory pathway is not well established. Here, we describe that human HDLBP/Vigilin directly interacts with more than 80% of ER-localized mRNAs. PAR-CLIP analysis reveals that these transcripts represent high affinity HDLBP substrates and are specifically bound in their coding sequences (CDS), in contrast to CDS/3'UTR-bound cytosolic mRNAs. HDLBP crosslinks strongly to long CU-rich motifs, which frequently reside in CDS of ER-localized mRNAs and result in high affinity multivalent interactions. In addition to HDLBP-ncRNA interactome, quantification of HDLBP-proximal proteome confirms association with components of the translational apparatus and the signal recognition particle. Absence of HDLBP results in decreased translation efficiency of HDLBP target mRNAs, impaired protein synthesis and secretion in model cell lines, as well as decreased tumor growth in a lung cancer mouse model. These results highlight a general function for HDLBP in the translation of ER-localized mRNAs and its relevance for tumor progression.
    DOI:  https://doi.org/10.1038/s41467-022-30322-7
  27. PLoS Genet. 2022 May;18(5): e1010171
      MDM2 and MDM4 are key regulators of p53 and function as oncogenes when aberrantly expressed. MDM2 and MDM4 partner to suppress p53 transcriptional transactivation and polyubiquitinate p53 for degradation. The importance of MDM2 E3-ligase-mediated p53 regulation remains controversial. To resolve this, we generated mice with an Mdm2 L466A mutation that specifically compromises E2 interaction, abolishing MDM2 E3 ligase activity while preserving its ability to bind MDM4 and suppress p53 transactivation. Mdm2L466A/L466A mice exhibit p53-dependent embryonic lethality, demonstrating MDM2 E3 ligase activity is essential for p53 regulation in vivo. Unexpectedly, cells expressing Mdm2L466A manifest cell cycle G2-M transition defects and increased aneuploidy even in the absence of p53, suggesting MDM2 E3 ligase plays a p53-independent role in cell cycle regulation and genome integrity. Furthermore, cells bearing the E3-dead MDM2 mutant show aberrant cell cycle regulation in response to DNA damage. This study uncovers an uncharacterized role for MDM2's E3 ligase activity in cell cycle beyond its essential role in regulating p53's stability in vivo.
    DOI:  https://doi.org/10.1371/journal.pgen.1010171
  28. Chem Soc Rev. 2022 May 19.
      Targeted protein degradation (TPD) strategies have revolutionized how scientists tackle challenging protein targets deemed undruggable with traditional small molecule inhibitors. Many promising campaigns to inhibit proteins have failed due to factors surrounding inhibition selectivity and targeting of compounds to specific tissues and cell types. One of the major improvements that PROTAC (proteolysis targeting chimera) and molecular glue technology can exert is highly selective control of target inhibition. Multiple studies have shown that PROTACs can gain selectivity for their protein targets beyond that of their parent ligands via optimization of linker length and stabilization of ternary complexes. Due to the bifunctional nature of PROTACs, the tissue selective nature of E3 ligases can be exploited to uncover novel targeting mechanisms. In this review, we provide critical analysis of the recent progress towards making selective PROTAC molecules and new PROTAC technologies that will continue to push the boundaries of achieving selectivity. These efforts have wide implications in the future of treating disease as they will broaden the possible targets that can be addressed by small molecules, like undruggable proteins or broadly active targets that would benefit from degradation in specific tissue types.
    DOI:  https://doi.org/10.1039/d2cs00200k
  29. PLoS One. 2022 ;17(5): e0268563
      Sigma-1 receptor (Sig1R) is an endoplasmic reticulum (ER)-related membrane protein, that forms heteromers with other cellular proteins. As the mechanism of action of this chaperone protein remains unclear, the aim of the present study was to detect and analyze the intracellular dynamics of Sig1R in live cells using super-resolution imaging microscopy. For that, the Sig1R-yellow fluorescent protein conjugate (Sig1R-YFP) together with fluorescent markers of cell organelles were transfected into human ovarian adenocarcinoma (SK-OV-3) cells with BacMam technology. Sig1R-YFP was found to be located mainly in the nuclear envelope and in both tubular and vesicular structures of the ER but was not detected in the plasma membrane, even after activation of Sig1R with agonists. The super-resolution radial fluctuations approach (SRRF) performed with a highly inclined and laminated optical sheet (HILO) fluorescence microscope indicated substantial overlap of Sig1R-YFP spots with KDEL-mRFP, slight overlap with pmKate2-mito and no overlap with the markers of endosomes, peroxisomes, lysosomes, or caveolae. Activation of Sig1R with (+)-pentazocine caused a time-dependent decrease in the overlap between Sig1R-YFP and KDEL-mRFP, indicating that the activation of Sig1R decreases its colocalization with the marker of vesicular ER and does not cause comprehensive translocations of Sig1R in cells.
    DOI:  https://doi.org/10.1371/journal.pone.0268563
  30. Autophagy. 2022 May 15. 1-18
      The yeast PROPPIN Atg18 folds as a β-propeller with two binding sites for phosphatidylinositol-3-phosphate (PtdIns3P) and PtdIns(3,5)P2 at its circumference. Membrane insertion of an amphipathic loop of Atg18 leads to membrane tubulation and fission. Atg18 has known functions at the PAS during macroautophagy, but the functional relevance of its endosomal and vacuolar pool is not well understood. Here we show in a proximity-dependent labeling approach and by co-immunoprecipitations that Atg18 interacts with Vps35, a central component of the retromer complex. The binding of Atg18 to Vps35 is competitive with the sorting nexin dimer Vps5 and Vps17. This suggests that Atg18 within the retromer can substitute for both the phosphoinositide binding and the membrane bending capabilities of these sorting nexins. Indeed, we found that Atg18-retromer is required for PtdIns(3,5)P2-dependent vacuolar fragmentation during hyperosmotic stress. The Atg18-retromer is further involved in the normal sorting of the integral membrane protein Atg9. However, PtdIns3P-dependent macroautophagy and the selective cytoplasm-to-vacuole targeting (Cvt) pathway are only partially affected by the Atg18-retromer. We expect that this is due to the plasticity of the different sorting pathways within the endovacuolar system.Abbreviations:BAR: bin/amphiphysin/Rvs; FOA: 5-fluoroorotic acid; PAS: phagophore assembly site; PROPPIN: beta-propeller that binds phosphoinositides; PtdIns3P: phosphatidylinositol-3-phosphate; PX: phox homology.
    Keywords:  Atg18; Atg9; PROPPIN; Vps35; retrograde transport; retromer; vacuolar fragmentation
    DOI:  https://doi.org/10.1080/15548627.2022.2072656
  31. Science. 2022 May 20. 376(6595): 818-823
      In many vertebrate and invertebrate organisms, gametes develop within groups of interconnected cells called germline cysts formed by several rounds of incomplete divisions. We found that loss of the deubiquitinase USP8 gene in Drosophila can transform incomplete divisions of germline cells into complete divisions. Conversely, overexpression of USP8 in germline stem cells is sufficient for the reverse transformation from complete to incomplete cytokinesis. The ESCRT-III proteins CHMP2B and Shrub/CHMP4 are targets of USP8 deubiquitinating activity. In Usp8 mutant sister cells, ectopic recruitment of ESCRT proteins at intercellular bridges causes cysts to break apart. A Shrub/CHMP4 variant that cannot be ubiquitinated does not localize at abscission bridges and cannot complete abscission. Our results uncover ubiquitination of ESCRT-III as a major switch between two types of cell division.
    DOI:  https://doi.org/10.1126/science.abg2653
  32. Annu Rev Cell Dev Biol. 2022 May 19.
      While cellular proteins were initially thought to be stable, research over the last decades has firmly established that intracellular protein degradation is an active and highly regulated process: Lysosomal, proteasomal, and mitochondrial degradation systems were identified and found to be involved in a staggering number of biological functions. Here, we provide a global overview of the diverse roles of cellular protein degradation using seven categories: homeostasis, regulation, quality control, stoichiometry control, proteome remodeling, immune surveillance, and baseline turnover. Using selected examples, we outline how proteins are degraded and why this is functionally relevant. Expected final online publication date for the Annual Review of Cell and Developmental Biology Volume 38 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    DOI:  https://doi.org/10.1146/annurev-cellbio-120420-091943
  33. Nat Commun. 2022 May 20. 13(1): 2815
      Synonymous codons translate into chemically identical amino acids. Once considered inconsequential to the formation of the protein product, there is evidence to suggest that codon usage affects co-translational protein folding and the final structure of the expressed protein. Here we develop a method for computing and comparing codon-specific Ramachandran plots and demonstrate that the backbone dihedral angle distributions of some synonymous codons are distinguishable with statistical significance for some secondary structures. This shows that there exists a dependence between codon identity and backbone torsion of the translated amino acid. Although these findings cannot pinpoint the causal direction of this dependence, we discuss the vast biological implications should coding be shown to directly shape protein conformation and demonstrate the usefulness of this method as a tool for probing associations between codon usage and protein structure. Finally, we urge for the inclusion of exact genetic information into structural databases.
    DOI:  https://doi.org/10.1038/s41467-022-30390-9
  34. Science. 2022 May 19. eabm6380
      The molecular basis of interindividual clinical variability upon infection with Staphylococcus aureus is unclear. We describe patients with haploinsufficiency for the linear deubiquitinase OTULIN, encoded by a gene on chromosome 5p. Patients present episodes of life-threatening necrosis, typically triggered by S. aureus infection. The disorder is phenocopied in patients with the 5p- (Cri-du-Chat) chromosomal deletion syndrome. OTULIN haploinsufficiency causes an accumulation of linear ubiquitin in dermal fibroblasts, but TNF-receptor NF-κB-signaling remains intact. Blood leukocyte subsets are unaffected. The OTULIN-dependent accumulation of caveolin-1 in dermal fibroblasts-but not leukocytes-facilitates the cytotoxic damage inflicted by the staphylococcal virulence factor α-toxin. Naturally elicited antibodies against α-toxin contribute to incomplete clinical penetrance. Human OTULIN haploinsufficiency underlies life-threatening staphylococcal disease by disrupting cell-intrinsic immunity to α-toxin in non-leukocytic cells.
    DOI:  https://doi.org/10.1126/science.abm6380
  35. Trends Cell Biol. 2022 May 14. pii: S0962-8924(22)00107-6. [Epub ahead of print]
      Autophagy is a fundamental pathway for the degradation of cytoplasmic content in response to pleiotropic extracellular and intracellular stimuli. Recent advances in the autophagy field have demonstrated that different organelles can also be specifically targeted for autophagy with broad implications on cellular and organismal health. This opens new dimensions in the autophagy field and more unanswered questions on the rationale and underlying mechanisms to degrade different organelles. Functional genomics via clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-based screening has gained popularity in the autophagy field to understand the common and unique factors that are implicated in the signaling, recognition, and execution of different cargo-specific autophagies. We focus on recent applications of CRISPR-based screens in the autophagy field, their discoveries, and the future directions of autophagy screens.
    Keywords:  CRISPR; autophagy; functional genomics; genome-wide screens; organellophagy
    DOI:  https://doi.org/10.1016/j.tcb.2022.04.006