bims-proteo Biomed News
on Proteostasis
Issue of 2021‒11‒21
thirty-six papers selected by
Eric Chevet
INSERM


  1. Nature. 2021 Nov 17.
      The N-degron pathway targets proteins that bear a destabilizing residue at the N terminus for proteasome-dependent degradation1. In yeast, Ubr1-a single-subunit E3 ligase-is responsible for the Arg/N-degron pathway2. How Ubr1 mediates the initiation of ubiquitination and the elongation of the ubiquitin chain in a linkage-specific manner through a single E2 ubiquitin-conjugating enzyme (Ubc2) remains unknown. Here we developed chemical strategies to mimic the reaction intermediates of the first and second ubiquitin transfer steps, and determined the cryo-electron microscopy structures of Ubr1 in complex with Ubc2, ubiquitin and two N-degron peptides, representing the initiation and elongation steps of ubiquitination. Key structural elements, including a Ubc2-binding region and an acceptor ubiquitin-binding loop on Ubr1, were identified and characterized. These structures provide mechanistic insights into the initiation and elongation of ubiquitination catalysed by Ubr1.
    DOI:  https://doi.org/10.1038/s41586-021-04097-8
  2. Autophagy. 2021 Nov 15. 1-3
      ER-specific autophagy (reticulophagy) has emerged as a critical degradative route for misfolded secretory proteins. Our previous work showed that RTN3 (reticulon 3) drives reticulophagic clearance of disease-causing mutant prohormones. How RTN3, a protein residing on the cytosolic leaflet of the ER bilayer, recruits these lumenally-localized cargos has remained a mystery. To address this question, we used an unbiased proteomics approach to identify RTN3-interacting partners. We discovered that RTN3 recruits misfolded prohormones for lysosomal degradation through the ER transmembrane protein PGRMC1. RTN3 complexes with PGRMC1, which directly binds to misfolded prohormones via its distal ER lumenal domain. Cargos for the RTN3-PGRMC1 degradative axis include mutant POMC (proopiomelanocortin) and proinsulin, each of which oligomerizes in the ER during misfolding, entrapping their wild-type counterparts, leading to secretion defects. Although reticulophagy is thought to degrade large protein aggregates, PGRMC1 instead selectively recruits and promotes degradation of only small oligomers of the mutant prohormones. Of physiological importance, genetic or pharmacological inactivation of PGRMC1 in pancreatic β-cells expressing both wild-type and mutant proinsulin impairs mutant proinsulin turnover and promotes trafficking of wild-type proinsulin. These findings pinpoint PGRMC1 as a possible intervention point for diseases caused by ER protein retention.
    Keywords:  MIDY; Reticulophagy; diabetes; endoplasmic reticulum; protein misfolding; protein trafficking
    DOI:  https://doi.org/10.1080/15548627.2021.1997062
  3. Cell Mol Life Sci. 2021 Nov 15.
      Secretion and quality control of large extracellular matrix proteins remain poorly understood and debated, particularly transport intermediates delivering folded proteins from the ER to Golgi and misfolded ones to lysosomes. Discrepancies between different studies are related to utilization of exogenous cargo, off-target effects of experimental conditions and cell manipulation, and identification of transport intermediates without tracing their origin and destination. To address these issues, here we imaged secretory and degradative trafficking of type I procollagen in live MC3T3 osteoblasts by replacing a region encoding N-propeptide in endogenous Col1a2 gDNA with GFP cDNA. We selected clones that produced the resulting fluorescent procollagen yet had normal expression of key osteoblast and ER/cell stress genes, normal procollagen folding, and normal deposition and mineralization of extracellular matrix. Live-cell imaging of these clones revealed ARF1-dependent transport intermediates, which had no COPII coat and delivered procollagen from ER exit sites (ERESs) to Golgi without stopping at ER-Golgi intermediate compartment (ERGIC). It also confirmed ERES microautophagy, i.e., lysosomes engulfing ERESs containing misfolded procollagen. Beyond validating these trafficking models for endogenous procollagen, we uncovered a probable cause of noncanonical cell stress response to procollagen misfolding. Recognized and retained only at ERESs, misfolded procollagen does not directly activate the canonical UPR, yet it disrupts the ER lumen by blocking normal secretory export from the ER.
    Keywords:  Autophagy; Collagen; Live-cell imaging; Quality control; Trafficking
    DOI:  https://doi.org/10.1007/s00018-021-04017-z
  4. Neuron. 2021 Nov 09. pii: S0896-6273(21)00862-X. [Epub ahead of print]
      Neurodegenerative disorders are characterized by a collapse in proteostasis, as shown by the accumulation of insoluble protein aggregates in the brain. Proteostasis involves a balance of protein synthesis, folding, trafficking, and degradation, but how aggregates perturb these pathways is unknown. Using Parkinson's disease (PD) patient midbrain cultures, we find that aggregated α-synuclein induces endoplasmic reticulum (ER) fragmentation and compromises ER protein folding capacity, leading to misfolding and aggregation of immature lysosomal β-glucocerebrosidase. Despite this, PD neurons fail to initiate the unfolded protein response, indicating perturbations in sensing or transducing protein misfolding signals in the ER. Small molecule enhancement of ER proteostasis machinery promotes β-glucocerebrosidase solubility, while simultaneous enhancement of trafficking improves ER morphology, lysosomal function, and reduces α-synuclein. Our studies suggest that aggregated α-synuclein perturbs the ability of neurons to respond to misfolded proteins in the ER, and that synergistic enhancement of multiple proteostasis branches may provide therapeutic benefit in PD.
    Keywords:  ER stress; Parkinson's disease; alpha-synuclein; beta-glucocerebrosidase; iPSC-derived midbrain dopaminergic neurons; lysosomal dysfunction; protein aggregation
    DOI:  https://doi.org/10.1016/j.neuron.2021.10.032
  5. Mol Neurobiol. 2021 Nov 18.
      Cellular homeostasis is maintained by rapid and systematic cleansing of aberrant and aggregated proteins within cells. Neurodegenerative diseases (NDs) especially Parkinson's and Alzheimer's disease are known to be associated with multiple factors, most important being impaired clearance of aggregates, resulting in the accumulation of specific aggregated protein in the brain. Protein quality control (PQC) of proteostasis network comprises proteolytic machineries and chaperones along with their regulators to ensure precise operation and maintenance of proteostasis. Such regulatory factors coordinate among each other multiple functional aspects related to proteins, including their synthesis, folding, transport, and degradation. During aging due to inevitable endogenous and external stresses, sustaining a proteome balance is a challenging task. Such stresses decline the capacity of the proteostasis network compromising the proteome integrity, affecting the fundamental physiological processes including reproductive fitness of the organism. This review focuses on highlighting proteome-wide changes during aging and the strategies for proteostasis improvements. The possibility of augmenting the proteostasis network either via genetic or pharmacological interventions may be a promising strategy towards delaying age-associated pathological consequences due to proteome disbalance, thus promoting healthy aging and prolonged longevity.
    Keywords:  Aging; Neurodegenerative diseases; Protein quality control; Proteostasis
    DOI:  https://doi.org/10.1007/s12035-021-02640-2
  6. Microb Cell. 2021 Nov 01. 8(11): 256-261
      Ubiquitin related modifier 1 (Urm1) is a unique eukaryotic member of the ubiquitin-fold (UbF) protein family and conserved from yeast to humans. Urm1 is dual-functional, acting both as a sulfur carrier for thiolation of tRNA anticodons and as a protein modifier in a lysine-directed Ub-like conjugation also known as urmylation. Although Urm1 conjugation coincides with oxidative stress and targets proteins like 2-Cys peroxiredoxins from yeast (Ahp1) and fly (Prx5), it was unclear how urmylation proceeds molecularly and whether it is affected by the activity of these antioxidant enzymes. An in-depth study of Ahp1 urmylation in yeast from our laboratory (Brachmann et al., 2020) uncovered that promiscuous lysine target sites and specific redox requirements determine the Urm1 acceptor activity of the peroxiredoxin. The results clearly show that the dimer interface and the 2-Cys based redox-active centers of Ahp1 are affecting the Urm1 conjugation reaction. Together with in vivo assays demonstrating that high organic peroxide concentrations can prevent Ahp1 from being urmylated, Brachmann et al. provide insights into a potential link between Urm1 utilization and oxidant defense of cells. Here, we highlight these major findings and discuss wider implications with regards to an emerging link between Urm1 conjugation and redox biology. Moreover, from these studies we propose to redefine our perspective on Urm1 and the molecular nature of urmylation, a post-translational conjugation that may not be that ubiquitin-like after all.
    Keywords:  Urm1; peroxiredoxin Ahp1; protein urmylation; tRNA thiolation; yeast
    DOI:  https://doi.org/10.15698/mic2021.11.763
  7. Life Sci Alliance. 2022 Feb;pii: e202101278. [Epub ahead of print]5(2):
      The accumulation of sphingolipid species in the cell contributes to the development of obesity and neurological disease. However, the subcellular localization of sphingolipid-synthesizing enzymes is unclear, limiting the understanding of where and how these lipids accumulate inside the cell and why they are toxic. Here, we show that SPTLC2, a subunit of the serine palmitoyltransferase (SPT) complex, catalyzing the first step in de novo sphingolipid synthesis, localizes dually to the ER and the outer mitochondrial membrane. We demonstrate that mitochondrial SPTLC2 interacts and forms a complex in trans with the ER-localized SPT subunit SPTLC1. Loss of SPTLC2 prevents the synthesis of mitochondrial sphingolipids and protects from palmitate-induced mitochondrial toxicity, a process dependent on mitochondrial ceramides. Our results reveal the in trans assembly of an enzymatic complex at an organellar membrane contact site, providing novel insight into the localization of sphingolipid synthesis and the composition and function of ER-mitochondria contact sites.
    DOI:  https://doi.org/10.26508/lsa.202101278
  8. Free Radic Biol Med. 2021 Nov 12. pii: S0891-5849(21)00812-1. [Epub ahead of print]
      Molecular chaperones are a family of proteins that maintain cellular protein homeostasis through non-covalent peptide folding and quality control mechanisms. The chaperone proteins found within mitochondria play significant protective roles in mitochondrial biogenesis, quality control, and stress response mechanisms. Defective mitochondrial chaperones have been implicated in aging, neurodegeneration, and cancer. In this review, we focus on the two most prominent mitochondrial chaperones: mtHsp60 and mtHsp70. These proteins demonstrate different cellular localization patterns, interact with different targets, and have different functional activities. We discuss the structure and function of these prominent mitochondrial chaperone proteins and give an update on newly discovered regulatory mechanisms and disease implications.
    Keywords:  Mitochondrial chaperone; Mitochondrial homeostasis; Stressresponse; mtHsp60; mtHsp70
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2021.11.015
  9. Front Mol Biosci. 2021 ;8 768888
      Life is a non-equilibrium phenomenon. Owing to their high free energy content, the macromolecules of life tend to spontaneously react with ambient oxygen and water and turn into more stable inorganic molecules. A similar thermodynamic picture applies to the complex shapes of proteins: While a polypeptide is emerging unfolded from the ribosome, it may spontaneously acquire secondary structures and collapse into its functional native conformation. The spontaneity of this process is evidence that the free energy of the unstructured state is higher than that of the structured native state. Yet, under stress or because of mutations, complex polypeptides may fail to reach their native conformation and form instead thermodynamically stable aggregates devoid of biological activity. Cells have evolved molecular chaperones to actively counteract the misfolding of stress-labile proteins dictated by equilibrium thermodynamics. HSP60, HSP70 and HSP100 can inject energy from ATP hydrolysis into the forceful unfolding of stable misfolded structures in proteins and convert them into unstable intermediates that can collapse into the native state, even under conditions inauspicious for that state. Aggregates and misfolded proteins may also be forcefully unfolded and degraded by chaperone-gated endo-cellular proteases, and in eukaryotes also by chaperone-mediated autophagy, paving the way for their replacement by new, unaltered functional proteins. The greater energy cost of degrading and replacing a polypeptide, with respect to the cost of its chaperone-mediated repair represents a thermodynamic dilemma: some easily repairable proteins are better to be processed by chaperones, while it can be wasteful to uselessly try recover overly compromised molecules, which should instead be degraded and replaced. Evolution has solved this conundrum by creating a host of unfolding chaperones and degradation machines and by tuning their cellular amounts and activity rates.
    Keywords:  chaperones; protein degradation; protein repair; proteostasis; thermodynamics
    DOI:  https://doi.org/10.3389/fmolb.2021.768888
  10. Autophagy. 2021 Nov 19. 1-11
      PINK1 accumulation at the outer mitochondrial membrane (OMM) is a key event required to signal depolarized mitochondria to the autophagy machinery. How this early step is, in turn, modulated by autophagy proteins remains less characterized. Here, we show that, upon mitochondrial depolarization, the proautophagic protein AMBRA1 is recruited to the OMM and interacts with PINK1 and ATAD3A, a transmembrane protein that mediates mitochondrial import and degradation of PINK1. Downregulation of AMBRA1 expression results in reduced levels of PINK1 due to its enhanced degradation by the mitochondrial protease LONP1, which leads to a decrease in PINK1-mediated ubiquitin phosphorylation and mitochondrial PRKN/PARKIN recruitment. Notably, ATAD3A silencing rescues defective PINK1 accumulation in AMBRA1-deficient cells upon mitochondrial damage. Overall, our findings underline an upstream contribution of AMBRA1 in the control of PINK1-PRKN mitophagy by interacting with ATAD3A and promoting PINK1 stability. This novel regulatory element may account for changes of PINK1 levels in neuropathological conditions.
    Keywords:  Autophagy; LONP1; PRKN/PARKIN; TOMM complex; ubiquitin phosphorylation
    DOI:  https://doi.org/10.1080/15548627.2021.1997052
  11. Cell Rep. 2021 Nov 10. pii: S2211-1247(21)01535-7. [Epub ahead of print] 110049
      Positive-strand RNA viruses replicate in close association with rearranged intracellular membranes. For hepatitis C virus (HCV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), these rearrangements comprise endoplasmic reticulum (ER)-derived double membrane vesicles (DMVs) serving as RNA replication sites. Cellular factors involved in DMV biogenesis are poorly defined. Here, we show that despite structural similarity of viral DMVs with autophagosomes, conventional macroautophagy is dispensable for HCV and SARS-CoV-2 replication. However, both viruses exploit factors involved in autophagosome formation, most notably class III phosphatidylinositol 3-kinase (PI3K). As revealed with a biosensor, PI3K is activated in cells infected with either virus to produce phosphatidylinositol 3-phosphate (PI3P) while kinase complex inhibition or depletion profoundly reduces replication and viral DMV formation. The PI3P-binding protein DFCP1, recruited to omegasomes in early steps of autophagosome formation, participates in replication and DMV formation of both viruses. These results indicate that phylogenetically unrelated HCV and SARS-CoV-2 exploit similar components of the autophagy machinery to create their replication organelles.
    Keywords:  Beclin 1; DFCP1; DMV; PI3P; autophagy; class III PI3K; coronavirus; daclatasvir; hepatitis C virus; replication organelle
    DOI:  https://doi.org/10.1016/j.celrep.2021.110049
  12. EMBO Mol Med. 2021 Nov 15. e13787
      BET1 is required, together with its SNARE complex partners GOSR2, SEC22b, and Syntaxin-5 for fusion of endoplasmic reticulum-derived vesicles with the ER-Golgi intermediate compartment (ERGIC) and the cis-Golgi. Here, we report three individuals, from two families, with severe congenital muscular dystrophy (CMD) and biallelic variants in BET1 (P1 p.(Asp68His)/p.(Ala45Valfs*2); P2 and P3 homozygous p.(Ile51Ser)). Due to aberrant splicing and frameshifting, the variants in P1 result in low BET1 protein levels and impaired ER-to-Golgi transport. Since in silico modeling suggested that p.(Ile51Ser) interferes with binding to interaction partners other than SNARE complex subunits, we set off and identified novel BET1 interaction partners with low affinity for p.(Ile51Ser) BET1 protein compared to wild-type, among them ERGIC-53. The BET1/ERGIC-53 interaction was validated by endogenous co-immunoprecipitation with both proteins colocalizing to the ERGIC compartment. Mislocalization of ERGIC-53 was observed in P1 and P2's derived fibroblasts; while in the p.(Ile51Ser) P2 fibroblasts specifically, mutant BET1 was also mislocalized along with ERGIC-53. Thus, we establish BET1 as a novel CMD/epilepsy gene and confirm the emerging role of ER/Golgi SNAREs in CMD.
    Keywords:  BET1; GOSR2; SNARE; epilepsy; muscular dystrophy
    DOI:  https://doi.org/10.15252/emmm.202013787
  13. Mol Cell. 2021 Nov 18. pii: S1097-2765(21)00931-X. [Epub ahead of print]
      Autophagy is a conserved intracellular degradation pathway exerting various cytoprotective and homeostatic functions by using de novo double-membrane vesicle (autophagosome) formation to target a wide range of cytoplasmic material for vacuolar/lysosomal degradation. The Atg1 kinase is one of its key regulators, coordinating a complex signaling program to orchestrate autophagosome formation. Combining in vitro reconstitution and cell-based approaches, we demonstrate that Atg1 is activated by lipidated Atg8 (Atg8-PE), stimulating substrate phosphorylation along the growing autophagosomal membrane. Atg1-dependent phosphorylation of Atg13 triggers Atg1 complex dissociation, enabling rapid turnover of Atg1 complex subunits at the pre-autophagosomal structure (PAS). Moreover, Atg1 recruitment by Atg8-PE self-regulates Atg8-PE levels in the growing autophagosomal membrane by phosphorylating and thus inhibiting the Atg8-specific E2 and E3. Our work uncovers the molecular basis for positive and negative feedback imposed by Atg1 and how opposing phosphorylation and dephosphorylation events underlie the spatiotemporal regulation of autophagy.
    Keywords:  Atg8 lipidation; autophagy; metabolism; phosphorylation; protein kinases; protein phosphatases; signaling; ubiquitin-like proteins
    DOI:  https://doi.org/10.1016/j.molcel.2021.10.024
  14. J Biol Chem. 2021 Nov 15. pii: S0021-9258(21)01224-2. [Epub ahead of print] 101415
      Ceramide is a lipid molecule that regulates diverse physiological and pathological reactions in part through inverting the topology of certain transmembrane proteins. This topological inversion is achieved through Regulated Alternative Translocation (RAT), which reverses the direction by which membrane proteins are translocated across the endoplasmic reticulum during translation. However, owing to technical challenges in studying protein-ceramide interaction, it remains unclear how ceramide levels are sensed in cells to trigger RAT. Here we report the synthesis of pac-C7-Cer, a photoactivatable and clickable short chain ceramide analog that can be used as a probe to study protein-ceramide interactions. We demonstrate that translocating chain associated membrane protein 2 (TRAM2), a protein known to control RAT of transmembrane 4 L6 subfamily member 20 (TM4SF20), and TRAM1, a homolog of TRAM2, interacted with molecules derived from pac-C7-Cer. This interaction was competed by naturally existing long chain ceramide molecules. We showed that binding of ceramide and its analogs to TRAM2 correlated with their ability to induce RAT of TM4SF20. In addition to probing ceramide-TRAM interactions, we provide evidence that pac-C7-cer could be used for proteome-wide identification of ceramide-binding proteins. Our study provides mechanistic insights into RAT by identifying TRAMs as potential ceramide-binding proteins, and establishes pac-C7-Cer as a valuable tool for future study of ceramide-protein interactions.
    Keywords:  Ceramide; click chemistry; ligand-binding protein; protein translocation; sphingolipid
    DOI:  https://doi.org/10.1016/j.jbc.2021.101415
  15. EMBO J. 2021 Nov 17. e108307
      Histone chaperones modulate the stability of histones beginning from histone synthesis, through incorporation into DNA, and during recycling during transcription and replication. Following histone removal from DNA, chaperones regulate histone storage and degradation. Here, we demonstrate that UBR7 is a histone H3.1 chaperone that modulates the supply of pre-existing post-nucleosomal histone complexes. We demonstrate that UBR7 binds to post-nucleosomal H3K4me3 and H3K9me3 histones via its UBR box and PHD. UBR7 binds to the non-nucleosomal histone chaperone NASP. In the absence of UBR7, the pool of NASP-bound post-nucleosomal histones accumulate and chromatin is depleted of H3K4me3-modified histones. We propose that the interaction of UBR7 with NASP and histones opposes the histone storage functions of NASP and that UBR7 promotes reincorporation of post-nucleosomal H3 complexes.
    Keywords:  NASP; UBR7; chaperone; chromatin; histone
    DOI:  https://doi.org/10.15252/embj.2021108307
  16. Cell Mol Gastroenterol Hepatol. 2021 Nov 10. pii: S2352-345X(21)00235-6. [Epub ahead of print]
      BACKGROUND & AIM: Intestinal ischemia-reperfusion injury is a serious and life-threatening condition. A better understanding of molecular mechanisms related to intestinal ischemia-reperfusion injury in man is imperative in order to find therapeutic targets and improve patient outcome.METHODS: First, the in vivo dynamic modulation of mucosal gene expression of the ischemia-reperfusion injured human small intestine was studied. Based on functional analysis of the changing transcriptome, one of the predominantly regulated pathways was selected for further investigation in an in vitro human intestinal organoid model.
    RESULTS: Ischemia-reperfusion massively changed the transcriptional landscape of the human small intestine. Functional analysis based on gene ontology and pathways pointed to the response to unfolded protein as a predominantly regulated process. In addition, regulatory network analysis identified hypoxia-inducing factor 1A (HIF1A) as one of the key mediators of ischemia-reperfusion induced changes, including the unfolded protein response (UPR). Differential expression of genes involved in the UPR was confirmed using quantitative PCR analysis. Electron microscopy showed signs of endoplasmic reticulum stress. Collectively, these findings point to a critical role for unfolded protein stress in intestinal ischemia-reperfusion injury in man. In a human intestinal organoid model exposed to hypoxia-reoxygenation, attenuation of UPR activation with integrated stress response inhibitor ISRIB strongly reduced pro-apoptotic ATF4-CHOP signaling.
    CONCLUSIONS: Transcriptome analysis revealed a crucial role for unfolded protein stress in the response to ischemia-reperfusion in human small intestine. UPR inhibition during hypoxia-reoxygenation in an intestinal organoid model, suggests that downstream PERK signaling may be a promising target to reduce intestinal ischemia-reperfusion injury.
    Keywords:  Transcriptomics; human intestinal organoids; intestinal ischemia-reperfusion; unfolded protein response
    DOI:  https://doi.org/10.1016/j.jcmgh.2021.11.001
  17. Cancer Immunol Immunother. 2021 Nov 20.
      BACKGROUND: Calreticulin (CRT) is an endoplasmic reticulum (ER) chaperone, but can appear surface bound on cancers cells, including ovarian cancers (OC). We investigated at what stage of cell viability, CRT appeared associated with surface of human OC cells. CRT on pre-apoptotic tumour cells is thought to initiate their eradication via a process termed immunogenic cell death (ICD).METHODS: We treated OC cells with the chemotherapeutic-doxorubicin (DX) known to induce translocation of CRT to some tumour cell surfaces, with and without the ER stressor-thapsigargin (TG)-and/or an ER stress inhibitor-TUDCA. We monitored translocation/release of CRT in pre-apoptotic cells by flow cytometry, immunoblotting and ELISA. We investigated the difference in binding of FITC-CRT to pre-apoptotic, apoptotic and necrotic cells and the ability of extracellular CRT to generate immature dendritic cells from THP-1 monocytes.
    RESULTS: Dx-treatment increased endogenously released CRT and extracellular FITC_CRT binding to human pre-apoptotic OC cells. DX and TG also promoted cell death in OC cells which also increased CRT release. These cellular responses were significantly inhibited by TUDCA, suggesting that ER stress is partially responsible for the changes in CRT cellular distribution. Extracellular CRT induces maturation of THP-1 towards a imDC phenotype, an important component of ICD.
    CONCLUSION: Collectively, these cellular responses suggest that ER stress is partially responsible for the changes in CRT cellular distribution. ER-stress regulates in part the release and binding of CRT to human OC cells where it may play a role in ICD.
    Keywords:  Doxorubicin; Tauroursodeoxycholic acid (TUDCA); Thapsigargin
    DOI:  https://doi.org/10.1007/s00262-021-03072-6
  18. ACS Chem Biol. 2021 Nov 19.
      The extracellular accumulation of glutamate is a pathologic hallmark of numerous neurodegenerative diseases including ischemic stroke and Alzheimer's disease. At high extracellular concentrations, glutamate causes neuronal damage by promoting oxidative stress, which can lead to cellular death. This has led to significant interest in developing pharmacologic approaches to mitigate the oxidative toxicity caused by high levels of glutamate. Here, we show that the small molecule proteostasis regulator AA147 protects against glutamate-induced cell death in a neuronal-derived cell culture model. While originally developed as an activator of the activating transcription factor 6 (ATF6) arm of the unfolded protein response, this AA147-dependent protection against glutamate toxicity is primarily mediated through activation of the NRF2-regulated oxidative stress response. We demonstrate that AA147 activates NRF2 selectively in neuronal-derived cells through a mechanism involving metabolic activation to a reactive electrophile and covalent modification of KEAP1─a mechanism analogous to that involved in the AA147-dependent activation of ATF6. These results define the potential for AA147 to protect against glutamate-induced oxidative toxicity and highlight the potential for metabolically activated proteostasis regulators like AA147 to activate both protective ATF6 and NRF2 stress-responsive signaling pathways to mitigate oxidative damage associated with diverse neurologic diseases.
    DOI:  https://doi.org/10.1021/acschembio.1c00810
  19. J Cell Sci. 2021 Nov 17. pii: jcs.259060. [Epub ahead of print]
      Stimulator of IFN genes (STING), an endoplasmic reticulum (ER) signaling adaptor, is essential for the type I interferon response to cytosolic dsDNA. The translocation from the ER to perinuclear vesicles following binding cGAMP is a critical step for STING to activate downstream signaling molecules, which lead to the production of interferon and pro-inflammatory cytokines. Here we found that apoptosis-linked gene 2 (ALG2) suppressed STING signaling induced by either HSV-1 infection or cGAMP presence. Knockout of ALG2 markedly facilitated the expression of type I interferons upon cGAMP treatment or HSV-1 infection in THP-1 monocytes. Mechanistically, ALG2 associated with the C-terminal tail (CTT) of STING and inhibited its trafficking from ER to perinuclear region. Furthermore, the ability of ALG2 to coordinate calcium was crucial for its regulation of STING trafficking and DNA-induced innate immune responses. This work suggests that ALG2 is involved in DNA-induced innate immune responses by regulating STING trafficking.
    Keywords:  ALG2; Innate immune response; Protein interaction; STING; Vesicle trafficking
    DOI:  https://doi.org/10.1242/jcs.259060
  20. Nat Commun. 2021 Nov 19. 12(1): 6750
      The multispanning membrane protein ATG9A is a scramblase that flips phospholipids between the two membrane leaflets, thus contributing to the expansion of the phagophore membrane in the early stages of autophagy. Herein, we show that depletion of ATG9A does not only inhibit autophagy but also increases the size and/or number of lipid droplets in human cell lines and C. elegans. Moreover, ATG9A depletion blocks transfer of fatty acids from lipid droplets to mitochondria and, consequently, utilization of fatty acids in mitochondrial respiration. ATG9A localizes to vesicular-tubular clusters (VTCs) that are tightly associated with an ER subdomain enriched in another multispanning membrane scramblase, TMEM41B, and also in close proximity to phagophores, lipid droplets and mitochondria. These findings indicate that ATG9A plays a critical role in lipid mobilization from lipid droplets to autophagosomes and mitochondria, highlighting the importance of ATG9A in both autophagic and non-autophagic processes.
    DOI:  https://doi.org/10.1038/s41467-021-26999-x
  21. Proc Natl Acad Sci U S A. 2021 Nov 23. pii: e2112674118. [Epub ahead of print]118(47):
      High expression of programmed death-ligand 1 (PD-L1) in cancer cells drives immune-independent, cell-intrinsic functions, leading to resistance to DNA-damaging therapies. We find that high expression of the ubiquitin E3 ligase FBXO22 sensitizes nonsmall cell lung cancer (NSCLC) cells to ionizing radiation (IR) and cisplatin, and that activation of FBXO22 by phosphorylation is necessary for this function. Importantly, FBXO22 activates PD-L1 ubiquitination and degradation, which in turn increases the sensitivity of NSCLC cells to DNA damage. Cyclin-dependent kinase 5 (CDK5), aberrantly active in cancer cells, plays a crucial role in increasing the expression of PD-L1 in medulloblastoma [R. D. Dorand et al, Science 353, 399-403 (2016)]. We show in NSCLC cells that inhibiting CDK5 or reducing its expression increases the level of FBXO22, decreases that of PD-L1, and increases the sensitivity of the cells to DNA damage. We conclude that FBXO22 is a substrate of CDK5, and that inhibiting CDK5 reduces PD-L1 indirectly by increasing FBXO22. Pairing inhibitors of CDK5 with immune checkpoint inhibitors may increase the efficacy of immune checkpoint blockade alone or in combination with DNA-damaging therapies.
    Keywords:  CDK5; FBXO22; PD-L1; lung cancer
    DOI:  https://doi.org/10.1073/pnas.2112674118
  22. Nat Commun. 2021 Nov 18. 12(1): 6697
      Hsp26 is a small heat shock protein (sHsp) from S. cerevisiae. Its chaperone activity is activated by oligomer dissociation at heat shock temperatures. Hsp26 contains 9 phosphorylation sites in different structural elements. Our analysis of phospho-mimetic mutations shows that phosphorylation activates Hsp26 at permissive temperatures. The cryo-EM structure of the Hsp26 40mer revealed contacts between the conserved core domain of Hsp26 and the so-called thermosensor domain in the N-terminal part of the protein, which are targeted by phosphorylation. Furthermore, several phosphorylation sites in the C-terminal extension, which link subunits within the oligomer, are sensitive to the introduction of negative charges. In all cases, the intrinsic inhibition of chaperone activity is relieved and the N-terminal domain becomes accessible for substrate protein binding. The weakening of domain interactions within and between subunits by phosphorylation to activate the chaperone activity in response to proteotoxic stresses independent of heat stress could be a general regulation principle of sHsps.
    DOI:  https://doi.org/10.1038/s41467-021-27036-7
  23. Elife. 2021 Nov 15. pii: e70715. [Epub ahead of print]10
      Dysregulation of tumor-relevant proteins may contribute to human hepatocellular carcinoma (HCC) tumorigenesis. FBXO45 is an E3 ubiquitin ligase that is frequently elevated expression in human HCC. However, it remains unknown whether FBXO45 is associated with hepatocarcinogenesis and how to treat HCC patients with high FBXO45 expression. Here, IHC and qPCR analysis revealed that FBXO45 protein and mRNA were highly expressed in 54.3% (57 of 105) and 52.2% (132 of 253) of the HCC tissue samples, respectively. Highly expressed FBXO45 promoted liver tumorigenesis in transgenic mice. Mechanistically, FBXO45 promoted IGF2BP1 ubiquitination at the Lys190 and Lys450 sites and subsequent activation, leading to the upregulation of PLK1 expression and the induction of cell proliferation and liver tumorigenesis in vitro and in vivo. PLK1 inhibition or IGF2BP1 knockdown significantly blocked FBXO45-driven liver tumorigenesis in FBXO45 transgenic mice, primary cells and HCCs. Furthermore, IHC analysis on HCC tissue samples revealed a positive association between the hyperexpression of FBXO45 and PLK1/IGF2BP1, and both had positive relationship with poor survival in HCC patients. Thus, FBXO45 plays an important role in promoting liver tumorigenesis through IGF2BP1 ubiquitination and activation, and subsequent PLK1 upregulation, suggesting a new strategy for treating HCC by targeting FBXO45/IGF2BP1/PLK1 axis.
    Keywords:  biochemistry; cancer biology; chemical biology; human; mouse
    DOI:  https://doi.org/10.7554/eLife.70715
  24. Nat Commun. 2021 Nov 18. 12(1): 6671
      The fast dynamics and reversibility of posttranslational modifications by the ubiquitin family pose significant challenges for research. Here we present SUMO-ID, a technology that merges proximity biotinylation by TurboID and protein-fragment complementation to find SUMO-dependent interactors of proteins of interest. We develop an optimized split-TurboID version and show SUMO interaction-dependent labelling of proteins proximal to PML and RANGAP1. SUMO-dependent interactors of PML are involved in transcription, DNA damage, stress response and SUMO modification and are highly enriched in SUMO Interacting Motifs, but may only represent a subset of the total PML proximal proteome. Likewise, SUMO-ID also allow us to identify interactors of SUMOylated SALL1, a less characterized SUMO substrate. Furthermore, using TP53 as a substrate, we identify SUMO1, SUMO2 and Ubiquitin preferential interactors. Thus, SUMO-ID is a powerful tool that allows to study the consequences of SUMO-dependent interactions, and may further unravel the complexity of the ubiquitin code.
    DOI:  https://doi.org/10.1038/s41467-021-26807-6
  25. Elife. 2021 Nov 16. pii: e69843. [Epub ahead of print]10
      Heat shock factor 1 (HSF1), a key regulator of transcriptional responses to proteotoxic stress, was linked to estrogen (E2) signaling through estrogen receptor α (ERα). We found that an HSF1 deficiency may decrease ERα level, attenuate the mitogenic action of E2, counteract E2-stimulated cell scattering, and reduce adhesion to collagens and cell motility in ER-positive breast cancer cells. The stimulatory effect of E2 on the transcriptome is largely weaker in HSF1-deficient cells, in part due to the higher basal expression of E2-dependent genes, which correlates with the enhanced binding of unliganded ERα to chromatin in such cells. HSF1 and ERα can cooperate directly in E2-stimulated regulation of transcription, and HSF1 potentiates the action of ERα through a mechanism involving chromatin reorganization. Furthermore, HSF1 deficiency may increase the sensitivity to hormonal therapy (4-hydroxytamoxifen) or CDK4/6 inhibitors (palbociclib). Analyses of data from the TCGA database indicate that HSF1 increases the transcriptome disparity in ER-positive breast cancer and can enhance the genomic action of ERα. Moreover, only in ER-positive cancers, an elevated HSF1 level is associated with metastatic disease.
    Keywords:  cancer biology; cell biology; human
    DOI:  https://doi.org/10.7554/eLife.69843
  26. J Am Chem Soc. 2021 Nov 17.
      Stress granules (SGs) are among the most studied membraneless organelles that form upon heat stress (HS) to sequester unfolded, misfolded, or aggregated protein, supporting protein quality control (PQC) clearance. The folding states that are primarily associated with SGs, as well as the function of the phase separated environment in adjusting the energy landscapes, remain unknown. Here, we investigate the association of superoxide dismutase 1 (SOD1) proteins with different folding stabilities and aggregation propensities with condensates in cells, in vitro and by simulation. We find that irrespective of aggregation the folding stability determines the association of SOD1 with SGs in cells. In vitro and in silico experiments however suggest that the increased flexibility of the unfolded state constitutes only a minor driving force to associate with the dynamic biomolecular network of the condensate. Specific protein-protein interactions in the cytoplasm in comparison to SGs determine the partitioning of folding states between the respective phases during HS.
    DOI:  https://doi.org/10.1021/jacs.1c09589
  27. Oncogene. 2021 Nov 16.
      Nerve infiltration in the tumor microenvironment is emerging as a promoter of cancer progression that could be targeted in therapies, but the mechanisms initiating tumor innervation remain to be elucidated. Here we report that endoplasmic reticulum (ER) stress in cancer cells is transmitted to neuronal cells, resulting in neurite outgrowth and tumor innervation. In vitro, the induction of ER stress in various human cancer cells resulted in the synthesis and release of the precursor for brain-derived neurotrophic factor (proBDNF) through a mechanism dependent on the transcription factor X-box binding protein 1 (XBP1). Cancer cell-released proBDNF was found to mediate the transmission of ER stress to neurons, resulting in the stimulation of neurite outgrowth. Next-generation sequencing indicated the increased expression of the Egl-9 family hypoxia inducible factor 3 (EGLN3) that was mediated by c-MYC and necessary to neurite outgrowth induced by proBDNF. In orthotopic tumor xenograft, ER stress stimulated XBP1 and proBDNF expression as well as tumor innervation. Anti-proBDNF antibody inhibited both tumor innervation and cancer progression induced by ER stress. Interestingly, the chemotherapeutic drug 5-Fluorouracil (5-FU) was found to induce ER stress and tumor innervation, and this effect was inhibited by anti-proBDNF antibody. Finally, in human tumors, cancer tissues with nerve infiltration expressed high XBP1 and proBDNF while EGLN3 was upregulated in infiltrated nerves. This study reveals that ER stress participates in tumor innervation through the release of proBDNF and that targeting this pathway could be used in future therapies.
    DOI:  https://doi.org/10.1038/s41388-021-02108-6
  28. Cell Rep. 2021 Nov 16. pii: S2211-1247(21)01410-8. [Epub ahead of print]37(7): 109937
      Acetyl ligation to the amino acids in a protein is an important posttranslational modification. However, in contrast to lysine acetylation, N-terminal acetylation is elusive in terms of its cellular functions. Here, we identify Nat3 as an N-terminal acetyltransferase essential for autophagy, a catabolic pathway for bulk transport and degradation of cytoplasmic components. We identify the actin cytoskeleton constituent Act1 and dynamin-like GTPase Vps1 (vacuolar protein sorting 1) as substrates for Nat3-mediated N-terminal acetylation of the first methionine. Acetylated Act1 forms actin filaments and therefore promotes the transport of Atg9 vesicles for autophagosome formation; acetylated Vps1 recruits and facilitates bundling of the SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor) complex for autophagosome fusion with vacuoles. Abolishment of the N-terminal acetylation of Act1 and Vps1 is associated with blockage of upstream and downstream steps of the autophagy process. Therefore, our work shows that protein N-terminal acetylation plays a critical role in controlling autophagy by fine-tuning multiple steps in the process.
    DOI:  https://doi.org/10.1016/j.celrep.2021.109937
  29. Nat Chem Biol. 2021 Dec;17(12): 1271-1280
      Oxysterols (OHCs) are hydroxylated cholesterol metabolites that play ubiquitous roles in health and disease. Due to the non-covalent nature of their interactions and their unique partitioning in membranes, the analysis of live-cell, proteome-wide interactions of OHCs remains an unmet challenge. Here, we present a structurally precise chemoproteomics probe for the biologically active molecule 20(S)-hydroxycholesterol (20(S)-OHC) and provide a map of its proteome-wide targets in the membranes of living cells. Our target catalog consolidates diverse OHC ontologies and demonstrates that OHC-interacting proteins cluster with specific processes in immune response and cancer. Competition experiments reveal that 20(S)-OHC is a chemo-, regio- and stereoselective ligand for the protein transmembrane protein 97 (Tmem97/the σ2 receptor), enabling us to reconstruct the 20(S)-OHC-Tmem97 binding site. Our results demonstrate that multiplexed, quantitative analysis of cellular target engagement can expose new dimensions of metabolite activity and identify actionable targets for molecular therapy.
    DOI:  https://doi.org/10.1038/s41589-021-00907-2
  30. Proc Natl Acad Sci U S A. 2021 Nov 23. pii: e2110767118. [Epub ahead of print]118(47):
      Circadian transcriptional timekeepers in pacemaker neurons drive profound daily rhythms in sleep and wake. Here we reveal a molecular pathway that links core transcriptional oscillators to neuronal and behavioral rhythms. Using two independent genetic screens, we identified mutants of Transport and Golgi organization 10 (Tango10) with poor behavioral rhythmicity. Tango10 expression in pacemaker neurons expressing the neuropeptide PIGMENT-DISPERSING FACTOR (PDF) is required for robust rhythms. Loss of Tango10 results in elevated PDF accumulation in nerve terminals even in mutants lacking a functional core clock. TANGO10 protein itself is rhythmically expressed in PDF terminals. Mass spectrometry of TANGO10 complexes reveals interactions with the E3 ubiquitin ligase CULLIN 3 (CUL3). CUL3 depletion phenocopies Tango10 mutant effects on PDF even in the absence of the core clock gene timeless Patch clamp electrophysiology in Tango10 mutant neurons demonstrates elevated spontaneous firing potentially due to reduced voltage-gated Shaker-like potassium currents. We propose that Tango10/Cul3 transduces molecular oscillations from the core clock to neuropeptide release important for behavioral rhythms.
    Keywords:  Drosophila; circadian rhythms; neuronal output; potassium current; ubiquitin ligase
    DOI:  https://doi.org/10.1073/pnas.2110767118
  31. FEBS J. 2021 Nov 16.
      Communication between organelles is an essential process that helps maintain cellular homeostasis and organelle contact sites have emerged recently as crucial mediators of this communication. The emergence of a class of molecular bridges that span the inter-organelle gaps has now been shown to direct the flow of lipid traffic from one lipid bilayer to another. One of the keys components of these molecular bridges is the presence of an N-terminal Chorein/VPS13 domain. This is an evolutionarily conserved domain present in multiple proteins within the endocytic and autophagy trafficking pathways. Herein, we discuss the current state-of-the-art of this class of proteins, focusing on the role of these lipid transporters in the autophagy and endocytic pathways. We discuss the recent biochemical and structural advances that have highlighted the essential role Chorein-N domain containing ATG2 proteins play in driving the formation of the autophagosome and how lipids are transported from the endoplasmic reticulum to the growing phagophore. We also consider the VPS13 proteins, their role in organelle contacts and the endocytic pathway and highlight how disease-causing mutations disrupt these contact sites. Finally, we open the door to discuss other Chorein_N domain containing proteins, for instance UHRF1BP1/1L, their role in disease and look towards prokaryote examples of Chorein_N-like domains. Taken together, recent advances have highlighted an exciting opportunity to delve deeper into inter-organelle communication and understand how lipids are transported between membrane bi-layers and how this process is disrupted in multiple diseases.
    Keywords:  ATG2; Autophagy; Chorein; Lipid transfer; UHRF1BP1; VPS13; endosome; organelle contacts
    DOI:  https://doi.org/10.1111/febs.16280
  32. Proc Natl Acad Sci U S A. 2021 Nov 23. pii: e2110755118. [Epub ahead of print]118(47):
      Nondegradative ubiquitin chains attached to specific targets via Lysine 63 (K63) residues have emerged to play a fundamental role in synaptic function. The K63-specific deubiquitinase CYLD has been widely studied in immune cells and lately also in neurons. To better understand if CYLD plays a role in brain and synapse homeostasis, we analyzed the behavioral profile of CYLD-deficient mice. We found that the loss of CYLD results in major autism-like phenotypes including impaired social communication, increased repetitive behavior, and cognitive dysfunction. Furthermore, the absence of CYLD leads to a reduction in hippocampal network excitability, long-term potentiation, and pyramidal neuron spine numbers. By providing evidence that CYLD can modulate mechanistic target of rapamycin (mTOR) signaling and autophagy at the synapse, we propose that synaptic K63-linked ubiquitination processes could be fundamental in understanding the pathomechanisms underlying autism spectrum disorder.
    Keywords:  CYLD; autism spectrum disorder; autophagy; mTOR signaling; synapse
    DOI:  https://doi.org/10.1073/pnas.2110755118
  33. Proc Natl Acad Sci U S A. 2021 Nov 23. pii: e2025810118. [Epub ahead of print]118(47):
      Aberrant O-GlcNAcylation, a protein posttranslational modification defined by the O-linked attachment of the monosaccharide N-acetylglucosamine (O-GlcNAc), has been implicated in neurodegenerative diseases. However, although many neuronal proteins are substrates for O-GlcNAcylation, this process has not been extensively investigated in polyglutamine disorders. We aimed to evaluate the enzyme O-GlcNAc transferase (OGT), which attaches O-GlcNAc to target proteins, in Machado-Joseph disease (MJD). MJD is a neurodegenerative condition characterized by ataxia and caused by the expansion of a polyglutamine stretch within the deubiquitinase ataxin-3, which then present increased propensity to aggregate. By analyzing MJD cell and animal models, we provide evidence that OGT is dysregulated in MJD, therefore compromising the O-GlcNAc cycle. Moreover, we demonstrate that wild-type ataxin-3 modulates OGT protein levels in a proteasome-dependent manner, and we present OGT as a substrate for ataxin-3. Targeting OGT levels and activity reduced ataxin-3 aggregates, improved protein clearance and cell viability, and alleviated motor impairment reminiscent of ataxia of MJD patients in zebrafish model of the disease. Taken together, our results point to a direct interaction between OGT and ataxin-3 in health and disease and propose the O-GlcNAc cycle as a promising target for the development of therapeutics in the yet incurable MJD.
    Keywords:  Machado–Joseph disease; O-GlcNAc; OGT; Spinocerebellar ataxia type 3; ataxin-3
    DOI:  https://doi.org/10.1073/pnas.2025810118
  34. J Biol Chem. 2021 Nov 16. pii: S0021-9258(21)01231-X. [Epub ahead of print] 101422
      ARL5B, an ARF-like small GTPase localized to the trans-Golgi, is known for regulating endosome-Golgi trafficking and promoting the migration and invasion of breast cancer cells. Although a few interacting partners have been identified, the mechanism of the shuttling of ARL5B between the Golgi membrane and the cytosol is still obscure. Here, using GFP-binding protein (GBP) pull-down followed by mass spectrometry, we identified heat shock cognate protein (HSC70) as an additional interacting partner of ARL5B. Our pull-down and isothermal titration calorimetry (ITC) based studies suggested that HSC70 binds to ARL5B in an ADP-dependent manner. Additionally, we showed that the N-terminal helix and the nucleotide status of ARL5B contribute to its recognition by HSC70. The confocal microscopy and cell fractionation studies in MDA-MB-231 breast cancer cells revealed that the depletion of HSC70 reduces the localization of ARL5B to the Golgi. Using in vitro reconstitution approach, we provide evidence that HSC70 fine-tunes the association of ARL5B with Golgi membrane. Finally, we demonstrated that the interaction between ARL5B and HSC70 is important for the localization of cation independent mannose-6-phosphate receptor (CIMPR) at Golgi. Collectively, we propose a mechanism by which HSC70, a constitutively expressed chaperone, modulates the Golgi association of ARL5B, which in turn has implications for the Golgi-associated functions of this GTPase.
    Keywords:  ARF-like proteins; Golgi; chaperone; membrane reconstitution; protein myristoylation; small GTPase
    DOI:  https://doi.org/10.1016/j.jbc.2021.101422
  35. Nat Commun. 2021 Nov 16. 12(1): 6622
      The mammalian target of rapamycin (mTORC1) has been shown to regulate autophagy at different steps. However, how mTORC1 regulates the N-ethylmaleimide-sensitive protein receptor (SNARE) complex remains elusive. Here we show that mTORC1 inhibits formation of the SNARE complex (STX17-SNAP29-VAMP8) by phosphorylating VAMP8, thereby blocking autophagosome-lysosome fusion. A VAMP8 phosphorylation mimic mutant is unable to promote autophagosome-lysosome fusion in vitro. Furthermore, we identify SCFD1, a Sec1/Munc18-like protein, that localizes to the autolysosome and is required for SNARE complex formation and autophagosome-lysosome fusion. VAMP8 promotes SCFD1 recruitment to autolysosomes when dephosphorylated. Consistently, phosphorylated VAMP8 or SCFD1 depletion inhibits autophagosome-lysosome fusion, and expression of phosphomimic VAMP8 leads to increased lipid droplet accumulation when expressed in mouse liver. Thus, our study supports that mTORC1-mediated phosphorylation of VAMP8 blocks SCFD1 recruitment, thereby inhibiting STX17-SNAP29-VAMP8 complex formation and autophagosome-lysosome fusion.
    DOI:  https://doi.org/10.1038/s41467-021-26824-5
  36. Cancer Discov. 2021 Nov 18. pii: candisc.0694.2021. [Epub ahead of print]
      Immunotherapies aimed at alleviating the inhibitory constraints on Tcells have revolutionised cancer management. To date, these have focused on the blockade of cell surface checkpoints such as PD-1. Herein we identify protein-tyrosine-phosphatase-1B (PTP1B) as an intracellular checkpoint that is upregulated in T cells in tumors. We show that the increased PTP1B limits T cell expansion and cytotoxicity to contribute to tumor growth. T cell-specific PTP1B deletion increased STAT-5 signaling and this enhanced the antigen-induced expansion and cytotoxicity of CD8+ T cells to suppress tumor growth. The pharmacological inhibition of PTP1B recapitulated the T cell-mediated repression of tumor growth and enhanced the response to PD-1 blockade. Furthermore, the deletion or inhibition of PTP1B enhanced the efficacy of adoptively-transferred chimeric-antigen-receptor (CAR) T cells against solid tumors. Our findings identify PTP1B as an intracellular checkpoint whose inhibition can alleviate the inhibitory constraints on T cells and CAR T cells to combat cancer.
    DOI:  https://doi.org/10.1158/2159-8290.CD-21-0694