bims-proteo Biomed News
on Proteostasis
Issue of 2021–07–25
fifty-four papers selected by
Eric Chevet, INSERM



  1. J Cell Sci. 2021 Jul 19. pii: jcs.257790. [Epub ahead of print]
      WNT signalling is important for development in all metazoan animals and is associated with various human diseases. The Ubiquitin-Proteasome System (UPS) and regulatory ER-associated degradation (ERAD) have been implicated in the production of WNT proteins. Here, we investigated how the WNT secretory factor EVI/WLS is ubiquitinated, recognised by ERAD components and subsequently removed from the secretory pathway. We performed a focused, immunoblot-based RNAi screen for factors that influence EVI/WLS protein stability. We identified the VCP-binding proteins FAF2 and UBXN4 as novel interaction partners of EVI/WLS and showed that ERLIN2 links EVI/WLS to the ubiquitination machinery. Interestingly, we found in addition that EVI/WLS is ubiquitinated and degraded in cells irrespective of their level of WNT production. This K11, K48, and K63-linked ubiquitination is mediated by the E2 ubiquitin conjugating enzymes UBE2J2, UBE2K, and UBE2N, but independent of the E3 ligases HRD1/SYVN or GP78/AMFR. Taken together, our study identified factors that link the UPS to the WNT secretory pathway and provides mechanistic details on the fate of an endogenous substrate of regulatory ERAD in mammalian cells.
    Keywords:  ERAD; EVI/WLS; Proteolysis; Ubiquitination/Ubiquitylation; Wnt signaling
    DOI:  https://doi.org/10.1242/jcs.257790
  2. Nat Commun. 2021 Jul 23. 12(1): 4493
      Neuronal function relies on careful coordination of organelle organization and transport. Kinesin-1 mediates transport of the endoplasmic reticulum (ER) and lysosomes into the axon and it is increasingly recognized that contacts between the ER and lysosomes influence organelle organization. However, it is unclear how organelle organization, inter-organelle communication and transport are linked and how this contributes to local organelle availability in neurons. Here, we show that somatic ER tubules are required for proper lysosome transport into the axon. Somatic ER tubule disruption causes accumulation of enlarged and less motile lysosomes at the soma. ER tubules regulate lysosome size and axonal translocation by promoting lysosome homo-fission. ER tubule - lysosome contacts often occur at a somatic pre-axonal region, where the kinesin-1-binding ER-protein P180 binds microtubules to promote kinesin-1-powered lysosome fission and subsequent axonal translocation. We propose that ER tubule - lysosome contacts at a pre-axonal region finely orchestrate axonal lysosome availability for proper neuronal function.
    DOI:  https://doi.org/10.1038/s41467-021-24713-5
  3. PLoS Biol. 2021 Jul 23. 19(7): e3001361
      The lysosome is an essential organelle to recycle cellular materials and maintain nutrient homeostasis, but the mechanism to down-regulate its membrane proteins is poorly understood. In this study, we performed a cycloheximide (CHX) chase assay to measure the half-lives of approximately 30 human lysosomal membrane proteins (LMPs) and identified RNF152 and LAPTM4A as short-lived membrane proteins. The degradation of both proteins is ubiquitin dependent. RNF152 is a transmembrane E3 ligase that ubiquitinates itself, whereas LAPTM4A uses its carboxyl-terminal PY motifs to recruit NEDD4-1 for ubiquitination. After ubiquitination, they are internalized into the lysosome lumen by the endosomal sorting complexes required for transport (ESCRT) machinery for degradation. Strikingly, when ectopically expressed in budding yeast, human RNF152 is still degraded by the vacuole (yeast lysosome) in an ESCRT-dependent manner. Thus, our study uncovered a conserved mechanism to down-regulate lysosome membrane proteins.
    DOI:  https://doi.org/10.1371/journal.pbio.3001361
  4. Biochim Biophys Acta Biomembr. 2021 Jul 19. pii: S0005-2736(21)00149-8. [Epub ahead of print] 183700
      TANGO1 protein facilitates the endoplasmic reticulum (ER) export of large cargoes that cannot be accommodated in 60 nm transport vesicles. It assembles into a ring in the plane of the ER membrane to create a distinct domain. Its lumenal portion collects and sorts folded cargoes while its cytoplasmic domains collar COPII coats, recruit retrograde COPI-coated membranes that fuse within the TANGO1 ring, thus opening a tunnel for cargo transfer from the ER into a growing export conduit. This mode of cargo transfer bypasses the need for vesicular intermediates and is used to export the most abundant and bulky cargoes. The evolution of TANGO1 and its activities defines the difference between yeast and animal early secretory pathways.
    Keywords:  COPII; Chylomicron; Collagen; ER exit sites; Golgi; Mucins; Protein secretion; TALI; TANGO1; Vesicles
    DOI:  https://doi.org/10.1016/j.bbamem.2021.183700
  5. Int J Oncol. 2021 Aug;pii: 60. [Epub ahead of print]59(2):
      The endoplasmic reticulum (ER) is an essential organelle for protein synthesis, folding and modification, lipid synthesis, and calcium storage. When endogenous or exogenous stimuli lead to ER‑synthesized protein folding dysfunction, numerous unfolded or misfolded proteins accumulate in the ER cavity and cause a series of subsequent responses, referred to as ER stress. If ER stress is continuous, the unfolded protein response (UPR) is not enough to remove the accumulated unfolded and misfolded proteins, and thus, UPR signaling pathways will drive cell apoptosis. Glioblastoma (GBM) is currently the most aggressive and common malignant tumor of the nervous system. Since ER stress may increase the sensitivity of GBM to temozolomide, this article reviews the possible mechanisms of ER stress‑induced apoptosis and the factors affecting ER stress, and evaluates the potential of ER stress as a therapeutic target.
    Keywords:  apoptosis; compounds; endoplasmic reticulum stress; glioblastoma; unfolded protein response
    DOI:  https://doi.org/10.3892/ijo.2021.5240
  6. J Cell Biol. 2021 Oct 04. pii: e202010016. [Epub ahead of print]220(10):
      Sterols are unevenly distributed within cellular membranes. How their biosynthetic and transport machineries are organized to generate heterogeneity is largely unknown. We previously showed that the yeast sterol transporter Osh2 is recruited to endoplasmic reticulum (ER)-endocytic contacts to facilitate actin polymerization. We now find that a subset of sterol biosynthetic enzymes also localizes at these contacts and interacts with Osh2 and the endocytic machinery. Following the sterol dynamics, we show that Osh2 extracts sterols from these subdomains, which we name ERSESs (ER sterol exit sites). Further, we demonstrate that coupling of the sterol synthesis and transport machineries is required for endocytosis in mother cells, but not in daughters, where plasma membrane loading with accessible sterols and endocytosis are linked to secretion.
    DOI:  https://doi.org/10.1083/jcb.202010016
  7. J Cell Biol. 2021 Sep 06. pii: e201911104. [Epub ahead of print]220(9):
      γ-Secretase affects many physiological processes through targeting >100 substrates; malfunctioning links γ-secretase to cancer and Alzheimer's disease. The spatiotemporal regulation of its stoichiometric assembly remains unresolved. Fractionation, biochemical assays, and imaging support prior formation of stable dimers in the ER, which, after ER exit, assemble into full complexes. In vitro ER budding shows that none of the subunits is required for the exit of others. However, knockout of any subunit leads to the accumulation of incomplete subcomplexes in COPII vesicles. Mutating a DPE motif in presenilin 1 (PSEN1) abrogates ER exit of PSEN1 and PEN-2 but not nicastrin. We explain this by the preferential sorting of PSEN1 and nicastrin through Sec24A and Sec24C/D, respectively, arguing against full assembly before ER exit. Thus, dimeric subcomplexes aided by Sec24 paralog selectivity support a stepwise assembly of γ-secretase, controlling final levels in post-Golgi compartments.
    DOI:  https://doi.org/10.1083/jcb.201911104
  8. J Clin Invest. 2021 Jul 20. pii: 143737. [Epub ahead of print]
      Skeletal muscle can undergo a regenerative process from injury or disease to preserve muscle mass and function, which is critically influenced by cellular stress responses. Inositol-requiring enzyme 1 (IRE1) is an ancient endoplasmic reticulum (ER) stress sensor and mediates a key branch of the unfolded protein response (UPR). In mammals, IRE1α is implicated in the homeostatic control of stress responses during tissue injury and regeneration. Here, we show that IRE1α serves as a myogenic regulator in skeletal muscle regeneration in response to injury and muscular dystrophy. We found in mice that IRE1α was activated during injury-induced muscle regeneration, and muscle-specific IRE1α ablation resulted in impaired regeneration upon cardiotoxin-induced injury. Gain- and loss-of-function studies in myocytes demonstrated that IRE1αacts to sustain both differentiation in myoblasts and hypertrophy in myotubes through regulated IRE1-dependent decay (RIDD) of mRNA encoding Myostatin, a key negative regulator of muscle repair and growth. Furthermore, in the mouse model of Duchenne muscular dystrophy (DMD), loss of muscle IRE1α resulted in augmented Myostatin signaling and exacerbated the dystrophic phenotypes. Thus, these results reveal a pivotal role for the RIDD output of IRE1α in muscle regeneration, offering new insight into potential therapeutic strategies for muscle loss diseases.
    Keywords:  Cell stress; Molecular pathology; Muscle Biology; Skeletal muscle
    DOI:  https://doi.org/10.1172/JCI143737
  9. Cell Death Differ. 2021 Jul 20.
      SidE family of Legionella effectors catalyze non-canonical phosphoribosyl-linked ubiquitination (PR-ubiquitination) of host proteins during bacterial infection. SdeA localizes predominantly to ER and partially to the Golgi apparatus, and mediates serine ubiquitination of multiple ER and Golgi proteins. Here we show that SdeA causes disruption of Golgi integrity due to its ubiquitin ligase activity. The Golgi linking proteins GRASP55 and GRASP65 are PR-ubiquitinated on multiple serine residues, thus preventing their ability to cluster and form oligomeric structures. In addition, we found that the functional consequence of Golgi disruption is not linked to the recruitment of Golgi membranes to the growing Legionella-containing vacuoles. Instead, it affects the host secretory pathway. Taken together, our study sheds light on the Golgi manipulation strategy by which Legionella hijacks the secretory pathway and promotes bacterial infection.
    DOI:  https://doi.org/10.1038/s41418-021-00830-y
  10. STAR Protoc. 2021 Sep 17. 2(3): 100640
      In S. cerevisiae, we identified rhomboid pseudoprotease Dfm1 as the major mediator for removing or retrotranslocating misfolded membrane substrates from the ER (endoplasmic reticulum). Long-standing challenges with rapid suppression of dfm1-null cells have limited the biochemical study of Dfm1's role in ER protein quality control. Here, we provide a protocol for the generation and handling of dfm1-null cells and procedures for studying normal vs. suppressive alternative retrotranslocation pathways. Our methods can be utilized to study other components involved in retrotranslocation. For complete information on the generation and use of this protocol, please refer to Neal et al. (2017, 2018); Neal et al. (2019); Neal et al. (2020).
    Keywords:  Cell Biology; Cell culture; Cell separation/fractionation; Cell-based Assays; Flow Cytometry/Mass Cytometry; Genetics; Model Organisms; Protein Biochemistry
    DOI:  https://doi.org/10.1016/j.xpro.2021.100640
  11. Biochim Biophys Acta Mol Cell Res. 2021 Jul 16. pii: S0167-4889(21)00155-5. [Epub ahead of print] 119101
      A critical unknown in the field of skeletal metastases is how cancer cells find a way to thrive under harsh conditions, as exemplified by metastatic colonization of adipocyte-rich bone marrow by prostate carcinoma cells. To begin understanding molecular processes that enable tumor cells to survive and progress in difficult microenvironments such as bone, we performed unbiased examination of the transcriptome of two different prostate cancer cell lines in the absence or presence of bone marrow adipocytes. Our RNAseq analyses and subsequent quantitative PCR and protein-based assays reveal that upregulation of Endoplasmic Reticulum (ER) stress and Unfolded Protein Response (UPR) genes is a shared signature between two metastatic prostate carcinoma cell lines of different origin. Pathway analyses and pharmacological examinations highlight the ER chaperone BIP as an upstream coordinator of this transcriptomic signature. Additional patient-based data support our overall conclusion that ER stress and UPR induction are shared, important factors in the response and adaptation of metastatic tumor cells to their micro-environment. Our studies pave the way for additional mechanistic investigations and offer new clues towards effective therapeutic interventions in metastatic disease.
    Keywords:  BIP; ER stress; HSPA5; bone marrow adipocyte; bone metastasis; prostate cancer; unfolded protein response
    DOI:  https://doi.org/10.1016/j.bbamcr.2021.119101
  12. Proc Natl Acad Sci U S A. 2021 Jul 27. pii: e2020997118. [Epub ahead of print]118(30):
      Nuclear envelope budding (NEB) is a recently discovered alternative pathway for nucleocytoplasmic communication distinct from the movement of material through the nuclear pore complex. Through quantitative electron microscopy and tomography, we demonstrate how NEB is evolutionarily conserved from early protists to human cells. In the yeast Saccharomyces cerevisiae, NEB events occur with higher frequency during heat shock, upon exposure to arsenite or hydrogen peroxide, and when the proteasome is inhibited. Yeast cells treated with azetidine-2-carboxylic acid, a proline analog that induces protein misfolding, display the most dramatic increase in NEB, suggesting a causal link to protein quality control. This link was further supported by both localization of ubiquitin and Hsp104 to protein aggregates and NEB events, and the evolution of these structures during heat shock. We hypothesize that NEB is part of normal cellular physiology in a vast range of species and that in S. cerevisiae NEB comprises a stress response aiding the transport of protein aggregates across the nuclear envelope.
    Keywords:  budding; electron tomography; nuclear transport; protein quality control; vesicles
    DOI:  https://doi.org/10.1073/pnas.2020997118
  13. Autophagy. 2021 Jul 21. 1-20
      Macroautophagy (hereafter referred to as autophagy) is a finely tuned process of programmed degradation and recycling of proteins and cellular components, which is crucial in neuronal function and synaptic integrity. Mounting evidence implicates chromatin remodeling in fine-tuning autophagy pathways. However, this epigenetic regulation is poorly understood in neurons. Here, we investigate the role in autophagy of KANSL1, a member of the nonspecific lethal complex, which acetylates histone H4 on lysine 16 (H4K16ac) to facilitate transcriptional activation. Loss-of-function of KANSL1 is strongly associated with the neurodevelopmental disorder Koolen-de Vries Syndrome (KdVS). Starting from KANSL1-deficient human induced-pluripotent stem cells, both from KdVS patients and genome-edited lines, we identified SOD1 (superoxide dismutase 1), an antioxidant enzyme, to be significantly decreased, leading to a subsequent increase in oxidative stress and autophagosome accumulation. In KANSL1-deficient neurons, autophagosome accumulation at excitatory synapses resulted in reduced synaptic density, reduced GRIA/AMPA receptor-mediated transmission and impaired neuronal network activity. Furthermore, we found that increased oxidative stress-mediated autophagosome accumulation leads to increased MTOR activation and decreased lysosome function, further preventing the clearing of autophagosomes. Finally, by pharmacologically reducing oxidative stress, we could rescue the aberrant autophagosome formation as well as synaptic and neuronal network activity in KANSL1-deficient neurons. Our findings thus point toward an important relation between oxidative stress-induced autophagy and synapse function, and demonstrate the importance of H4K16ac-mediated changes in chromatin structure to balance reactive oxygen species- and MTOR-dependent autophagy.Abbreviations: APO: apocynin; ATG: autophagy related; BAF: bafilomycin A1; BSO: buthionine sulfoximine; CV: coefficient of variation; DIV: days in vitro; H4K16ac: histone 4 lysine 16 acetylation; iPSC: induced-pluripotent stem cell; KANSL1: KAT8 regulatory NSL complex subunit 1; KdVS: Koolen-de Vries Syndrome; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEA: micro-electrode array; MTOR: mechanistic target of rapamycin kinase; NSL complex: nonspecific lethal complex; 8-oxo-dG: 8-hydroxydesoxyguanosine; RAP: rapamycin; ROS: reactive oxygen species; sEPSCs: spontaneous excitatory postsynaptic currents; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; SYN: synapsin; WRT: wortmannin.
    Keywords:  Autophagy; Koolen-de Vries syndrome; MTOR; iPSCs; neuronal development; reactive oxygen species; synaptic function
    DOI:  https://doi.org/10.1080/15548627.2021.1936777
  14. Autophagy. 2021 Jul 18. 1-3
      Mitophagy, the clearance of surplus or damaged mitochondria or mitochondrial parts by autophagy, is important for maintenance of cellular homeostasis. Whereas knowledge on programmed and stress-induced mitophagy is increasing, much less is known about mechanisms of basal mitophagy. Recently, we identified SAMM50 (SAMM50 sorting and assembly machinery component) as a receptor for piecemeal degradation of components of the sorting and assembly machinery (SAM) complex and mitochondrial contact site and cristae organizing system (MICOS) complexes. SAMM50 interacts directly with Atg8-family proteins through a canonical LIR motif and with SQSTM1/p62 to mediate basal piecemeal mitophagy. During a metabolic switch to oxidative phosphorylation (OXPHOS), SAMM50 cooperates with SQSTM1 to mediate efficient piecemeal mitophagy.
    Keywords:  Atg8; MICOS; OXPHOS; SAMM50; SQSTM1; basal; metabolic switch; p62; piecemeal mitophagy
    DOI:  https://doi.org/10.1080/15548627.2021.1953846
  15. Virulence. 2021 Dec;12(1): 1795-1807
      Zika virus (ZIKV) infection can cause severe neurological disorders, including Guillain-Barre syndrome and meningoencephalitis in adults and microcephaly in fetuses. Here, we reveal that laminin receptor 1 (LAMR1) is a novel host resistance factor against ZIKV infection. Mechanistically, we found that LAMR1 binds to ZIKV envelope (E) protein via its intracellular region and attenuates E protein ubiquitination through recruiting the deubiquitinase eukaryotic translation initiation factor 3 subunit 5 (EIF3S5). We further found that the conserved G282 residue of E protein is essential for its interaction with LAMR1. Moreover, a G282A substitution abolished the binding of E protein to LAMR1 and inhibited LAMR1-mediated E protein deubiquitination. Together, our results indicated that LAMR1 represses ZIKV infection through binding to E protein and attenuating its ubiquitination.
    Keywords:  E protein; Laminin receptor 1, LAMR1; Zika virus, ZIKV; eukaryotic translation initiation factor 3 subunit 5, EIF3S5; ubiquitination
    DOI:  https://doi.org/10.1080/21505594.2021.1948261
  16. Cancers (Basel). 2021 Jul 12. pii: 3475. [Epub ahead of print]13(14):
      O-GlcNAcylation is an important post-translational modification (PTM) jointly controlled by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Aberrant hyper-O-GlcNAcylation is reported to yield hepatocellular carcinoma (HCC) malignancy, but the underlying mechanisms of the OGT/OGA imbalance responsible for HCC tumorigenesis remain largely unknown. Here, we report that RAN-binding protein 2 (RANBP2), one of the small ubiquitin-like modifier (SUMO) E3 ligases, contributed to malignant phenotypes in HCC. RANBP2 was found to facilitate CCAAT/enhancer-binding protein alpha (CEBPα) SUMOylation and degradation by direct interplay with CEBPα. As a transcriptional factor, CEBPα was verified to augment OGA transcription, and further experiments demonstrated that RANBP2 enhanced the O-GlcNAc level by downregulating OGA transcription while not affecting OGT expression. Importantly, we provided in vitro and in vivo evidence of HCC malignant phenotypes that RANBP2 triggered through an imbalance of OGT/OGA and subsequent higher O-GlcNAcylation events for oncogenic proteins such as peroxisome proliferative-activated receptor gamma coactivator 1 alpha (PGC1α) in a CEBPα-dependent manner. Altogether, our results show a novel molecular mechanism whereby RANBP2 regulates its function through CEBPα-dependent OGA downregulation to induce a global change in the hyper-O-GlcNAcylation of genes, such as PGC1α, encouraging the further study of promising implications for HCC therapy.
    Keywords:  CEBPα; O-GlcNAcylation; OGA; RANBP2; SUMOylation; hepatocellular carcinoma
    DOI:  https://doi.org/10.3390/cancers13143475
  17. EMBO J. 2021 Jul 23. e107911
      Cell growth is orchestrated by a number of interlinking cellular processes. Components of the TOR pathway have been proposed as potential regulators of cell growth, but little is known about their immediate effects on protein synthesis in response to TOR-dependent growth inhibition. Here, we present a resource providing an in-depth characterisation of Schizosaccharomyces pombe phosphoproteome in relation to changes observed in global cellular protein synthesis upon TOR inhibition. We find that after TOR inhibition, the rate of protein synthesis is rapidly reduced and that notable phosphorylation changes are observed in proteins involved in a range of cellular processes. We show that this reduction in protein synthesis rates upon TOR inhibition is not dependent on S6K activity, but is partially dependent on the S. pombe homologue of eIF4G, Tif471. Our study demonstrates the impact of TOR-dependent phospho-regulation on the rate of protein synthesis and establishes a foundational resource for further investigation of additional TOR-regulated targets both in fission yeast and other eukaryotes.
    Keywords:  TOR regulation; phosphoproteomics; protein synthesis
    DOI:  https://doi.org/10.15252/embj.2021107911
  18. EMBO Rep. 2021 Jul 23. e51954
      Mfn2 is a mitochondrial fusion protein with bioenergetic functions implicated in the pathophysiology of neuronal and metabolic disorders. Understanding the bioenergetic mechanism of Mfn2 may aid in designing therapeutic approaches for these disorders. Here we show using endoplasmic reticulum (ER) or mitochondria-targeted Mfn2 that Mfn2 stimulation of the mitochondrial metabolism requires its localization in the ER, which is independent of its fusion function. ER-located Mfn2 interacts with mitochondrial Mfn1/2 to tether the ER and mitochondria together, allowing Ca2+ transfer from the ER to mitochondria to enhance mitochondrial bioenergetics. The physiological relevance of these findings is shown during neurite outgrowth, when there is an increase in Mfn2-dependent ER-mitochondria contact that is necessary for correct neuronal arbor growth. Reduced neuritic growth in Mfn2 KO neurons is recovered by the expression of ER-targeted Mfn2 or an artificial ER-mitochondria tether, indicating that manipulation of ER-mitochondria contacts could be used to treat pathologic conditions involving Mfn2.
    Keywords:  Ca2+; ER-mitochondria tethering; Mfn2; neuritic growth
    DOI:  https://doi.org/10.15252/embr.202051954
  19. Elife. 2021 Jul 20. pii: e65484. [Epub ahead of print]10
      Mitochondria are organelles with their own genomes, but they rely on the import of nuclear-encoded proteins that are translated by cytosolic ribosomes. Therefore, it is important to understand whether failures in the mitochondrial uptake of these nuclear-encoded proteins can cause proteotoxic stress and identify response mechanisms that may counteract it. Here, we report that upon impairments in mitochondrial protein import, high-risk precursor and immature forms of mitochondrial proteins form aberrant deposits in the cytosol. These deposits then cause further cytosolic accumulation and consequently aggregation of other mitochondrial proteins and disease-related proteins, including α-synuclein and amyloid β. This aggregation triggers a cytosolic protein homeostasis imbalance that is accompanied by specific molecular chaperone responses at both the transcriptomic and protein levels. Altogether, our results provide evidence that mitochondrial dysfunction, specifically protein import defects, contributes to impairments in protein homeostasis, thus revealing a possible molecular mechanism by which mitochondria are involved in neurodegenerative diseases.
    Keywords:  C. elegans; S. cerevisiae; biochemistry; chemical biology
    DOI:  https://doi.org/10.7554/eLife.65484
  20. Nat Chem Biol. 2021 Jul 22.
      HUWE1 is a universal quality-control E3 ligase that marks diverse client proteins for proteasomal degradation. Although the giant HECT enzyme is an essential component of the ubiquitin-proteasome system closely linked with severe human diseases, its molecular mechanism is little understood. Here, we present the crystal structure of Nematocida HUWE1, revealing how a single E3 enzyme has specificity for a multitude of unrelated substrates. The protein adopts a remarkable snake-like structure, where the C-terminal HECT domain heads an extended alpha-solenoid body that coils in on itself and houses various protein-protein interaction modules. Our integrative structural analysis shows that this ring structure is highly dynamic, enabling the flexible HECT domain to reach protein targets presented by the various acceptor sites. Together, our data demonstrate how HUWE1 is regulated by its unique structure, adapting a promiscuous E3 ligase to selectively target unassembled orphan proteins.
    DOI:  https://doi.org/10.1038/s41589-021-00831-5
  21. J Biol Chem. 2021 Jul 20. pii: S0021-9258(21)00791-2. [Epub ahead of print] 100989
      Insulin-induced genes (INSIGs) encode endoplasmic reticulum (ER)-resident proteins that regulate intracellular cholesterol metabolism. Oxysterols are oxygenated derivatives of cholesterol, some of which orchestrate lipid metabolism via interaction with INSIGs. Recently, it was reported that expression of activating transcription factor-4 (ATF4) was induced by certain oxysterols; the precise of mechanism is unclear. Herein, we show that INSIGs mediate ATF4 upregulation upon interaction with oxysterol. Oxysterols that possess a high affinity for INSIG, such as 27- and 25-hydroxycholesterol (25HC), markedly induced the increase of ATF4 protein when compared with other oxysterols. In addition, ATF4 upregulation by these oxysterols was attenuated in INSIG1/2-deficient CHO cells and was recovered by either INSIG1 or INSIG2 rescue. Mechanistic studies revealed that the binding of 25HC to INSIG is critical for increased ATF4 protein via activation of PERK and eIF2α. Knockout of INSIG1 or INSIG2 in human hepatoma Huh7 cells attenuated ATF4 protein upregulation, indicating that only one of the endogenous INSIGs, unlike overexpression of intrinsic INSIG1 or INSIG2, was insufficient for ATF4 induction. Furthermore, ATF4 proactively upregulated the cell death inducible genes expression, such as Chop, Chac1, and Trb3, thereby markedly reducing cell viability with 25-hydroxycholesterol. These findings support a model whereby that INSIGs sense an increase in oxysterol in the ER and induce an increase of ATF4 protein via the PERK/eIF2α pathway, thereby promoting cell death.
    Keywords:  activating transcription factor-4 (ATF4); cell death; endoplasmic reticulum stress (ER stress); eukaryotic initiation factor 2 (eIF2); oxysterol; sterol; stress response
    DOI:  https://doi.org/10.1016/j.jbc.2021.100989
  22. Mol Psychiatry. 2021 Jul 20.
      Neurodegenerative diseases (NDs) are characterized by the aggregation of neurotoxic proteins in the central nervous system. Aberrant protein accumulation in NDs is largely caused by the dysfunction of the two principal protein catabolism pathways, the ubiquitin-proteasome system (UPS), and the autophagy-lysosomal pathway (ALP). The two protein quality control pathways are bridged by ubiquitination, a post-translational modification that can induce protein degradation via both the UPS and the ALP. Perturbed ubiquitination leads to the formation of toxic aggregates and inclusion bodies that are deleterious to neurons. Ubiquitination is promoted by a cascade of ubiquitinating enzymes and counter-regulated by deubiquitinating enzymes (DUBs). As fine-tuning regulators of ubiquitination and protein degradation, DUBs modulate the stability of ND-associated pathogenic proteins including amyloid β protein, Tau, and α-synuclein. Besides, DUBs also influence ND-associated mitophagy, protein secretion, and neuroinflammation. Given the various and critical functions of DUBs in NDs, DUBs may become potential therapeutic targets for NDs.
    DOI:  https://doi.org/10.1038/s41380-021-01233-8
  23. Hepatol Commun. 2021 Jul;5(7): 1165-1182
      Cellular stress-mediated chaperones are linked to liver macrophage activation and inflammation in alcohol-associated liver disease (ALD). In this study, we investigate the role of endoplasmic reticulum (ER) resident stress chaperone GP96/HSP90B1/GRP94, paralog of the HSP90 family, in ALD pathogenesis. We hypothesize that ER resident chaperone, heat shock protein GP96, plays a crucial role in alcohol-associated liver inflammation and contributes to liver injury. We show high expression of GP96/HSP90B1 and GRP78/HSPA5 in human alcohol-associated hepatitis livers as well as in mouse ALD livers with induction of GP96 prominent in alcohol-exposed macrophages. Myeloid-specific GP96 deficient (M-GP96KO) mice failed to induce alcohol-associated liver injury. Alcohol-fed M-GP96KO mice exhibit significant reduction in steatosis, serum endotoxin, and pro-inflammatory cytokines compared with wild-type mice. Anti-inflammatory cytokines interleukin-10 and transforming growth factor β, as well as activating transcription factor 3 and triggering receptor expressed on myeloid cells 2, markers of restorative macrophages, were higher in alcohol-fed M-GP96KO livers. M-GP96KO mice exhibit protection in a model of endotoxin-mediated liver injury in vivo, which is in agreement with reduced inflammatory responses during ex vivo lipopolysaccharide/endotoxin- stimulated bone marrow-derived macrophages from M-GP96KO mice. Furthermore, we show that liver macrophages from alcohol-fed M-GP96KO mice show compensatory induction of GRP78 messenger RNA, likely due to increased splicing of X-box binding protein-1. Finally, we show that inhibition of GP96 using a specific pharmacological agent, PU-WS13 or small interfering RNA, alleviates inflammatory responses in primary macrophages. Conclusion: Myeloid ER resident GP96 promotes alcohol-induced liver damage through activation of liver macrophage inflammatory responses, alteration in lipid homeostasis, and ER stress. These findings highlight a critical role for liver macrophage ER resident chaperone GP96/HSP90B1 in ALD, and its targeted inhibition represents a promising therapeutic approach in ALD.
    DOI:  https://doi.org/10.1002/hep4.1713
  24. J Biol Chem. 2021 Jul 17. pii: S0021-9258(21)00779-1. [Epub ahead of print] 100977
      Many eukaryotic cell surface proteins are post-translationally modified by a glycosylphosphatidylinositol (GPI) moiety that anchors them to the cell membrane. The biosynthesis of GPI anchors is initiated in the endoplasmic reticulum by transfer of GlcNAc from UDP-GlcNAc to phosphatidylinositol. This reaction is catalyzed by GPI GlcNAc transferase, a multi-subunit complex comprising the catalytic subunit Gpi3/PIG-A as well as at least five other subunits, including the hydrophobic protein Gpi2, which is essential for the activity of the complex in yeast and mammals, but the function of which is not known. To investigate the role of Gpi2, we exploited Trypanosoma brucei (Tb), an early diverging eukaryote and important model organism that initially provided the first insights into GPI structure and biosynthesis. We generated insect-stage (procyclic) trypanosomes that lack TbGPI2 and found that in TbGPI2-null parasites, (i) GPI GlcNAc transferase activity is reduced, but not lost, in contrast with yeast and human cells; (ii) that the GPI GlcNAc transferase complex persists, but its architecture is affected, with loss of at least the TbGPI1 subunit; and (iii) that the GPI anchors of procyclins, the major surface proteins, are underglycosylated when compared with their wild-type counterparts, indicating the importance of TbGPI2 for reactions that occur in the Golgi apparatus. Immunofluorescence microscopy localized TbGPI2 to the endoplasmic reticulum, but also to the Golgi apparatus, suggesting that in addition to its expected function as a subunit of the GPI GlcNAc transferase complex, TbGPI2 may have an enigmatic non-canonical role in Golgi-localized GPI anchor modification in trypanosomes.
    Keywords:  Golgi; Trypanosoma brucei; endoplasmic reticulum (ER); glycosylphosphatidylinositol (GPI anchor); glycosyltransferase; phosphatidylinositol; procyclin; social motility
    DOI:  https://doi.org/10.1016/j.jbc.2021.100977
  25. J Plant Physiol. 2021 Jul 15. pii: S0176-1617(21)00112-7. [Epub ahead of print]264 153473
      Plant endoplasmic reticulum (ER) remodelling is likely to be important for its function in targeted protein secretion, organelle interaction and signal exchange. It has been known for decades that the structure and movement of the ER network is mainly regulated by the actin cytoskeleton through actin motor proteins and membrane-cytoskeleton adaptors. Recent discoveries also revealed alternative pathways that influence ER movement, through a microtubule-based machinery. Therefore, plants utilize both cytoskeletal components to drive ER dynamics, a process that is likely to be dependent on the cell type and the developmental stages. On the other hand, the ER membrane also has a direct effect towards the organization of the cytoskeletal network and disrupting the tethering factors at the ER-PM interface also rearranges the cytoskeletal structure. However, the influence of the ER network on the cytoskeleton organization has not been studied. In this review, we will provide an overview of the ER-cytoskeleton network in plants, and discuss the most recent discoveries in the field.
    Keywords:  Actin cytoskeleton; Cytoskeleton-membrane interaction; ER-PM contact Sites; Endoplasmic reticulum; Microtubules
    DOI:  https://doi.org/10.1016/j.jplph.2021.153473
  26. Plant J. 2021 Jul 22.
      Chlorophyll (Chl) degradation is a natural phenomenon that occurs during ripening in many fleshy fruit species, and also during fruit storage. The plant hormone ethylene is a key factor in promoting Chl degradation during fruit storage, but the mechanisms involved in this induction are largely unknown. In this study, an apple (Malus domestica) BEL1-LIKE HOMEODOMAIN transcription factor 7 (MdBEL7), potentially functioning as a transcriptional repressor of the Chl catabolic genes (CCGs), including MdCLH,MdPPH2 and MdRCCR2, was identified as a partner of the ethylene-activated U-box type E3 ubiquitin ligase MdPUB24 in a yeast library screen. Yeast two-hybrid, co-immunoprecipitation and luciferase complementation imaging assays were then used to verify the interaction between MdBEL7 and MdPUB24. In vitro and in vivo ubiquitination experiments revealed that MdPUB24 functions as an E3 ubiquitin ligase to ubiquitinate MdBEL7, thereby causing its degradation through the 26S proteasome pathway. Transient overexpression of MdPUB24 in apple fruit led to a decrease in MdBEL7 abundance and increased expression of CCG genes, including MdCLH,MdPPH2 and MdRCCR2, as well as greater Chl degradation. Taken together, the data indicated that an ethylene-activated U-box type E3 ubiquitin ligase MdPUB24 directly interacts with, and ubiquitinates MdBEL7. Consequent degradation of MdBEL7 results in enhanced expression of MdCLH,MdPPH2 and MdRCCR2 and thus Chl degradation during apple fruit storage. Our results reveal that an ethylene-MdPUB24-MdBEL7 module regulates Chl degradation by post-translational modification during apple fruit storage.
    Keywords:  MdBEL7; MdPUB24; apple; chlorophyll; ethylene; post-translational regulation; ubiquitination
    DOI:  https://doi.org/10.1111/tpj.15432
  27. Autophagy. 2021 Jul 19. 1-3
      As part of innate immune defenses, macroautophagy/autophagy targets viruses and viral components for lysosomal degradation and exposes pathogen-associated molecular patterns to facilitate recognition. However, viruses evolved sophisticated strategies to antagonize autophagy and even exploit it to promote their replication. In our recent study, we systematically analyzed the impact of individual SARS-CoV-2 proteins on autophagy. We showed that E, M, ORF3a, and ORF7a cause an accumulation of autophagosomes, whereas Nsp15 prevents the efficient formation of autophagosomes. Consequently, autophagic degradation of SQSTM1/p62 is decreased in the presence of E, ORF3a, ORF7a, and Nsp15. Notably, M does not alter SQSTM1 protein levels and colocalizes with accumulations of LC3B-positive membranes not resembling vesicles. Infection with SARS-CoV-2 prevents SQSTM1 degradation and increases lipidation of LC3B, indicating overall that the infection causes a reduction of autophagic flux. Our mechanistic analyses showed that the accessory proteins ORF3a and ORF7a both block autophagic degradation but use different strategies. While ORF3a prevents the fusion between autophagosomes and lysosomes, ORF7a reduces the acidity of lysosomes. In summary, we found that Nsp15, E, M, ORF3a, and ORF7a of SARS-CoV-2 manipulate cellular autophagy, and we determined the molecular mechanisms of ORF3a and ORF7a.
    Keywords:  Autophagy; COVID-19; Envelope protein; Membrane protein; Nsp15; ORF3a; ORF7a; SARS-CoV; SARS-CoV-2; double-membrane vesicles; innate immunity
    DOI:  https://doi.org/10.1080/15548627.2021.1953847
  28. EMBO Mol Med. 2021 Jul 22. e14714
      Brain-matter vacuolation is a defining trait of all prion diseases, yet its cause is unknown. Here, we report that prion infection and prion-mimetic antibodies deplete the phosphoinositide kinase PIKfyve-which controls endolysosomal maturation-from mouse brains, cultured cells, organotypic brain slices, and brains of Creutzfeldt-Jakob disease victims. We found that PIKfyve is acylated by the acyltransferases zDHHC9 and zDHHC21, whose juxtavesicular topology is disturbed by prion infection, resulting in PIKfyve deacylation and rapid degradation, as well as endolysosomal hypertrophy and activation of TFEB-dependent lysosomal enzymes. A protracted unfolded protein response (UPR), typical of prion diseases, also induced PIKfyve deacylation and degradation. Conversely, UPR antagonists restored PIKfyve levels in prion-infected cells. Overexpression of zDHHC9 and zDHHC21, administration of the antiprion polythiophene LIN5044, or supplementation with the PIKfyve reaction product PI(3,5)P2 suppressed prion-induced vacuolation and restored lysosomal homeostasis. Thus, PIKfyve emerges as a central mediator of vacuolation and neurotoxicity in prion diseases.
    Keywords:  neurodegeneration; palmitoylation; prion; spongiosis; unfolded protein response
    DOI:  https://doi.org/10.15252/emmm.202114714
  29. Immunology. 2021 Jul 20.
      Sepsis is a life-threatening condition involving a dysregulated immune response to infectious agents that causes injury to host tissues and organs. Current treatments are limited to early administration of antibiotics and supportive care. While appealing, the strategy of targeted inhibition of individual molecules in the inflammatory cascade has not proved beneficial. Non-targeted, systemic immunosuppression with steroids has shown limited efficacy and raises concern for secondary infection. Iminosugars are a class of small molecule glycomimetics with distinct inhibition profiles for glycan processing enzymes based on stereochemistry. Inhibition of host endoplasmic reticulum resident glycoprotein processing enzymes has demonstrated efficacy as a broad spectrum antiviral strategy, but limited consideration has been given to the effects on host glycoprotein production and consequent disruption of signaling cascades. This work demonstrates that iminosugars inhibit dengue virus, bacterial lipopolysaccharide, and fungal antigen stimulated cytokine responses in human macrophages. In spite of decreased inflammatory mediator production, viral replication is suppressed in the presence of iminosugar. Transcriptome analysis reveals the key interaction of pathogen-induced endoplasmic reticulum stress, the resulting unfolded protein response, and inflammation. Our work shows that iminosugars modulate these interactions. Based on these findings, we propose a new therapeutic role for iminosugars as treatment for sepsis related inflammatory disorders associated with excess cytokine secretion.
    Keywords:  Iminosugar; Inflammation; Sepsis; dengue virus; unfolded protein response
    DOI:  https://doi.org/10.1111/imm.13393
  30. Trends Neurosci. 2021 Jul 01. pii: S0166-2236(21)00115-6. [Epub ahead of print]
      The aftermath of TBI is associated with an acute stress response and the accumulation of insoluble protein aggregates. Even after the symptoms of TBI are resolved, insidious molecular processes continue to develop, which often ultimately result in the development of age-associated neurodegenerative disorders. The precise molecular cascades that drive unhealthy brain aging are still largely unknown. In this review, we discuss proteostatic dysfunction as a converging mechanism contributing to accelerated brain aging after TBI. We examine evidence from human tissue and in vivo animal models, spanning both the aging and injury contexts. We conclude that TBI has a sustained debilitating effect on the proteostatic machinery, which may contribute to the accelerated pathological and cognitive hallmarks of aging that are observed following injury.
    Keywords:  cellular stress response; experimental models; heat shock response; therapeutics; ubiquitin-proteasome system; unfolded protein response
    DOI:  https://doi.org/10.1016/j.tins.2021.06.003
  31. Traffic. 2021 Jul 21.
      The correct targeting and insertion of tail-anchored (TA) integral membrane proteins is critical for cellular homeostasis. TA proteins are defined by a hydrophobic transmembrane domain (TMD) at their C-terminus and are targeted to either the ER or mitochondria. Derived from experimental measurements of a few TA proteins, there has been little examination of the TMD features that determine localization. As a result, the localization of many TA proteins are misclassified by the simple heuristic of overall hydrophobicity. Because ER-directed TMDs favor arrangement of hydrophobic residues to one side, we sought to explore the role of geometric hydrophobic properties. By curating TA proteins with experimentally determined localizations and assessing hypotheses for recognition, we bioinformatically and experimentally verify that a hydrophobic face is the most accurate singular metric for separating ER and mitochondria-destined yeast TA proteins. A metric focusing on an eleven residue segment of the TMD performs well when classifying human TA proteins. The most inclusive predictor uses both hydrophobicity and C-terminal charge in tandem. This work provides context for previous observations and opens the door for more detailed mechanistic experiments to determine the molecular factors driving this recognition. This article is protected by copyright. All rights reserved.
    Keywords:  EMC; GET pathway; Protein targeting; SND pathway; Tail-anchored proteins; co-chaperones
    DOI:  https://doi.org/10.1111/tra.12809
  32. Dev Dyn. 2021 Jul 18.
       BACKGROUND: EIF2A is an unconventional translation factor required for initiation of protein synthesis from non-AUG codons from a variety of transcripts, including oncogenes and stress related transcripts in mammalian cells. Its function in multicellular organisms has not been reported.
    RESULTS: Here, we identify and characterize mutant alleles of the CG7414 gene, which encodes the Drosophila EIF2A ortholog. We identified that CG7414 undergoes sex-specific splicing that regulates its male-specific expression. We characterized a Mi{Mic} transposon insertion that disrupts the coding regions of all predicted isoforms and is a likely null allele, and a PBac transposon insertion into an intron, which is a hypomorph. The Mi{Mic} allele is homozygous lethal, while the viable progeny from the hypomorphic PiggyBac allele are male sterile and female fertile. In dEIF2A mutant flies, sperm failed to individualize due to defects in F-actin cones and failure to form and maintain cystic bulges, ultimately leading to sterility.
    CONCLUSIONS: These results demonstrate that EIF2A is essential in a multicellular organism, both for normal development and spermatogenesis, and provide an entrée into the elucidation of the role of EIF2A and unconventional translation in vivo. This article is protected by copyright. All rights reserved.
    Keywords:  CG7414; EIF2A; individualization; spermatogenesis; translational regulation; unconventional protein synthesis; unconventional translation initiation factor
    DOI:  https://doi.org/10.1002/dvdy.403
  33. J Biol Chem. 2021 Jul 15. pii: S0021-9258(21)00772-9. [Epub ahead of print] 100970
      Protein structural bioinformatic analyses suggest preferential associations between methionine and aromatic amino acid residues in proteins. Ab initio energy calculations highlight a conformation-dependent stabilizing interaction between the interacting sulfur-aromatic molecular pair. However, the relevance of buried methionine-aromatic motifs to protein folding and function is relatively unexplored. The Small Ubiquitin-Like Modifier (SUMO) is a β-grasp fold protein and a common post-translational modifier that affects diverse cellular processes, including transcriptional regulation, chromatin remodeling, metabolic regulation, mitosis, and meiosis. SUMO is a member of the Ubiquitin-Like (UBL) protein family. Herein, we report that a highly conserved and buried methionine-phenylalanine motif is a unique signature of SUMO proteins but absent in other homologous UBL proteins. We also detect that a specific 'up' conformation between the methionine-phenylalanine pair of interacting residues in SUMO is critical to its β-grasp fold. The noncovalent interactions of SUMO with its ligands are dependent on the methionine-phenylalanine pair. MD simulations, NMR, and biophysical and biochemical studies suggest that perturbation of the methionine-aromatic motif disrupts native contacts, modulates noncovalent interactions, and attenuates SUMOylation activity. Our results highlight the importance of conserved orientations of Met-aromatic structural motifs inside a protein core for its structure and function.
    Keywords:  Methionine-aromatic motifs; SUMO-interacting Motif (SIM); SUMOylation; structure‐function; sulfur-aromatic interaction
    DOI:  https://doi.org/10.1016/j.jbc.2021.100970
  34. PLoS Biol. 2021 Jul;19(7): e3001287
      The accumulation of α-synuclein (α-syn) aggregates in specific brain regions is a hallmark of synucleinopathies including Parkinson disease (PD). α-Syn aggregates propagate in a "prion-like" manner and can be transferred inside lysosomes to recipient cells through tunneling nanotubes (TNTs). However, how lysosomes participate in the spreading of α-syn aggregates is unclear. Here, by using super-resolution (SR) and electron microscopy (EM), we find that α-syn fibrils affect the morphology of lysosomes and impair their function in neuronal cells. In addition, we demonstrate that α-syn fibrils induce peripheral redistribution of lysosomes, likely mediated by transcription factor EB (TFEB), increasing the efficiency of α-syn fibrils' transfer to neighboring cells. We also show that lysosomal membrane permeabilization (LMP) allows the seeding of soluble α-syn in cells that have taken up α-syn fibrils from the culture medium, and, more importantly, in healthy cells in coculture, following lysosome-mediated transfer of the fibrils. Moreover, we demonstrate that seeding occurs mainly at lysosomes in both donor and acceptor cells, after uptake of α-syn fibrils from the medium and following their transfer, respectively. Finally, by using a heterotypic coculture system, we determine the origin and nature of the lysosomes transferred between cells, and we show that donor cells bearing α-syn fibrils transfer damaged lysosomes to acceptor cells, while also receiving healthy lysosomes from them. These findings thus contribute to the elucidation of the mechanism by which α-syn fibrils spread through TNTs, while also revealing the crucial role of lysosomes, working as a Trojan horse for both seeding and propagation of disease pathology.
    DOI:  https://doi.org/10.1371/journal.pbio.3001287
  35. Biochem J. 2021 Jul 30. 478(14): 2733-2758
      Neurodegenerative diseases such as Alzheimer's and Parkinson's remain highly prevalent and incurable disorders. A major challenge in fully understanding and combating the progression of these diseases is the complexity of the network of processes that lead to progressive neuronal dysfunction and death. An ideal therapeutic avenue is conceivably one that could address many if not all of these multiple misregulated mechanisms. Over the years, chemical intervention for the up-regulation of the endogenous posttranslational modification (PTM) O-GlcNAc has been proposed as a potential strategy to slow down the progression of neurodegeneration. Through the development and application of tools that allow dissection of the mechanistic roles of this PTM, there is now a growing body of evidence that O-GlcNAc influences a variety of important neurodegeneration-pertinent mechanisms, with an overall protective effect. As a PTM that is appended onto numerous proteins that participate in protein quality control and homeostasis, metabolism, bioenergetics, neuronal communication, inflammation, and programmed death, O-GlcNAc has demonstrated beneficence in animal models of neurodegenerative diseases, and its up-regulation is now being pursued in multiple clinical studies.
    Keywords:   O-GlcNAc; neurodegeneration; protein aggregation
    DOI:  https://doi.org/10.1042/BCJ20200609
  36. Neurochem Int. 2021 Jul 20. pii: S0197-0186(21)00187-X. [Epub ahead of print] 105141
      Histone deacetylase 6 (HDAC6) has been shown to control major cell response pathways to the cytotoxic ubiquitinated aggregates in some protein aggregation diseases. However, it is not well known whether HDAC6 affects the aggregation process of α-synuclein (α-syn) in Parkinson's disease (PD). Previously, we demonstrated that HDAC6 inhibition exacerbated the nigrostriatal dopamine neurodegeneration and up-regulated α-syn oligomers in a heat shock protein 90 (Hsp90)-dependent manner in PD mouse model. Here, we further showed that HDAC6 overexpression partly improved the behavior deficits of the PD model and alleviated the nigrostriatal dopamine (DA) neurons injury. Furthermore, HDAC6 was found to regulate α-syn oligomers levels through activation of chaperone-mediated autophagy (CMA). During this process, Hsp90 deacetylation mediated the crosstalk between HDAC6 and lysosome-associated membrane protein type 2A. Liquid chromatography-tandem mass spectrometry and mutational analysis showed that acetylation status Hsp90 at the K489 site was a strong determinant for HDAC6-induced CMA activation, α-syn oligomers levels, and cell survival in the cell model of PD. Therefore, our findings uncovered the mechanism of HDAC6 in the PD model that HDAC6 regulated α-syn oligomers levels and DA neurons survival partly through modulating CMA, and Hsp90 deacetylation at the K489 site mediated the crosstalk between HDAC6 and CMA. HDAC6 and its downstream effectors appear as key modulators of the cytotoxic α-syn aggregates, which deserve further investigations to evaluate their values as potential therapeutic targets in PD.
    Keywords:  Chaperone-mediated autophagy; Heat shock protein 90; Histone deacetylase 6; Parkinson's disease; α-synuclein
    DOI:  https://doi.org/10.1016/j.neuint.2021.105141
  37. Nat Commun. 2021 07 19. 12(1): 4389
      Despite their roles in intercellular communications, the different populations of extracellular vesicles (EVs) and their secretion mechanisms are not fully characterized: how and to what extent EVs form as intraluminal vesicles of endocytic compartments (exosomes), or at the plasma membrane (PM) (ectosomes) remains unclear. Here we follow intracellular trafficking of the EV markers CD9 and CD63 from the endoplasmic reticulum to their residency compartment, respectively PM and late endosomes. We observe transient co-localization at both places, before they finally segregate. CD9 and a mutant CD63 stabilized at the PM are more abundantly released in EVs than CD63. Thus, in HeLa cells, ectosomes are more prominent than exosomes. By comparative proteomic analysis and differential response to neutralization of endosomal pH, we identify a few surface proteins likely specific of either exosomes (LAMP1) or ectosomes (BSG, SLC3A2). Our work sets the path for molecular and functional discrimination of exosomes and small ectosomes in any cell type.
    DOI:  https://doi.org/10.1038/s41467-021-24384-2
  38. J Cell Physiol. 2021 Jul 23.
      IRE1 is an important central regulator of unfolded protein response (UPR) in the endoplasmic reticulum (ER) because of its ability to regulate cell fate as a function of stress sensing. When misfolded proteins accumulated in chondrocytes ER, IRE1 disintegrates with BIP/GRP78 and undergoes dimer/oligomerization and transautophosphorylation. These two processes are mediated through an enzyme activity of IRE1 to activate endoribonuclease and generates XBP1 by unconventional splicing of XBP1 messenger RNA. Thereby promoting the transcription of UPR target genes and apoptosis. The deficiency of inositol-requiring enzyme 1α (IRE1α) in chondrocytes downregulates prosurvival factors XBP1S and Bcl-2, which enhances the apoptosis of chondrocytes through increasing proapoptotic factors caspase-3, p-JNK, and CHOP. Meanwhile, the activation of IRE1α increases chondrocyte viability and reduces cell apoptosis. However, the understanding of IRE1 responses and cell death fate remains controversial. This review provides updated data about the role IRE1 plays in chondrocytes and new insights about the potential efficacy of IRE1 regulation in cartilage repair and osteoarthritis treatment.
    Keywords:  ERS; IRE1; apoptosis; chondrocyte; osteoarthritis
    DOI:  https://doi.org/10.1002/jcp.30537
  39. Nature. 2021 Jul 21.
      The mTOR complex 1 (mTORC1) controls cell growth in response to amino acid levels1. Here we report SAR1B as a leucine sensor that regulates mTORC1 signalling in response to intracellular levels of leucine. Under conditions of leucine deficiency, SAR1B inhibits mTORC1 by physically targeting its activator GATOR2. In conditions of leucine sufficiency, SAR1B binds to leucine, undergoes a conformational change and dissociates from GATOR2, which results in mTORC1 activation. SAR1B-GATOR2-mTORC1 signalling is conserved in nematodes and has a role in the regulation of lifespan. Bioinformatic analysis reveals that SAR1B deficiency correlates with the development of lung cancer. The silencing of SAR1B and its paralogue SAR1A promotes mTORC1-dependent growth of lung tumours in mice. Our results reveal that SAR1B is a conserved leucine sensor that has a potential role in the development of lung cancer.
    DOI:  https://doi.org/10.1038/s41586-021-03768-w
  40. Nat Commun. 2021 07 20. 12(1): 4427
      The membrane-associated RING-CH (MARCH) proteins are E3 ligases that regulate the stability of various cellular membrane proteins. MARCH8 has been reported to inhibit the infection of HIV-1 and a few other viruses, thus plays an important role in host antiviral defense. However, the antiviral spectrum and the underlying mechanisms of MARCH8 are incompletely defined. Here, we demonstrate that MARCH8 profoundly inhibits influenza A virus (IAV) replication both in vitro and in mice. Mechanistically, MARCH8 suppresses IAV release through redirecting viral M2 protein from the plasma membrane to lysosomes for degradation. Specifically, MARCH8 catalyzes the K63-linked polyubiquitination of M2 at lysine residue 78 (K78). A recombinant A/Puerto Rico/8/34 virus carrying the K78R M2 protein shows greater replication and more severe pathogenicity in cells and mice. More importantly, we found that the M2 protein of the H1N1 IAV has evolved to acquire non-lysine amino acids at positions 78/79 to resist MARCH8-mediated ubiquitination and degradation. Together, our data support the important role of MARCH8 in host anti-IAV intrinsic immune defense by targeting M2, and suggest the inhibitory pressure of MARCH8 on H1N1 IAV transmission in the human population.
    DOI:  https://doi.org/10.1038/s41467-021-24724-2
  41. Cell Rep. 2021 Jul 20. pii: S2211-1247(21)00792-0. [Epub ahead of print]36(3): 109394
      Novel treatment options for metastatic colorectal cancer (CRC) are urgently needed to improve patient outcome. Here, we screen a library of non-characterized small molecules against a heterogeneous collection of patient-derived CRC spheroids. By prioritizing compounds with inhibitory activity in a subset of-but not all-spheroid cultures, NCT02 is identified as a candidate with minimal risk of non-specific toxicity. Mechanistically, we show that NCT02 acts as molecular glue that induces ubiquitination of cyclin K (CCNK) and proteasomal degradation of CCNK and its complex partner CDK12. Knockout of CCNK or CDK12 decreases proliferation of CRC cells in vitro and tumor growth in vivo. Interestingly, sensitivity to pharmacological CCNK/CDK12 degradation is associated with TP53 deficiency and consensus molecular subtype 4 in vitro and in patient-derived xenografts. We thus demonstrate the efficacy of targeted CCNK/CDK12 degradation for a CRC subset, highlighting the potential of drug-induced proteolysis for difficult-to-treat types of cancer.
    Keywords:  CCNK; CDK12; colorectal cancer; molecular glue degrader; targeted protein degradation
    DOI:  https://doi.org/10.1016/j.celrep.2021.109394
  42. J Biol Chem. 2021 Jul 16. pii: S0021-9258(21)00774-2. [Epub ahead of print] 100972
      Heme plays a critical role in catalyzing life-essential redox reactions in all cells, and its synthesis must be tightly balanced with cellular requirements. Heme synthesis in eukaryotes is tightly regulated by the mitochondrial AAA+ unfoldase CLPX (caseinolytic mitochondrial matrix peptidase chaperone subunit X), which promotes heme synthesis by activation of δ-aminolevulinate synthase (ALAS/Hem1) in yeast and regulates turnover of ALAS1 in human cells. However, the specific mechanisms by which CLPX regulates heme synthesis are unclear. In this study, we interrogated the mechanisms by which CLPX regulates heme synthesis in erythroid cells. Quantitation of enzyme activity and protein degradation showed that ALAS2 stability and activity were both increased in the absence of CLPX, suggesting that CLPX primarily regulates ALAS2 by control of its turnover, rather than its activation. However, we also showed that CLPX is required for PPOX (protoporphyinogen IX oxidase) activity and maintenance of FECH (ferrochelatase) levels, which are the terminal enzymes in heme synthesis, likely accounting for the heme deficiency and porphyrin accumulation observed in Clpx-/- cells. Lastly, CLPX is required for iron utilization for hemoglobin synthesis during erythroid differentiation. Collectively, our data show that the role of CLPX in yeast ALAS/Hem1 activation is not conserved in vertebrates as vertebrates rely on CLPX to regulate ALAS turnover as well as PPOX and FECH activity. Our studies reveal that CLPX mutations may cause anemia and porphyria via dysregulation of ALAS, FECH and PPOX activities, as well as of iron metabolism.
    DOI:  https://doi.org/10.1016/j.jbc.2021.100972
  43. Curr Opin Oncol. 2021 Jul 16.
       PURPOSE OF REVIEW: In the article, we focus on the role of SUMOylation in tumorigenesis and cancer-related processes, including Epithelial-mesenchymal transition (EMT), metastasis, resistance to cancer therapies, and antitumor immunity. Clinical perspective on small ubiquitin-like modifier (SUMO) inhibitors will be discussed.
    RECENT FINDINGS: SUMOylation regulates multiple important biologic functions including gene transcription, DNA damage repair, cell cycle, and innate immunity. The SUMO pathway enzymes are usually elevated in various cancers and linked with cancer progression and poor clinical outcomes for patients. Recent studies have revealed the role of SUMOylation in EMT and metastasis through regulating E-Cadherin and Snail expression. Multiple studies demonstrate SUMOylation is involved with chemoresistance and hormone treatment resistance. Oncogene Myc and SUMOylation machinery regulation has been revealed in pancreatic cancer. SUMOylation is involved in regulating antitumor immune response through dendritic cells and T cells. A breakthrough has been made in targeting SUMOylation in cancer as first-in-class SUMO E1 inhibitor TAK-981 enters clinical trials.
    SUMMARY: SUMOylation plays an important role in tumor EMT, metastasis, therapy resistance, and antitumor immune response. Pharmaceutical inhibition of SUMOylation has become promising clinical therapy to improve the outcome of the existing chemo and immune therapies.
    DOI:  https://doi.org/10.1097/CCO.0000000000000765
  44. EMBO J. 2021 Jul 22. e108249
      SARS-CoV-2 is an emerging coronavirus that causes dysfunctions in multiple human cells and tissues. Studies have looked at the entry of SARS-CoV-2 into host cells mediated by the viral spike protein and human receptor ACE2. However, less is known about the cellular immune responses triggered by SARS-CoV-2 viral proteins. Here, we show that the nucleocapsid of SARS-CoV-2 inhibits host pyroptosis by blocking Gasdermin D (GSDMD) cleavage. SARS-CoV-2-infected monocytes show enhanced cellular interleukin 1b (IL-1b) expression, but reduced IL-1b secretion. While SARS-CoV-2 infection promotes activation of the NLRP3 inflammasome and caspase-1, GSDMD cleavage and pyroptosis are inhibited in infected human monocytes. SARS-CoV-2 nucleocapsid protein associates with GSDMD in cells and inhibits GSDMD cleavage in vitro and in vivo. The nucleocapsid binds the GSDMD linker region and hinders GSDMD processing by caspase-1. These insights into how SARS-CoV-2 antagonizes cellular inflammatory responses may open new avenues for treating COVID-19 in the future.
    Keywords:  GSDMD; SARS-CoV-2; inflammasome; nucleocapsid; pyroptosis
    DOI:  https://doi.org/10.15252/embj.2021108249
  45. Nat Rev Mol Cell Biol. 2021 Jul 23.
      Autophagy is a versatile degradation system for maintaining cellular homeostasis whereby cytosolic materials are sequestered in a double-membrane autophagosome and subsequently delivered to lysosomes, where they are broken down. In multicellular organisms, newly formed autophagosomes undergo a process called 'maturation', in which they fuse with vesicles originating from endolysosomal compartments, including early/late endosomes and lysosomes, to form amphisomes, which eventually become degradative autolysosomes. This fusion process requires the concerted actions of multiple regulators of membrane dynamics, including SNAREs, tethering proteins and RAB GTPases, and also transport of autophagosomes and late endosomes/lysosomes towards each other. Multiple mechanisms modulate autophagosome maturation, including post-translational modification of key components, spatial distribution of phosphoinositide lipid species on membranes, RAB protein dynamics, and biogenesis and function of lysosomes. Nutrient status and various stresses integrate into the autophagosome maturation machinery to coordinate the progression of autophagic flux. Impaired autophagosome maturation is linked to the pathogenesis of various human diseases, including neurodegenerative disorders, cancer and myopathies. Furthermore, invading pathogens exploit various strategies to block autophagosome maturation, thus evading destruction and even subverting autophagic vacuoles (autophagosomes, amphisomes and autolysosomes) for survival, growth and/or release. Here, we discuss the recent progress in our understanding of the machinery and regulation of autophagosome maturation, the relevance of these mechanisms to human pathophysiology and how they are harnessed by pathogens for their benefit. We also provide perspectives on targeting autophagosome maturation therapeutically.
    DOI:  https://doi.org/10.1038/s41580-021-00392-4
  46. Acta Neuropathol. 2021 Jul 24.
      Medulloblastoma (MB) is a childhood malignant brain tumour comprising four main subgroups characterized by different genetic alterations and rate of mortality. Among MB subgroups, patients with enhanced levels of the c-MYC oncogene (MBGroup3) have the poorest prognosis. Here we identify a previously unrecognized role of the pro-autophagy factor AMBRA1 in regulating MB. We demonstrate that AMBRA1 expression depends on c-MYC levels and correlates with Group 3 patient poor prognosis; also, knockdown of AMBRA1 reduces MB stem potential, growth and migration of MBGroup3 stem cells. At a molecular level, AMBRA1 mediates these effects by suppressing SOCS3, an inhibitor of STAT3 activation. Importantly, pharmacological inhibition of autophagy profoundly affects both stem and invasion potential of MBGroup3 stem cells, and a combined anti-autophagy and anti-STAT3 approach impacts the MBGroup3 outcome. Taken together, our data support the c-MYC/AMBRA1/STAT3 axis as a strong oncogenic signalling pathway with significance for both patient stratification strategies and targeted treatments of MBGroup3.
    Keywords:  Autophagy; Brain tumours; Cancer stem cells; Therapy
    DOI:  https://doi.org/10.1007/s00401-021-02347-7
  47. Matrix Biol Plus. 2021 Dec;12 100076
      Mechanistic aspects of type I procollagen biosynthesis in cells are poorly understood. To provide more insight into this process we designed a system to directly image type I procollagen biogenesis by co-expression of fluorescently labeled full size procollagen α1(I) and one α2(I) polypeptides. High resolution images show that collagen α1(I) and α2(I) polypeptides are produced in coordination in discrete structures on the ER membrane, which we termed the collagenosomes. Collagenosomes are disk shaped bodies, 0.5-1 μM in diameter and 200-400 nm thick, in the core of which folding of procollagen takes place. Collagenosomes are intimately associated with the ER membrane and their formation requires intact translational machinery, suggesting that they are the sites of nascent procollagen biogenesis. Collagenosomes show little co-localization with the COPII transport vesicles, which export type I procollagen from the ER, suggesting that these two structures are distinct. LARP6 is the protein which regulates translation of type I collagen mRNAs. The characteristic organization of collagenosomes depends on binding of LARP6 to collagen mRNAs. Without LARP6 regulation, collagenosomes are poorly organized and the folding of α1(I) and α2(I) polypeptides into procollagen in their cores is diminished. This indicates that formation of collagenosomes is dependent on regulated translation of collagen mRNAs. In live cells the size, number and shape of collagenosomes show little change within several hours, suggesting that they are stable structures of type I procollagen biogenesis. This is the first report of structural organization of type I collagen biogenesis in collagenosomes, while the fluorescent reporter system based on simultaneous imaging of both type I collagen polypeptides will enable the detailed elucidation of their structure and function.
    Keywords:  Biosynthesis; Colocalization; Fibrosis; Imaging in cells; Type I collagen
    DOI:  https://doi.org/10.1016/j.mbplus.2021.100076
  48. EMBO J. 2021 Jul 22. e107516
      The anaphase-promoting complex/cyclosome (APC/C), a multi-subunit ubiquitin ligase essential for cell cycle control, is regulated by reversible phosphorylation. APC/C phosphorylation by cyclin-dependent kinase 1 (Cdk1) promotes Cdc20 co-activator loading in mitosis to form active APC/C-Cdc20. However, detailed phospho-regulation of APC/C dynamics through other kinases and phosphatases is still poorly understood. Here, we show that an interplay between polo-like kinase (Plx1) and PP2A-B56 phosphatase on a flexible loop domain of the subunit Apc1 (Apc1-loop500 ) controls APC/C activity and mitotic progression. Plx1 directly binds to the Apc1-loop500 in a phosphorylation-dependent manner and promotes the formation of APC/C-Cdc20 via Apc3 phosphorylation. Upon phosphorylation of loop residue T532, PP2A-B56 is recruited to the Apc1-loop500 and differentially promotes dissociation of Plx1 and PP2A-B56 through dephosphorylation of Plx1-binding sites. Stable Plx1 binding, which prevents PP2A-B56 recruitment, prematurely activates the APC/C and delays APC/C dephosphorylation during mitotic exit. Furthermore, the phosphorylation status of the Apc1-loop500 is controlled by distant Apc3-loop phosphorylation. Our study suggests that phosphorylation-dependent feedback regulation through flexible loop domains within a macromolecular complex coordinates the activity and dynamics of the APC/C during the cell cycle.
    Keywords:  APC/C; Cdc20; PP2A; loop domain; polo-like kinase
    DOI:  https://doi.org/10.15252/embj.2020107516
  49. Cell Rep. 2021 Jul 20. pii: S2211-1247(21)00820-2. [Epub ahead of print]36(3): 109407
      Transcripts encoding membrane and secreted proteins are known to associate with the endoplasmic reticulum (ER) through translation. Here, using cell fractionation, polysome profiling, and 3' end sequencing, we show that transcripts differ substantially in translation-independent ER association (TiERA). Genes in certain functional groups, such as cell signaling, tend to have significantly higher TiERA potentials than others, suggesting the importance of ER association for their mRNA metabolism, such as localized translation. The TiERA potential of a transcript is determined largely by size, sequence content, and RNA structures. Alternative polyadenylation (APA) isoforms can have distinct TiERA potentials because of changes in transcript features. The widespread 3' UTR lengthening in cell differentiation leads to greater transcript association with the ER, especially for genes that are capable of expressing very long 3' UTRs. Our data also indicate that TiERA is in dynamic competition with translation-dependent ER association, suggesting limited space on the ER for mRNA association.
    Keywords:  3′ UTR; RNA structure; alternative 3′UTR; alternative polyadenylation; cell differentiation; endoplasmic reticulum; mRNA subcellular localization; myogenesis
    DOI:  https://doi.org/10.1016/j.celrep.2021.109407
  50. iScience. 2021 Jul 23. 24(7): 102753
      RNA-binding proteins (RBPs) are key post-transcriptional regulators that play a substantial role during stress adaptation. Recent proteome-wide surveys have uncovered a large number of new and "unconventional" RBPs such as metabolic enzymes, yet little is known about the reconfiguration of the RNA-binding proteome (RBPome) and RNA-enzyme interactions in response to cellular stress. Here, we applied RNA-interactome capture to monitor the dynamics of the mRBPome upon mild oxidative stress in the yeast Saccharomyces cerevisiae. Among the 257 proteins that significantly changed RNA associations, we observed the coordinated remodeling of RNA-binding enzymes - particularly of the central carbon metabolism - that complemented known metabolic responses. Furthermore, we recognized the propensity for paralogous specific alterations of enzyme-RNA interactions. Our results suggest coordinated cross talk between RNA-enzyme interactions and intermediary metabolism to maintain the physiological and molecular balance upon oxidative stress, perhaps through specialization of paralogous during evolution.
    Keywords:  microbial metabolism; molecular network; proteomics
    DOI:  https://doi.org/10.1016/j.isci.2021.102753
  51. Nat Commun. 2021 07 22. 12(1): 4466
      Macrolides and ketolides comprise a family of clinically important antibiotics that inhibit protein synthesis by binding within the exit tunnel of the bacterial ribosome. While these antibiotics are known to interrupt translation at specific sequence motifs, with ketolides predominantly stalling at Arg/Lys-X-Arg/Lys motifs and macrolides displaying a broader specificity, a structural basis for their context-specific action has been lacking. Here, we present structures of ribosomes arrested during the synthesis of an Arg-Leu-Arg sequence by the macrolide erythromycin (ERY) and the ketolide telithromycin (TEL). Together with deep mutagenesis and molecular dynamics simulations, the structures reveal how ERY and TEL interplay with the Arg-Leu-Arg motif to induce translational arrest and illuminate the basis for the less stringent sequence-specific action of ERY over TEL. Because programmed stalling at the Arg/Lys-X-Arg/Lys motifs is used to activate expression of antibiotic resistance genes, our study also provides important insights for future development of improved macrolide antibiotics.
    DOI:  https://doi.org/10.1038/s41467-021-24674-9
  52. Cell Rep. 2021 Jul 20. pii: S2211-1247(21)00797-X. [Epub ahead of print]36(3): 109399
      The pathogenic mechanism by which dominant mutations in VCP cause multisystem proteinopathy (MSP), a rare neurodegenerative disease that presents as fronto-temporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), remains unclear. To explore this, we inactivate VCP in murine postnatal forebrain neurons (VCP conditional knockout [cKO]). VCP cKO mice have cortical brain atrophy, neuronal loss, autophago-lysosomal dysfunction, and TDP-43 inclusions resembling FTLD-TDP pathology. Conditional expression of a single disease-associated mutation, VCP-R155C, in a VCP null background similarly recapitulates features of VCP inactivation and FTLD-TDP, suggesting that this MSP mutation is hypomorphic. Comparison of transcriptomic and proteomic datasets from genetically defined patients with FTLD-TDP reveal that progranulin deficiency and VCP insufficiency result in similar profiles. These data identify a loss of VCP-dependent functions as a mediator of FTLD-TDP and reveal an unexpected biochemical similarity with progranulin deficiency.
    Keywords:  FTD; FTLD; TDP-43; VCP; autophagy; multisystem proteinopathy; neurodegeneration; progranulin
    DOI:  https://doi.org/10.1016/j.celrep.2021.109399
  53. Mol Cell. 2021 Jul 13. pii: S1097-2765(21)00508-6. [Epub ahead of print]
      Temperature is a variable component of the environment, and all organisms must deal with or adapt to temperature change. Acute temperature change activates cellular stress responses, resulting in refolding or removal of damaged proteins. However, how organisms adapt to long-term temperature change remains largely unexplored. Here we report that budding yeast responds to long-term high temperature challenge by switching from chaperone induction to reduction of temperature-sensitive proteins and re-localizing a portion of its proteome. Surprisingly, we also find that many proteins adopt an alternative conformation. Using Fet3p as an example, we find that the temperature-dependent conformational difference is accompanied by distinct thermostability, subcellular localization, and, importantly, cellular functions. We postulate that, in addition to the known mechanisms of adaptation, conformational plasticity allows some polypeptides to acquire new biophysical properties and functions when environmental change endures.
    Keywords:  Fet3; environmental stress; machine learning; moonlighting functions; protein conformation changes; thermal acclimation
    DOI:  https://doi.org/10.1016/j.molcel.2021.06.028
  54. Arthritis Rheumatol. 2021 Jul 19.
       OBJECTIVE: Genetic variants spanning the ubiquitin-conjugating enzyme E2 L3 (UBE2L3) gene are associated with increased expression of the UBE2L3-encoded E2 ubiquitin-conjugating enzyme, UbcH7, that facilitates activation of proinflammatory NF-κB signaling, and susceptibility to autoimmune diseases. This study aims to delineate how genetic variants carried on the UBE2L3-YDJC autoimmune risk haplotype function to drive hypermorphic UBE2L3 expression.
    METHODS: We used bioinformatic analyses, electrophoretic mobility shift assays, and luciferase reporter assays to identify and functionally characterize allele-specific effects of risk variants positioned in chromatin accessible regions of immune cells. Chromatin conformation capture (3C)-qPCR, ChIP-qPCR, and siRNA knockdown assays were performed on patient-derived EBV-transformed B cells homozygous for the UBE2L3-YDJC non-risk or risk haplotype to determine if the risk haplotype increases UBE2L3 expression by altering the regulatory chromatin architecture in the region.
    RESULTS: Five of the seven prioritized variants demonstrated allele-specific increases in nuclear protein binding affinity and regulatory activity. HiChIP and 3C-qPCR uncovered a long-range interaction between the UBE2L3 promoter (rs140490, rs140491, rs11089620) and downstream YDJC promoter (rs3747093) that was strengthened in the presence of the UBE2L3-YDJC risk haplotype, and correlated with the loss of CTCF binding and gain of YY1 binding at the risk alleles. Depleting YY1 by siRNA disrupted the long-range interaction between the two promoters and reduced UBE2L3 expression.
    CONCLUSION: The UBE2L3-YDJC autoimmune risk haplotype increases UBE2L3 expression through strengthening a YY1-mediated interaction between the UBE2L3 and YDJC promoters.
    DOI:  https://doi.org/10.1002/art.41925