bims-proteo Biomed News
on Proteostasis
Issue of 2021–06–13
35 papers selected by
Eric Chevet, INSERM



  1. Mol Cell. 2021 Jun 02. pii: S1097-2765(21)00361-0. [Epub ahead of print]
      Protein homeostasis mechanisms are fundamentally important to match cellular needs and to counteract stress conditions. A fundamental challenge is to understand how defective proteins are recognized and extracted from cellular organelles to be degraded in the cytoplasm. The endoplasmic reticulum (ER)-associated degradation (ERAD) pathway is the best-understood organellar protein quality control system. Here, we review new insights into the mechanism of recognition and retrotranslocation of client proteins in ERAD. In addition to the membrane-integral ERAD E3 ubiquitin ligases, we highlight one protein family that is remarkably often involved in various aspects of membrane protein quality control and protein dislocation: the rhomboid superfamily, which includes derlins and intramembrane serine proteases. Rhomboid-like proteins have been found to control protein homeostasis in the ER, but also in other eukaryotic organelles and in bacteria, pointing toward conserved principles of membrane protein quality control across organelles and evolution.
    DOI:  https://doi.org/10.1016/j.molcel.2021.05.004
  2. Cell Rep. 2021 Jun 08. pii: S2211-1247(21)00568-4. [Epub ahead of print]35(10): 109217
      The ubiquitous ribosome-associated complex (RAC) is a chaperone that spans ribosomes, making contacts near both the polypeptide exit tunnel and the decoding center, a position prime for sensing and coordinating translation and folding. Loss of RAC is known to result in growth defects and sensitization to translational and osmotic stresses. However, the physiological substrates of RAC and the mechanism(s) by which RAC is involved in responding to specific stresses in higher eukaryotes remain obscure. The data presented here uncover an essential function of mammalian RAC in the unfolded protein response (UPR). Knockdown of RAC sensitizes mammalian cells to endoplasmic reticulum (ER) stress and selectively interferes with IRE1 branch activation. Higher-order oligomerization of the inositol-requiring enzyme 1α (IRE1α) kinase/endoribonuclease depends upon RAC. These results reveal a surveillance function for RAC in the UPR, as follows: modulating IRE1α clustering as required for endonuclease activation and splicing of the substrate Xbp1 mRNA.
    Keywords:  IRE1 foci; UPR; Xbp1 mRNA; chaperone; ribosome stalling; ribosome-associated complex; translation
    DOI:  https://doi.org/10.1016/j.celrep.2021.109217
  3. Mol Cell. 2021 Jun 02. pii: S1097-2765(21)00400-7. [Epub ahead of print]
      Molecular chaperones assist with protein folding by interacting with nascent polypeptide chains (NCs) during translation. Whether the ribosome can sense chaperone defects and, in response, abort translation of misfolding NCs has not yet been explored. Here we used quantitative proteomics to investigate the ribosome-associated chaperone network in E. coli and the consequences of its dysfunction. Trigger factor and the DnaK (Hsp70) system are the major NC-binding chaperones. HtpG (Hsp90), GroEL, and ClpB contribute increasingly when DnaK is deficient. Surprisingly, misfolding because of defects in co-translational chaperone function or amino acid analog incorporation results in recruitment of the non-canonical release factor RF3. RF3 recognizes aberrant NCs and then moves to the peptidyltransferase site to cooperate with RF2 in mediating chain termination, facilitating clearance by degradation. This function of RF3 reduces the accumulation of misfolded proteins and is critical for proteostasis maintenance and cell survival under conditions of limited chaperone availability.
    Keywords:  ClpB; DnaJ; DnaK; GroEL; GrpE; Hsp70; Hsp90; HtpG; PrfC (RF3); co-translational protein folding; molecular chaperones; proteomics; translation termination; trigger factor
    DOI:  https://doi.org/10.1016/j.molcel.2021.05.016
  4. FEBS Lett. 2021 Jun 10.
      Decoding of ornithine decarboxylase (ODC) antizyme 1 (OAZ1) mRNA, which harbours two open reading frames (ORF1 and ORF2) interrupted by a naturally occurring Premature Termination Codon (PTC), produces an 8 kDa truncated polypeptide termed Orf1p, unless the PTC is bypassed by +1 ribosomal frameshifting. In this study, we identified Orf1p as an endogenous ubiquitin-dependent substrate of the 26S proteasome both in yeast and mammalian cells. Surprisingly, we found that the ribosome-associated quality control factor Rqc1 and the ubiquitin ligase Ltn1 are critical for Orf1p degradation. In addition, the cytosolic protein quality control chaperone system Hsp70/Hsp90 and their corresponding co-chaperones Sse1, Fes1, Sti1, and Cpr7 are also required for Orf1p proteolysis. Our study finds that Orf1p, which is naturally synthesized as a result of a premature translation termination event, requires the coordinated role of both ribosome-associated and cytosolic protein quality control factors for its degradation.
    Keywords:  Antizyme; Ubiquitin/Proteasome System (UPS); protein degradation; ribosomal frameshifting; ribosome-associated protein quality control (RQC)
    DOI:  https://doi.org/10.1002/1873-3468.14147
  5. J Biol Chem. 2021 Jun 08. pii: S0021-9258(21)00662-1. [Epub ahead of print] 100862
      The Elongin complex was originally identified as an RNA polymerase II (RNAPII) elongation factor and subsequently as the substrate recognition component of a Cullin-RING E3 ubiquitin ligase. More recent evidence indicates the Elongin ubiquitin ligase assembles with the Cockayne syndrome B helicase (CSB) in response to DNA damage and can target stalled polymerases for ubiquitylation and removal from the genome. In this report, we present evidence that the CSB-Elongin ubiquitin ligase pathway has roles beyond the DNA damage response in the activation of RNAPII-mediated transcription. We observed that assembly of the CSB-Elongin ubiquitin ligase is induced not just by DNA damage, but also by a variety of signals that activate RNAPII-mediated transcription, including endoplasmic reticulum (ER) stress, amino acid starvation, retinoic acid, glucocorticoids, and doxycycline treatment of cells carrying several copies of a doxycycline-inducible reporter. Using glucocorticoid receptor (GR)-regulated genes as a model, we showed that glucocorticoid-induced transcription is accompanied by rapid recruitment of CSB and the Elongin ubiquitin ligase to target genes in a step that depends upon the presence of transcribing RNAPII on those genes. Consistent with the idea that the CSB-Elongin pathway plays a direct role in GR regulated transcription, mouse cells lacking the Elongin subunit Elongin A exhibit delays in both RNAPII accumulation on and dismissal from target genes following glucocorticoid addition and withdrawal, respectively. Taken together, our findings bring to light a new role for the CSB-Elongin pathway in RNAPII-mediated transcription.
    Keywords:  Cockayne Syndrome B (CSB); Elongin; RNA polymerase II; chromatin immunoprecipitation (ChIP); fluorescence resonance energy transfer (FRET); glucocorticoid receptor; transcription elongation factor; transcription regulation; ubiquitin ligase
    DOI:  https://doi.org/10.1016/j.jbc.2021.100862
  6. Cell Death Dis. 2021 Jun 11. 12(6): 608
      Dual specificity tyrosine phosphorylation regulated kinase 1A, DYRK1A, functions in multiple cellular pathways, including signaling, endocytosis, synaptic transmission, and transcription. Alterations in dosage of DYRK1A leads to defects in neurogenesis, cell growth, and differentiation, and may increase the risk of certain cancers. DYRK1A localizes to a number of subcellular structures including vesicles where it is known to phosphorylate a number of proteins and regulate vesicle biology. However, the mechanism by which it translocates to vesicles is poorly understood. Here we report the discovery of TRAF2, an E3 ligase, as an interaction partner of DYRK1A. Our data suggest that TRAF2 binds to PVQE motif residing in between the PEST and histidine repeat domain (HRD) of DYRK1A protein, and mediates K63-linked ubiquitination of DYRK1A. This results in translocation of DYRK1A to the vesicle membrane. DYRK1A increases phosphorylation of Sprouty 2 on vesicles, leading to the inhibition of EGFR degradation, and depletion of TRAF2 expression accelerates EGFR degradation. Further, silencing of DYRK1A inhibits the growth of glioma cells mediated by TRAF2. Collectively, these findings suggest that the axis of TRAF2-DYRK1A-Sprouty 2 can be a target for new therapeutic development for EGFR-mediated human pathologies.
    DOI:  https://doi.org/10.1038/s41419-021-03887-2
  7. Chem Sci. 2020 Mar 10. 11(13): 3557-3568
      Proteins are continuously synthesized during cell growth and proliferation. At the same time, excessive and misfolded proteins have to be degraded, otherwise they are a burden to cells. Protein degradation is essential to maintain proteostasis in cells, and dysfunction of protein degradation systems results in numerous diseases such as cancer and neurodegenerative diseases. Despite the importance of protein degradation, the degradation pathways of many proteins remain to be explored. Here, we comprehensively investigated the degradation of newly synthesized proteins in human cells by integrating metabolic labeling, click chemistry, and multiplexed proteomics, and systematic and quantitative analysis of newly synthesized proteins first revealed the degradation pathways of many proteins. Bioinformatic analysis demonstrates that proteins degraded through two major pathways have distinct properties and functions. Proteins degraded through the ubiquitin-proteasome pathway contain more disordered structures, whereas those through the autophagy-lysosome pathway have significantly higher hydrophobicity. Systematic and quantitative investigation of the dynamics of newly synthesized proteins provides unprecedented and valuable information about protein degradation, which leads to a better understanding of protein properties and cellular activities.
    DOI:  https://doi.org/10.1039/c9sc06479f
  8. Nat Commun. 2021 06 08. 12(1): 3440
      The multi-subunit translation initiation factor eIF2B is a control node for protein synthesis. eIF2B activity is canonically modulated through stress-responsive phosphorylation of its substrate eIF2. The eIF2B regulatory subcomplex is evolutionarily related to sugar-metabolizing enzymes, but the biological relevance of this relationship was unknown. To identify natural ligands that might regulate eIF2B, we conduct unbiased binding- and activity-based screens followed by structural studies. We find that sugar phosphates occupy the ancestral catalytic site in the eIF2Bα subunit, promote eIF2B holoenzyme formation and enhance enzymatic activity towards eIF2. A mutant in the eIF2Bα ligand pocket that causes Vanishing White Matter disease fails to engage and is not stimulated by sugar phosphates. These data underscore the importance of allosteric metabolite modulation for proper eIF2B function. We propose that eIF2B evolved to couple nutrient status via sugar phosphate sensing with the rate of protein synthesis, one of the most energetically costly cellular processes.
    DOI:  https://doi.org/10.1038/s41467-021-23836-z
  9. Nat Commun. 2021 06 09. 12(1): 3481
      TcpC is a multifunctional virulence factor of uropathogenic E. coli (UPEC). Neutrophil extracellular trap formation (NETosis) is a crucial anti-infection mechanism of neutrophils. Here we show the influence of TcpC on NETosis and related mechanisms. We show NETosis in the context of a pyelonephritis mouse model induced by TcpC-secreting wild-type E. coli CFT073 (CFT073wt) and LPS-induced in vitro NETosis with CFT073wt or recombinant TcpC (rTcpC)-treated neutrophils are inhibited. rTcpC enters neutrophils through caveolin-mediated endocytosis and inhibits LPS-induced production of ROS, proinflammatory cytokines and protein but not mRNA levels of peptidylarginine deiminase 4 (PAD4). rTcpC treatment enhances PAD4 ubiquitination and accumulation in proteasomes. Moreover, in vitro ubiquitination kit analyses show that TcpC is a PAD4-targetd E3 ubiquitin-ligase. These data suggest that TcpC inhibits NETosis primarily by serving as an E3 ligase that promotes degradation of PAD4. Our findings provide a novel mechanism underlying TcpC-mediated innate immune evasion.
    DOI:  https://doi.org/10.1038/s41467-021-23881-8
  10. mSphere. 2021 Jun 09. e0036121
      To study how the Zika virus (ZIKV) interacts with the host unfolded protein response (UPR), we undertook a kinetics study. We show that ZIKV infection triggers an atypical tripartite UPR in A549 cells involving transient activation of the effectors X-box-binding protein 1, activating transcription factor 4 (ATF4), CCAAT enhancer-binding protein-homologous protein, and growth arrest and DNA damage-inducible protein 34 during early infection and sustained activation of all three UPR sensors: RNA-activated protein kinase-like endoplasmic reticulum-resident kinase (PERK), inositol-requiring kinase-1α (IRE1α), and ATF6. Sustained phosphorylation of the eukaryotic translation initiation factor 2α and rRNA degradation coincide with host translational shutoff, cell lysis, and virus release during late infection. We show a blunted response of the master negative regulator, the immunoglobulin heavy-chain-binding protein (BiP), by chemical UPR inducers, and we show that ZIKV suppresses BiP transcription and translation, suggesting that it may be necessary to blunt the BiP response to sustain UPR sensor activation. The PERK inhibitor GSK2606414 alone has no effects but synergizes with the ATF6 inhibitor Ceapin-A7 to inhibit early and late infection, whereas Ceapin-A7 alone inhibits late infection. Likewise, 4-phenylbutyric acid inhibits ZIKV replication by attenuating the PERK and ATF6 pathways and potentiating the IRE1α pathway, suggesting that ZIKV infection is differentially and temporally regulated by different UPR arms. ZIKV infection is inhibited by pretreatment of chemical UPR inducers but is refractory to the inhibitory activity of chemical inducers once infection has been established, suggesting that ZIKV has anti-UPR mechanisms that may be able to modulate and co-opt the UPR in its life cycle. IMPORTANCE The Zika virus originates from Africa and Asia but is emerging in other parts of the world. It usually causes an asymptomatic or mild, acute infection but can cause serious neurological complications, such as microcephaly and Guillain-Barré syndromes. Therefore, there is a pressing need for an antiviral. Viruses are obligative parasites and are dependent on the hosts for their propagation. As a result, we can target viruses by targeting host dependency. The host unfolded protein response is a cellular homeostatic response to stresses but can also be triggered by virus infections. We show here that Zika virus infection can cause stress and trigger the unfolded protein response. The Zika virus is able to manipulate, subvert, and co-opt the host unfolded protein response to aid its own replication. Understanding host dependency is important in the quest of a new class of antivirals called host-targeting agents.
    Keywords:  BiP; RNA virus; Zika virus; endoplasmic reticulum stress; flavivirus; host-pathogen interaction; integrated stress response; unfolded protein response; virus-host interaction
    DOI:  https://doi.org/10.1128/mSphere.00361-21
  11. Autophagy. 2021 Jun 10. 1-3
      Different types of autophagy co-exist in all mammalian cells, however, the specific contribution of each of these autophagic pathways to the maintenance of cellular proteostasis and cellular function remains unknown. In this work, we have investigated the consequences of failure of chaperone-mediated autophagy (CMA) in neurons and compared the impact, on the neuronal proteome, of CMA loss to that of macroautophagy loss. We found that these autophagic pathways are non-redundant and that CMA is the main one responsible for maintenance of the metastable proteome (the one at risk of aggregation). We demonstrate that loss of CMA, as the one that occurs in aging, has a synergistic effect with the proteotoxicity associated with neurodegenerative conditions such as Alzheimer disease (AD) and, conversely, that, pharmacological enhancement of CMA is effective in improving both behavior and pathology in two different AD mouse models.
    Keywords:  Alzheimer disease; chaperones; chemical activators of autophagy; lysosomes; metastable proteome; neurodegeneration; protein aggregation; proteostasis; tau; tauopathies
    DOI:  https://doi.org/10.1080/15548627.2021.1935007
  12. Front Mol Biosci. 2021 ;8 689755
      Growing cells invest a significant part of their biosynthetic capacity into the production of proteins. To become functional, newly-synthesized proteins must be N-terminally processed, folded and often translocated to other cellular compartments. A general strategy is to integrate these protein maturation processes with translation, by cotranslationally engaging processing enzymes, chaperones and targeting factors with the nascent polypeptide. Precise coordination of all factors involved is critical for the efficiency and accuracy of protein synthesis and cellular homeostasis. This review provides an overview of the current knowledge on cotranslational protein maturation, with a focus on the production of cytosolic proteins in bacteria. We describe the role of the ribosome and the chaperone network in protein folding and how the dynamic interplay of all cotranslationally acting factors guides the sequence of cotranslational events. Finally, we discuss recent data demonstrating the coupling of protein synthesis with the assembly of protein complexes and end with a brief discussion of outstanding questions and emerging concepts in the field of cotranslational protein maturation.
    Keywords:  DnaK; chaperone recognition; cotranslational assembly; nascent chain processing; protein folding; ribosomal exit tunnel; trigger factor
    DOI:  https://doi.org/10.3389/fmolb.2021.689755
  13. FEBS J. 2021 Jun 11.
      Centrosome plays essential roles in maintaining genetic stability, ciliogenesis and cell polarization. The core of centrosome is made of two centrioles that duplicate precisely once during every cell cycle to generate two centrosomes that are required for bipolar spindle assembly and chromosome segregation. Abundance of centriole proteins at optimal levels and their recruitment to the centrosome are tightly regulated in time and space in order to restrict aberrant duplication of centrioles, a phenomenon that is observed in many cancers. Recent advances have conclusively evidenced that dedicated ubiquitin ligase-dependent protein degradation machineries are involved in governing centriole duplication. These studies revealed intricate mechanistic insights into how the ubiquitin ligases target different centriole proteins. In certain cases, a specific ubiquitin ligase targets a number of substrate proteins that co-regulate centriole assembly, prompting the possibility that substrate targeting occurs during formation of the sub-centriolar structures. There are also instances where a specific centriole duplication protein is targeted by several ubiquitin ligases at different stages of the cell cycle, suggesting synchronized actions. Recent evidence also indicated a direct association of E3 ubiquitin ligase with the centrioles, supporting the notion that substrate-targeting occurs in the organelle itself. In this review, we highlight these advances by underlining the mechanisms how different ubiquitin ligase machineries control centriole duplication and discuss our views on their coordination.
    Keywords:  APC/C; Centriole; Centrosome; Plk4; SAS-6; SCF; STIL; Ubiquitin
    DOI:  https://doi.org/10.1111/febs.16069
  14. J Cell Sci. 2021 Jun 01. pii: jcs253781. [Epub ahead of print]134(11):
      In Saccharomyces cerevisiae, the selective autophagic degradation of mitochondria, termed mitophagy, is critically regulated by the adapter protein Atg32. Despite our knowledge about the molecular mechanisms by which Atg32 controls mitophagy, its physiological roles in yeast survival and fitness remains less clear. Here, we demonstrate a requirement for Atg32 in promoting spermidine production during respiratory growth and heat-induced mitochondrial stress. During respiratory growth, mitophagy-deficient yeast exhibit profound heat-stress induced defects in growth and viability due to impaired biosynthesis of spermidine and its biosynthetic precursor S-adenosyl methionine. Moreover, spermidine production is crucial for the induction of cytoprotective nitric oxide (NO) during heat stress. Hence, the re-addition of spermidine to Atg32 mutant yeast is sufficient to both enhance NO production and restore respiratory growth during heat stress. Our findings uncover a previously unrecognized physiological role for yeast mitophagy in spermidine metabolism and illuminate new interconnections between mitophagy, polyamine biosynthesis and NO signaling.
    Keywords:  ATG32; Autophagy; Mitophagy; Nitric oxide; S-adenosyl methionine; Spermidine
    DOI:  https://doi.org/10.1242/jcs.253781
  15. Biochem Biophys Res Commun. 2021 Jun 02. pii: S0006-291X(21)00795-6. [Epub ahead of print]563 119-125
      Autophagy is a special catabolic cellular program that is induced in response to deprivation of nutrients and energy starvation. During the execution of this program, cellular components, including aggregates, as well as damaged organelles and some proteins are encapsulated in special vesicles known as autophagosomes and subsequently are degraded after fusion of autophagosomes with lysosomes. Importantly, at late stages of tumorigenesis cancer cells employ autophagy to sustain proliferation in unfavorable conditions, including anti-cancer drug therapy. E3 ubiquitin ligases play an important role in controlling autophagy. Here we demonstrate that the E3 ligase, a p53-induced RING-H2 protein (Pirh2), is involved in the regulation of autophagy in non-small cell lung cancer cells. Knockdown of Pirh2 decreased the expression of genes involved in all steps of autophagy. Concomitantly, Pirh2 knockdown cell lines exhibited much less of the processed form of LC3 compared to the respective cell lines with normal levels of Pirh2. These results were confirmed by the immune fluorescence microscopy using LC3 antibody and the LysoTracker dye. In agreement with the protective role of autophagy, cells with attenuated expression of Pirh2 were more sensitive to the treatment with doxorubicin. Collectively, we have uncovered a novel function of Pirh2 in the regulation of autophagy in lung cancer cells.
    Keywords:  Autophagy; Lung cancer; Pirh2
    DOI:  https://doi.org/10.1016/j.bbrc.2021.05.024
  16. J Biol Chem. 2021 Apr 29. pii: S0021-9258(21)00520-2. [Epub ahead of print] 100731
      Squalene monooxygenase (SM, also known as squalene epoxidase) is a rate-limiting enzyme of cholesterol synthesis that converts squalene to monooxidosqualene and is oncogenic in numerous cancer types. SM is subject to feedback regulation via cholesterol-induced proteasomal degradation, which depends on its lipid-sensing N-terminal regulatory domain. We previously identified an endogenous truncated form of SM with a similar abundance to full-length SM, but whether this truncated form is functional or subject to the same regulatory mechanisms as full-length SM is not known. Here, we show that this truncated SM differs from full-length SM in two major ways: it is cholesterol-resistant and adopts a peripheral rather than integral association with the endoplasmic reticulum membrane. However, truncated SM retains full squalene monooxygenase activity and is therefore constitutively active. Truncation of SM occurs during its endoplasmic reticulum-associated degradation and requires the proteasome, which partially degrades the SM N-terminus and disrupts cholesterol-sensing elements within the regulatory domain. Furthermore, truncation relies on a ubiquitin signal that is distinct from that required for cholesterol-induced degradation. Using mutagenesis, we demonstrate that partial proteasomal degradation of SM depends on both an intrinsically disordered region near the truncation site and the stability of the adjacent catalytic domain, which escapes degradation. These findings uncover an additional layer of complexity in the post-translational regulation of cholesterol synthesis and establish SM as the first eukaryotic enzyme found to undergo proteasomal truncation.
    Keywords:  cholesterol; endoplasmic reticulum-associated protein degradation (ERAD); proteasome; protein degradation; squalene monooxygenase; ubiquitylation (ubiquitination)
    DOI:  https://doi.org/10.1016/j.jbc.2021.100731
  17. Cell Chem Biol. 2021 May 07. pii: S2451-9456(21)00214-2. [Epub ahead of print]
      Deubiquitinating enzymes (DUBs) are a largely understudied and untapped resource in the toolkit of protein degradation functionalities. They comprise a large repertoire of enzymes that remove ubiquitin from substrates in a variety of cellular and pathophysiological contexts, and have enormous potential for research and clinical use. It is only within the last 5 years that potent, selective, and well-characterized small-molecule inhibitors of DUBs have been described. These compounds are now being used to study the biological roles of DUBs. Here, we describe downstream applications of small-molecule inhibitors for studying DUBs and provide a framework for future studies. We highlight recent examples of using these inhibitors to confirm and explore the role of these enzymes in both normal and pathological contexts. These studies represent the first steps in the burgeoning field of pharmacological and chemoproteomic studies of DUBs, which will be critical for the continued advancement of DUB field.
    Keywords:  DUB inhibitor; activity-based probes; deubiquitinase
    DOI:  https://doi.org/10.1016/j.chembiol.2021.04.021
  18. FEBS Lett. 2021 Jun 09.
      Microtubule nucleation is mainly mediated by the γ-tubulin ring complex (γTuRC), whose core components are γ-tubulin and γ-tubulin complex proteins GCP2-6. A substantial fraction of γ-tubulin also exists with GCP2 and GCP3 in a tetramer called the γ-tubulin small complex (γTuSC). To date, the mechanisms underlying the turnover of γ-tubulin and GCPs have remained unclear. Here, we show that γ-tubulin, GCP2, and GCP3 are proteolyzed by the ubiquitin-proteasome system, and we identify cullin 1, cullin 4A, and cullin 4B as the E3 ligases that mediate the ubiquitination and, consequently, the degradation of γ-tubulin. Notably, we found that γTuSC disassembly promotes the degradation of γ-tubulin, GCP2, and GCP3, which indicates a role for γTuSCs in the stabilization of its components.
    Keywords:  cullin-RING ligase; ubiquitin-proteasome system; ubiquitination; γ-Tubulin; γ-tubulin ring complex; γ-tubulin small complex
    DOI:  https://doi.org/10.1002/1873-3468.14146
  19. Nat Commun. 2021 06 08. 12(1): 3459
      Membrane contact sites (MCS) are subcellular regions where two organelles appose their membranes to exchange small molecules, including lipids. Structural information on how proteins form MCS is scarce. We designed an in vitro MCS with two membranes and a pair of tethering proteins suitable for cryo-tomography analysis. It includes VAP-A, an ER transmembrane protein interacting with a myriad of cytosolic proteins, and oxysterol-binding protein (OSBP), a lipid transfer protein that transports cholesterol from the ER to the trans Golgi network. We show that VAP-A is a highly flexible protein, allowing formation of MCS of variable intermembrane distance. The tethering part of OSBP contains a central, dimeric, and helical T-shape region. We propose that the molecular flexibility of VAP-A enables the recruitment of partners of different sizes within MCS of adjustable thickness, whereas the T geometry of the OSBP dimer facilitates the movement of the two lipid-transfer domains between membranes.
    DOI:  https://doi.org/10.1038/s41467-021-23799-1
  20. J Am Chem Soc. 2021 Jun 08.
      Transcription factors (TFs) represent a major class of therapeutic targets for the treatment of human diseases including cancer. Although the biological functions and even crystal structures of many TFs have been clearly elucidated, there is still no viable approach to target the majority of TFs, thus rendering them undruggable for decades. PROTACs (proteolysis targeting chimeras) emerge as a powerful class of therapeutic modalities, which rely on induced protein-protein interactions between the proteins of interest (POIs) and E3 ubiquitin ligases to aid the degradation of POIs by the ubiquitin-proteasome system (UPS). Here, we report the development of a platform termed TF-PROTAC, which links an DNA oligonucleotide to an E3 ligase ligand via a click reaction, to selectively degrade the TF of interest. The selectivity of these TF-PROTACs depends on the DNA oligonucleotides utilized that can be specific to the TFs of interest. We have developed two series of VHL-based TF-PROTACs, NF-κB-PROTAC (dNF-κB) and E2F-PROTAC (dE2F), which effectively degrade endogenous p65 and E2F1 proteins in cells, respectively, and subsequently display superior antiproliferative effects in cells. Collectively, our results suggest that TF-PROTACs provide a generalizable platform to achieve selective degradation of TFs and a universal strategy for targeting most "undruggable" TFs.
    DOI:  https://doi.org/10.1021/jacs.1c03852
  21. Bioorg Med Chem Lett. 2021 Jun 02. pii: S0960-894X(21)00394-2. [Epub ahead of print]46 128167
      We developed JMS-053, a potent inhibitor of the dual specificity phosphatase PTP4A3 that is potentially suitable for cancer therapy. Due to the emerging role of the unfolded protein response (UPR) in cancer pathology, we sought to identify derivatives that combine PTP4A3 inhibition with induction of endoplasmatic reticulum (ER) stress, with the goal to generate more potent anticancer agents. We have now generated bifunctional analogs that link the JMS-053 pharmacophore to an adamantyl moiety and act in concert with the phosphatase inhibitor to induce ER stress and cell death. The most potent compound in this series, 7a, demonstrated a ca. 5-fold increase in cytotoxicity in a breast cancer cell line and strong activation of UPR and ER stress response genes in spite of a ca. 13-fold decrease in PTP4A3 inhibition. These results demonstrate that the combination of phosphatase inhibition with UPR/ER-stress upregulation potentiates efficacy.
    Keywords:  Cancer cell death; Chaperones; Dual-pathway agents; Endoplasmatic reticulum stress; PTP4A phosphatase
    DOI:  https://doi.org/10.1016/j.bmcl.2021.128167
  22. EMBO Rep. 2021 Jun 04. 22(6): e52175
      Upon Mycobacterium tuberculosis (Mtb) infection, protein kinase G (PknG), a eukaryotic-type serine-threonine protein kinase (STPK), is secreted into host macrophages to promote intracellular survival of the pathogen. However, the mechanisms underlying this PknG-host interaction remain unclear. Here, we demonstrate that PknG serves both as a ubiquitin-activating enzyme (E1) and a ubiquitin ligase (E3) to trigger the ubiquitination and degradation of tumor necrosis factor receptor-associated factor 2 (TRAF2) and TGF-β-activated kinase 1 (TAK1), thereby inhibiting the activation of NF-κB signaling and host innate responses. PknG promotes the attachment of ubiquitin (Ub) to the ubiquitin-conjugating enzyme (E2) UbcH7 via an isopeptide bond (UbcH7 K82-Ub), rather than the usual C86-Ub thiol-ester bond. PknG induces the discharge of Ub from UbcH7 by acting as an isopeptidase, before attaching Ub to its substrates. These results demonstrate that PknG acts as an unusual ubiquitinating enzyme to remove key components of the innate immunity system, thus providing a potential target for tuberculosis treatment.
    Keywords:   Mycobacterium tuberculosis ; NF-κB signaling; protein kinase G; ubiquitin ligase; ubiquitin-activating enzyme
    DOI:  https://doi.org/10.15252/embr.202052175
  23. Cell Mol Neurobiol. 2021 Jun 09.
      Autophagosome maturation comprises fusion with lysosomes and acidification. It is a critical step in the degradation of cytosolic protein aggregates that characterize many neurodegenerative diseases. In order to better understand this process, we studied intracellular trafficking of autophagosomes and aggregates of α-synuclein, which characterize Parkinson's disease and other synucleinopathies. The autophagosomal marker LC3 and the aggregation prone A53T mutant of α-synuclein were tagged by fluorescent proteins and expressed in HEK293T cells and primary astrocytes. The subcellular distribution and movement of these vesicle populations were analyzed by (time-lapse) microscopy. Fusion with lysosomes was assayed using the lysosomal marker LAMP1; vesicles with neutral and acidic luminal pH were discriminated using the RFP-GFP "tandem-fluorescence" tag. With respect to vesicle pH, we observed that neutral autophagosomes, marked by LC3 or synuclein, were located more frequently in the cell center, and acidic autophagosomes were observed more frequently in the cell periphery. Acidic autophagosomes were transported towards the cell periphery more often, indicating that acidification occurs in the cell center before transport to the periphery. With respect to autolysosomal fusion, we found that lysosomes preferentially moved towards the cell center, whereas autolysosomes moved towards the cell periphery, suggesting a cycle where lysosomes are generated in the periphery and fuse to autophagosomes in the cell center. Unexpectedly, many acidic autophagosomes were negative for LAMP1, indicating that acidification does not require fusion to lysosomes. Moreover, we found both neutral and acidic vesicles positive for LAMP1, consistent with delayed acidification of the autolysosome lumen. Individual steps of aggregate clearance thus occur in dedicated cellular regions. During aggregate clearance, autophagosomes and autolysosomes form in the center and are transported towards the periphery during maturation. In this process, luminal pH could regulate the direction of vesicle transport. (1) Transport and location of autophagosomes depend on luminal pH: Acidic autophagosomes are preferentially transported to the cell periphery, causing more acidic autophagosomes in the cell periphery and more neutral autophagosomes at the microtubule organizing center (MTOC). (2) Autolysosomes are transported to the cell periphery and lysosomes to the MTOC, suggesting spatial segregation of lysosome reformation and autolysosome fusion. (3) Synuclein aggregates are preferentially located at the MTOC and synuclein-containing vesicles in the cell periphery, consistent with transport of aggregates to the MTOC for autophagy.
    Keywords:  Amphisomes; Autolysosomes; Autophagy; Lysosomes; MTOC; Time-lapse microscopy; α-Synuclein
    DOI:  https://doi.org/10.1007/s10571-021-01116-0
  24. DNA Repair (Amst). 2021 Jun 08. pii: S1568-7864(21)00111-7. [Epub ahead of print]105 103155
      The accumulation of unrepaired DNA lesions is associated with many pathological outcomes in humans, particularly in neurodegenerative diseases and in normal aging. Evidence supporting a causal role for DNA damage in the onset and progression of neurodegenerative disease has come from rare human patients with mutations in DNA damage response genes as well as from model organisms; however, the generality of this relationship in the normal population is unclear. In addition, the relevance of DNA damage in the context of proteotoxic stress-the widely accepted paradigm for pathology during neurodegeneration-is not well understood. Here, observations supporting intertwined roles of DNA damage and proteotoxicity in aging-related neurological outcomes are reviewed, with particular emphasis on recent insights into the relationships between DNA repair and autophagy, the ubiquitin proteasome system, formation of protein aggregates, poly-ADP-ribose polymerization, and transcription-driven DNA lesions.
    Keywords:  DNA repair; Neurodegeneration; PARP; Protein aggregation; Protein homeostasis
    DOI:  https://doi.org/10.1016/j.dnarep.2021.103155
  25. Cell Death Dis. 2021 Jun 05. 12(6): 581
      The RING-finger protein Pirh2 is a p53 family-specific E3 ubiquitin ligase. Pirh2 also ubiquitinates several other important cellular factors and is involved in carcinogenesis. However, its functional role in other cellular processes is poorly understood. To address this question, we performed a proteomic search for novel interacting partners of Pirh2. Using the GST-pulldown approach combined with LC-MS/MS, we revealed 225 proteins that interacted with Pirh2. We found that, according to the GO description, a large group of Pirh2-associated proteins belonged to the RNA metabolism group. Importantly, one of the identified proteins from that group was an RNA-binding protein ELAVL1 (HuR), which is involved in the regulation of splicing and protein stability of several oncogenic proteins. We demonstrated that Pirh2 ubiquitinated the HuR protein facilitating its proteasome-mediated degradation in cells. Importantly, the Pirh2-mediated degradation of HuR occurred in response to heat shock, thereby affecting the survival rate of HeLa cells under elevated temperature. Functionally, Pirh2-mediated degradation of HuR augmented the level of c-Myc expression, whose RNA level is otherwise attenuated by HuR. Taken together, our data indicate that HuR is a new target of Pirh2 and this functional interaction contributes to the heat-shock response of cancer cells affecting their survival.
    DOI:  https://doi.org/10.1038/s41419-021-03871-w
  26. Oxid Med Cell Longev. 2021 ;2021 6617256
      Mitochondria are multifaceted organelles that serve to power critical cellular functions, including act as power generators of the cell, buffer cytosolic calcium overload, production of reactive oxygen species, and modulating cell survival. The structure and the cellular location of mitochondria are critical for their function and depend on highly regulated activities such as mitochondrial quality control (MQC) mechanisms. The MQC is regulated by several sets of processes: mitochondrial biogenesis, mitochondrial fusion and fission, mitophagy, and other mitochondrial proteostasis mechanisms such as mitochondrial unfolded protein response (mtUPR) or mitochondrial-derived vesicles (MDVs). These processes are important for the maintenance of mitochondrial homeostasis, and alterations in the mitochondrial function and signaling are known to contribute to the dysregulation of cell death pathways. Recent studies have uncovered regulatory mechanisms that control the activity of the key components for mitophagy. In this review, we discuss how mitophagy is controlled and how mitophagy impinges on health and disease through regulating cell death.
    DOI:  https://doi.org/10.1155/2021/6617256
  27. Pediatr Surg Int. 2021 Jun 12.
      Endoplasmic reticulum (ER) is a dynamic organelle that has many functions including protein synthesis, lipid synthesis, and calcium metabolism. Any perturbation in the ER such as accumulation of unfolded or misfolded proteins in the ER lumen causes ER stress. ER stress has been implicated in many intestinal inflammatory diseases. However, the role of ER stress in acute intestinal epithelial injuries such as necrotizing enterocolitis in preterm neonates, remains incompletely understood. In this review, we introduce ER structure, functions and summarize the intracellular signaling pathways involved in unfolded protein response (UPR), a survival mechanism in which cells exert an adaptive function to restore homeostasis in the ER. However, intense and prolonged ER stress induces apoptotic response which results in apoptotic cell death. We also discuss and highlight recent advances that have improved our understanding of the molecular mechanisms that regulate the ER stress in acute intestinal epithelial injuries such as necrotizing enterocolitis (NEC). We focus on the role of ER stress in influencing gut homeostasis in the neonatal period and on the potential therapeutic interventions to alleviate ER stress-induced cell death in NEC.
    Keywords:  Acute intestinal injury; Endoplasmic reticulum stress; Intestinal epithelium homeostasis; Necrotizing enterocolitis; Unfolded protein response
    DOI:  https://doi.org/10.1007/s00383-021-04929-8
  28. Nat Commun. 2021 06 07. 12(1): 3364
      Necroptosis is a lytic, inflammatory form of cell death that not only contributes to pathogen clearance but can also lead to disease pathogenesis. Necroptosis is triggered by RIPK3-mediated phosphorylation of MLKL, which is thought to initiate MLKL oligomerisation, membrane translocation and membrane rupture, although the precise mechanism is incompletely understood. Here, we show that K63-linked ubiquitin chains are attached to MLKL during necroptosis and that ubiquitylation of MLKL at K219 significantly contributes to the cytotoxic potential of phosphorylated MLKL. The K219R MLKL mutation protects animals from necroptosis-induced skin damage and renders cells resistant to pathogen-induced necroptosis. Mechanistically, we show that ubiquitylation of MLKL at K219 is required for higher-order assembly of MLKL at membranes, facilitating its rupture and necroptosis. We demonstrate that K219 ubiquitylation licenses MLKL activity to induce lytic cell death, suggesting that necroptotic clearance of pathogens as well as MLKL-dependent pathologies are influenced by the ubiquitin-signalling system.
    DOI:  https://doi.org/10.1038/s41467-021-23474-5
  29. J Mol Neurosci. 2021 Jun 09.
      Glioma is highly lethal because of its high malignancy. Ubiquitination, a type of ubiquitin-dependent protein modification, has been reported to play an oncogenic or tumor-suppressive role in glioma development, depending on the targets. Ring finger protein 139 (RNF139) is a membrane-bound E3 ubiquitin ligase serving as a tumor suppressor by ubiquitylation-dependently suppressing cell growth. Herein, we firstly confirmed the abnormal downregulation of RNF139 in glioma tissues and cell lines. In glioma cells, ectopic RNF139 overexpression could inhibit, whereas RNF139 knockdown could aggravate the aggressive behaviors of glioma cells, including hyperproliferation, migration, and invasion. Moreover, in two glioma cell lines, RNF139 overexpression inhibited, whereas RNF139 knockdown enhanced the phosphorylation of phosphatidylinositol 3-kinase (PI3K) and AKT serine/threonine kinase 1 (AKT). In a word, we demonstrate the aberration in RNF139 expression in glioma tissue samples and cell lines. RNF139 serves as a tumor-suppressor in glioma by inhibiting glioma cell proliferation, migration, and invasion and promoting glioma cell apoptosis through regulating PI3K/AKT signaling.
    Keywords:  E3 ubiquitin ligase; Glioma; RNF139; The PI3K/AKT signaling
    DOI:  https://doi.org/10.1007/s12031-021-01860-4
  30. Cell Chem Biol. 2021 Jun 01. pii: S2451-9456(21)00255-5. [Epub ahead of print]
      Molecular glues and proteolysis targeting chimeras (PROTACs) have emerged as small-molecule tools that selectively induce the degradation of a chosen protein and have shown therapeutic promise. Recently, several approaches employing light as an additional stimulus to control induced protein degradation have been reported. Here, we analyze the principles guiding the design of such systems, provide a survey of the literature published to date, and discuss opportunities for further development. Light-responsive degraders enable the precise temporal and spatial control of protein levels, making them useful research tools but also potential candidates for human precision medicine.
    Keywords:  PHOTAC; PROTAC; chemical optogenetics; photoactivation; photocleavable protecting group; photopharmacology; photoswitch
    DOI:  https://doi.org/10.1016/j.chembiol.2021.05.010
  31. Dev Cell. 2021 Jun 01. pii: S1534-5807(21)00439-1. [Epub ahead of print]
      Autophagy is an essential catabolic process induced to provide cellular energy sources in response to nutrient limitation through the activation of kinases, like AMP-activated protein kinase (AMPK) and ULK1. Although glucose starvation induces autophagy, the exact mechanism underlying this signaling has yet to be elucidated. Here, we reveal a role for ULK1 in non-canonical autophagy signaling using diverse cell lines. ULK1 activated by AMPK during glucose starvation phosphorylates the lipid kinase PIKfyve on S1548, thereby increasing its activity and the synthesis of the phospholipid PI(5)P without changing the levels of PI(3,5)P2. ULK1-mediated activation of PIKfyve enhances the formation of PI(5)P-containing autophagosomes upon glucose starvation, resulting in an increase in autophagy flux. Phospho-mimic PIKfyve S1548D drives autophagy upregulation and lowers autophagy substrate levels. Our study has identified how ULK1 upregulates autophagy upon glucose starvation and induces the formation of PI(5)P-containing autophagosomes by activating PIKfyve.
    Keywords:  AMPK; PI(5)P; PIKfyve; ULK1; autophagy; glucose starvation; mTOR; phagophore
    DOI:  https://doi.org/10.1016/j.devcel.2021.05.010
  32. Cell Metab. 2021 Jun 02. pii: S1550-4131(21)00231-X. [Epub ahead of print]
      Obesity is characterized by the excessive accumulation of the white adipose tissue (WAT), but healthy expansion of WAT via adipocyte hyperplasia can offset the negative metabolic effects of obesity. Thus, identification of novel adipogenesis regulators that promote hyperplasia may lead to effective therapies for obesity-induced metabolic disorders. Using transcriptomic approaches, we identified transmembrane BAX inhibitor motif-containing 1 (TMBIM1) as an inhibitor of adipogenesis. Gain or loss of function of TMBIM1 in preadipocytes inhibited or promoted adipogenesis, respectively. In vivo, in response to caloric excess, adipocyte precursor (AP)-specific Tmbim1 knockout (KO) mice displayed WAT hyperplasia and improved systemic metabolic health, while overexpression of Tmbim1 in transgenic mice showed the opposite effects. Moreover, mature adipocyte-specific Tmbim1 KO did not affect WAT cellularity or nutrient homeostasis. Mechanistically, TMBIM1 binds to and promotes the autoubiquitination and degradation of NEDD4, which is an E3 ligase that stabilizes PPARγ. Our data show that TMBIM1 is a potent repressor of adipogenesis and a potential therapeutic target for obesity-related metabolic disease.
    Keywords:  NEDD4; PPARγ; TMBIM1; adipocyte hyperplasia; adipogenesis; adipose tissue; insulin resistance; metabolic disorder
    DOI:  https://doi.org/10.1016/j.cmet.2021.05.014
  33. Adv Protein Chem Struct Biol. 2021 ;pii: S1876-1623(21)00017-1. [Epub ahead of print]126 227-278
      Proteins have evolved in specific 3D structures and play different functions in cells and determine various reactions and pathways. The newly synthesized amino acid chains once depart ribosome must crumple into three-dimensional structures so can be biologically active. This process of protein that makes a functional molecule is called protein folding. The protein folding is both a biological and a physicochemical process that depends on the sequence of it. In fact, this process occurs more complicated and in some cases and in exposure to some molecules like glucose (glycation), mistaken folding leads to amyloid structures and fatal disorders called conformational diseases. Such conditions are detected by the quality control system of the cell and these abnormal proteins undergo renovation or degradation. This scenario takes place by the chaperones, chaperonins, and Ubiquitin-proteasome complex. Understanding of protein folding mechanisms from different views including experimental and computational approaches has revealed some intermediate ensembles such as molten globule and has been subjected to biophysical and molecular biology attempts to know more about prevalent conformational diseases.
    Keywords:  Amyloid structure; Biophysical techniques; Biothermodynamics; Conformational diseases; Folding mechanisms; Molecular chaperons; Molten globule; Neurodegenerative diseases; Protein folding
    DOI:  https://doi.org/10.1016/bs.apcsb.2021.01.007
  34. EMBO Rep. 2021 Jun 08. e52032
      The immune system plays a major role in the protection against cancer. Identifying and characterizing the pathways mediating this immune surveillance are thus critical for understanding how cancer cells are recognized and eliminated. Aneuploidy is a hallmark of cancer, and we previously found that untransformed cells that had undergone senescence due to highly abnormal karyotypes are eliminated by natural killer (NK) cells in vitro. However, the mechanisms underlying this process remained elusive. Here, using an in vitro NK cell killing system, we show that non-cell-autonomous mechanisms in aneuploid cells predominantly mediate their clearance by NK cells. Our data indicate that in untransformed aneuploid cells, NF-κB signaling upregulation is central to elicit this immune response. Inactivating NF-κB abolishes NK cell-mediated clearance of untransformed aneuploid cells. In cancer cell lines, NF-κB upregulation also correlates with the degree of aneuploidy. However, such upregulation in cancer cells is not sufficient to trigger NK cell-mediated clearance, suggesting that additional mechanisms might be at play during cancer evolution to counteract NF-κB-mediated immunogenicity.
    Keywords:  NF-κB; aneuploidy; complex karyotypes; immune clearance; senescence
    DOI:  https://doi.org/10.15252/embr.202052032
  35. Nat Cell Biol. 2021 Jun;23(6): 631-641
      Exosomes are extracellular vesicles derived from the endosomal compartment that are potentially involved in intercellular communication. Here, we found that frequently used biomarkers of exosomes are heterogeneous, and do not exhibit universal utility across different cell types. To uncover ubiquitous and abundant proteins, we used an unbiased and quantitative proteomic approach based on super-stable isotope labeling with amino acids in cell culture (super-SILAC), coupled to high-resolution mass spectrometry. In total, 1,212 proteins were quantified in the proteome of exosomes, irrespective of the cellular source or isolation method. A cohort of 22 proteins was universally enriched. Fifteen proteins were consistently depleted in the proteome of exosomes compared to cells. Among the enriched proteins, we identified biogenesis-related proteins, GTPases and membrane proteins, such as CD47 and ITGB1. The cohort of depleted proteins in exosomes was predominantly composed of nuclear proteins. We identified syntenin-1 as a consistently abundant protein in exosomes from different cellular origins. Syntenin-1 is also present in exosomes across different species and biofluids, highlighting its potential use as a putative universal biomarker of exosomes. Our study provides a comprehensive quantitative atlas of core proteins ubiquitous to exosomes that can serve as a resource for the scientific community.
    DOI:  https://doi.org/10.1038/s41556-021-00693-y