bims-proteo Biomed News
on Proteostasis
Issue of 2021–05–16
forty-six papers selected by
Eric Chevet, INSERM



  1. Mol Cell. 2021 May 03. pii: S1097-2765(21)00323-3. [Epub ahead of print]
      Selective protein degradation by the ubiquitin-proteasome system (UPS) is involved in all cellular processes. However, the substrates and specificity of most UPS components are not well understood. Here we systematically characterized the UPS in Saccharomyces cerevisiae. Using fluorescent timers, we determined how loss of individual UPS components affects yeast proteome turnover, detecting phenotypes for 76% of E2, E3, and deubiquitinating enzymes. We exploit this dataset to gain insights into N-degron pathways, which target proteins carrying N-terminal degradation signals. We implicate Ubr1, an E3 of the Arg/N-degron pathway, in targeting mitochondrial proteins processed by the mitochondrial inner membrane protease. Moreover, we identify Ylr149c/Gid11 as a substrate receptor of the glucose-induced degradation-deficient (GID) complex, an E3 of the Pro/N-degron pathway. Our results suggest that Gid11 recognizes proteins with N-terminal threonines, expanding the specificity of the GID complex. This resource of potential substrates and relationships between UPS components enables exploring functions of selective protein degradation.
    Keywords:  GID ubiquitin ligase; N-degron pathways; fluorescent timers; protein quality control; proteostasis; selective protein degradation; ubiquitin-proteasome system
    DOI:  https://doi.org/10.1016/j.molcel.2021.04.018
  2. Mol Cell. 2021 Apr 30. pii: S1097-2765(21)00318-X. [Epub ahead of print]
      The assembly of nascent proteins into multi-subunit complexes is a tightly regulated process that must occur at high fidelity to maintain cellular homeostasis. The ER membrane protein complex (EMC) is an essential insertase that requires seven membrane-spanning and two soluble cytosolic subunits to function. Here, we show that the kinase with no lysine 1 (WNK1), known for its role in hypertension and neuropathy, functions as an assembly factor for the human EMC. WNK1 uses a conserved amphipathic helix to stabilize the soluble subunit, EMC2, by binding to the EMC2-8 interface. Shielding this hydrophobic surface prevents promiscuous interactions of unassembled EMC2 and directly competes for binding of E3 ubiquitin ligases, permitting assembly. Depletion of WNK1 thus destabilizes both the EMC and its membrane protein clients. This work describes an unexpected role for WNK1 in protein biogenesis and defines the general requirements of an assembly factor that will apply across the proteome.
    Keywords:  amphipathic helix; assembly factor; hydrophobic interface; kinase; membrane protein; protein biogenesis; protein complex assembly; protein quality control; ubiquitination
    DOI:  https://doi.org/10.1016/j.molcel.2021.04.013
  3. Cell Mol Life Sci. 2021 May 11.
      Despite new advances on the functions of ER chaperones at the cell surface, the translocation mechanisms whereby these chaperones can escape from the ER to the cell surface are just emerging. Previously we reported that in many cancer types, upon ER stress, IRE1α binds to and triggers SRC activation resulting in KDEL receptor dispersion from the Golgi and suppression of retrograde transport. In this study, using a combination of molecular, biochemical, and imaging approaches, we discovered that in colon and lung cancer, upon ER stress, ER chaperones, such as GRP78 bypass the Golgi and unconventionally traffic to the cell surface via endosomal transport mediated by Rab GTPases (Rab4, 11 and 15). Such unconventional transport is driven by membrane fusion between ER-derived vesicles and endosomes requiring the v-SNARE BET1 and t-SNARE Syntaxin 13. Furthermore, GRP78 loading into ER-derived vesicles requires the co-chaperone DNAJC3 that is regulated by ER-stress induced PERK-AKT-mTOR signaling.
    Keywords:  Endoplasmic reticulum stress; Endosome; GRP78; Unconventional trafficking
    DOI:  https://doi.org/10.1007/s00018-021-03849-z
  4. Elife. 2021 May 11. pii: e65192. [Epub ahead of print]10
      Sigma 1 receptor (S1R) is a 223-amino-acid-long transmembrane endoplasmic reticulum (ER) protein. S1R modulates activity of multiple effector proteins and is a well-established drug target. However, signaling functions of S1R in cells are poorly understood. Here, we test the hypothesis that biological activity of S1R in cells can be explained by its ability to interact with cholesterol and to form cholesterol-enriched microdomains in the ER membrane. By performing experiments in reduced reconstitution systems, we demonstrate direct effects of cholesterol on S1R clustering. We identify a novel cholesterol-binding motif in the transmembrane region of human S1R. Mutations of this motif impair association of recombinant S1R with cholesterol beads, affect S1R clustering in vitro and disrupt S1R subcellular localization. We demonstrate that S1R-induced membrane microdomains have increased local membrane thickness and that increased local cholesterol concentration and/or membrane thickness in these microdomains can modulate signaling of inositol-requiring enzyme 1α in the ER. Further, S1R agonists cause disruption of S1R clusters, suggesting that biological activity of S1R agonists is linked to remodeling of ER membrane microdomains. Our results provide novel insights into S1R-mediated signaling mechanisms in cells.
    Keywords:  cell biology; cholesterol; endoplasmic reticulum; human; lipid microdomains; mitochondria-associated membranes; neurodegeneration; neuroscience; sigma-1 receptor
    DOI:  https://doi.org/10.7554/eLife.65192
  5. Sci Adv. 2021 May;pii: eabg2099. [Epub ahead of print]7(20):
      The four-pass transmembrane proteins Vangl1 and Vangl2 are dedicated core components of Wnt/planar cell polarity (Wnt/PCP) signaling that critically regulate polarized cell behaviors in many morphological and physiological processes. Here, we found that the abundance of Vangl proteins is tightly controlled by the ubiquitin-proteasome system through endoplasmic reticulum-associated degradation (ERAD). The key ERAD component p97/VCP directly binds to Vangl at a highly conserved VCP-interacting motif and recruits the E3 ligase KBTBD7 via its UBA-UBX adaptors to promote Vangl ubiquitination and ERAD. We found that Wnt5a/CK1 prevents Vangl ubiquitination and ERAD by inducing Vangl phosphorylation, which facilitates Vangl export from the ER to the plasma membrane. We also provide in vivo evidence that KBTBD7 regulates convergent extension during zebrafish gastrulation and functions as a tumor suppressor in breast cancer by promoting Vangl degradation. Our findings reveal a previously unknown regulatory mechanism of Wnt/PCP signaling through the p97/VCP-KBTBD7-mediated ERAD pathway.
    DOI:  https://doi.org/10.1126/sciadv.abg2099
  6. Autophagy. 2020 Dec 01. 1-16
      As a highly dynamic organelle, mitochondria undergo constant fission and fusion to change their morphology and function, coping with various stress conditions. Loss of the balance between fission and fusion leads to impaired mitochondria function, which plays a critical role in the pathogenesis of Parkinson disease (PD). Yet the mechanisms behind mitochondria dynamics regulation remain to be fully illustrated. Chaperone-mediated autophagy (CMA) is a lysosome-dependent process that selectively degrades proteins to maintain cellular proteostasis. In this study, we demonstrated that MARCHF5, an E3 ubiquitin ligase required for mitochondria fission, is a CMA substrate. MARCHF5 interacted with key CMA regulators and was degraded by lysosomes. Severe oxidative stress compromised CMA activity and stabilized MARCHF5, which facilitated DNM1L translocation and led to excessive fission. Increase of CMA activity promoted MARCHF5 turnover, attenuated DNM1L translocation, and reduced mitochondria fragmentation, which alleviated mitochondrial dysfunction under oxidative stress. Furthermore, we showed that conditional expression of LAMP2A, the key CMA regulator, in dopaminergic (DA) neurons helped maintain mitochondria morphology and protected DA neuronal viability in a rodent PD model. Our work uncovers a critical role of CMA in maintaining proper mitochondria dynamics, and loss of this regulatory control may occur in PD and underlie its pathogenic process.Abbreviations: CMA: chaperone-mediated autophagy; DA: dopaminergic; DNM1L: dynamin 1 like; FCCP: carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; HSPA8: heat shock protein family A (Hsp70) member 8; LAMP2A: lysosomal associated membrane protein 2A; MARCHF5: membrane-associated ring-CH-type finger 5; MMP: mitochondria membrane potential; OCR: oxygen consumption rate; 6-OHDA: 6-hydroxydopamine; PD: Parkinson disease; SNc: substantia nigra pars compacta; TEM: transmission electron microscopy; TH: tyrosine hydroxylase; TMRE: tetramethylrhodamine ethyl ester perchlorate; WT: wild type.
    Keywords:  Autophagy/mitochondria/oxidative stress/Parkinson disease/proteostasis
    DOI:  https://doi.org/10.1080/15548627.2020.1848128
  7. J Cell Biol. 2021 Jul 05. pii: e202010006. [Epub ahead of print]220(7):
      The ER tethers tightly to mitochondria and the mitochondrial protein FUNDC1 recruits Drp1 to ER-mitochondria contact sites, subsequently facilitating mitochondrial fission and preventing mitochondria from undergoing hypoxic stress. However, the mechanisms by which the ER modulates hypoxia-induced mitochondrial fission are poorly understood. Here, we show that USP19, an ER-resident deubiquitinase, accumulates at ER-mitochondria contact sites under hypoxia and promotes hypoxia-induced mitochondrial division. In response to hypoxia, USP19 binds to and deubiquitinates FUNDC1 at ER-mitochondria contact sites, which facilitates Drp1 oligomerization and Drp1 GTP-binding and hydrolysis activities, thereby promoting mitochondrial division. Our findings reveal a unique hypoxia response pathway mediated by an ER protein that regulates mitochondrial dynamics.
    DOI:  https://doi.org/10.1083/jcb.202010006
  8. Trends Biochem Sci. 2021 May 06. pii: S0968-0004(21)00066-9. [Epub ahead of print]
      Ribosomes that stall inappropriately during protein synthesis harbor proteotoxic components linked to cellular stress and neurodegenerative diseases. Molecular mechanisms that rescue stalled ribosomes must selectively detect rare aberrant translational complexes and process the heterogeneous components. Ribosome-associated quality control pathways eliminate problematic messenger RNAs and nascent proteins on stalled translational complexes. In addition, recent studies have uncovered general principles of stall recognition upstream of quality control pathways and fail-safe mechanisms that ensure nascent proteome integrity. Here, we discuss developments in our mechanistic understanding of the detection and rescue of stalled ribosomal complexes in eukaryotes.
    Keywords:  ribosome collisions; ribosome stalling; ribosome-associated quality control (RQC)
    DOI:  https://doi.org/10.1016/j.tibs.2021.03.008
  9. Autophagy. 2021 May 12. 1-18
      Macroautophagy/autophagy plays an important role during the development of human cancer. BECN1 (beclin 1), a core player in autophagy regulation, is downregulated in many kinds of malignancy. The underlying mechanism, however, has not been fully illuminated. Here, we found that CUL3 (cullin 3), an E3 ubiquitin ligase, could interact with BECN1 and promote the K48-linked ubiquitination and degradation of this protein; In addition, CUL3 led to a decrease in autophagic activity through downregulating BECN1. We also found that KLHL38 was a substrate adaptor of the CUL3 E3 ligase complex-mediated ubiquitination and degradation of BECN1. In breast and ovarian cancer, CUL3 could promote the proliferation of tumor cells, and the expression of CUL3 was related to poor prognosis in patients. Our study reveals the underlying mechanism of BECN1 ubiquitination and degradation that affects autophagic activity and subsequently leads to tumor progression, providing a novel therapeutic strategy that regulates autophagy to combat cancer.Abbreviations: ATG: autophagy-related BECN1: beclin 1 CHX: cycloheximide CoIP: co-immunoprecipitation CUL3: cullin 3 IP: immunoprecipitation MS: mass spectrometry PtdIns3K: phosphatidylinositol 3-kinase UPS: ubiquitin-proteasome system.
    Keywords:  Autophagosome; E3 ubiquitin ligase; KLHL; posttranslational modification; proliferation; proteasome
    DOI:  https://doi.org/10.1080/15548627.2021.1912270
  10. Mol Cell Biol. 2021 May 10. pii: MCB.00662-20. [Epub ahead of print]
      In the budding yeast Saccharomyces cerevisiae an mRNA, called HAC1, exists in a translationally repressed form in the cytoplasm. Under conditions of cellular stress, such as when unfolded proteins accumulate inside the endoplasmic reticulum (ER), an RNase Ire1 removes an intervening sequence (intron) from the HAC1 mRNA by non-conventional cytosolic splicing. Removal of the intron results in translational de-repression of HAC1 mRNA and production of a transcription factor that activates expressions of many enzymes and chaperones to increase the protein-folding capacity of the cell. Here, we show that Ire1-mediated RNA cleavage requires Watson-Crick base pairs in two RNA hairpins, which are located at the HAC1 mRNA exon-intron junctions. Then, we show that the translational de-repression of HAC1 mRNA can occur independent of cytosolic splicing. These results are obtained from HAC1 variants that translated an active Hac1 protein from the un-spliced mRNA. Additionally, we show that the phosphatidylinositol-3-kinase Vps34 and the nutrient-sensing kinases TOR and GCN2 are key regulators of HAC1 mRNA translation and consequently the ER stress responses. Collectively, our data suggest that the cytosolic splicing and the translational de-repression of HAC1 mRNA are coordinated by unique and parallel networks of signaling pathways.
    DOI:  https://doi.org/10.1128/MCB.00662-20
  11. Front Endocrinol (Lausanne). 2021 ;12 650158
      The notion that in diabetes pancreatic β-cells express endoplasmic reticulum (ER) stress markers indicative of increased unfolded protein response (UPR) signaling is no longer in doubt. However, what remains controversial is whether this increase in ER stress response actually contributes importantly to the β-cell failure of type 2 diabetes (akin to 'terminal UPR'), or whether it represents a coping mechanism that represents the best attempt of β-cells to adapt to changes in metabolic demands as presented by disease progression. Here an intercontinental group of experts review evidence for the role of ER stress in monogenic and type 2 diabetes in an attempt to reconcile these disparate views. Current evidence implies that pancreatic β-cells require a regulated UPR for their development, function and survival, as well as to maintain cellular homeostasis in response to protein misfolding stress. Prolonged ER stress signaling, however, can be detrimental to β-cells, highlighting the importance of "optimal" UPR for ER homeostasis, β-cell function and survival.
    Keywords:  ATF6 (activating transcription factor 6); IRE1 (inositol-requiring enzyme 1); PERK (PKR-like endoplasmic reticulum kinase); endoplasmic reticulum; insulin; stress; unfolded protein response
    DOI:  https://doi.org/10.3389/fendo.2021.650158
  12. Nat Commun. 2021 May 13. 12(1): 2766
      The escalating global prevalence of arboviral diseases emphasizes the need to improve our understanding of their biology. Research in this area has been hindered by the lack of molecular tools for studying virus-mosquito interactions. Here, we develop an Aedes aegypti cell line which stably expresses Zika virus (ZIKV) capsid proteins in order to study virus-vector protein-protein interactions through quantitative label-free proteomics. We identify 157 interactors and show that eight have potentially pro-viral activity during ZIKV infection in mosquito cells. Notably, silencing of transitional endoplasmic reticulum protein TER94 prevents ZIKV capsid degradation and significantly reduces viral replication. Similar results are observed if the TER94 ortholog (VCP) functioning is blocked with inhibitors in human cells. In addition, we show that an E3 ubiquitin-protein ligase, UBR5, mediates the interaction between TER94 and ZIKV capsid. Our study demonstrates a pro-viral function for TER94/VCP during ZIKV infection that is conserved between human and mosquito cells.
    DOI:  https://doi.org/10.1038/s41467-021-22966-8
  13. Nat Commun. 2021 May 11. 12(1): 2673
      Vesicular traffic and membrane contact sites between organelles enable the exchange of proteins, lipids, and metabolites. Recruitment of tethers to contact sites between the endoplasmic reticulum (ER) and the plasma membrane is often triggered by calcium. Here we reveal a function for calcium in the repression of cholesterol export at membrane contact sites between the ER and the Golgi complex. We show that calcium efflux from ER stores induced by inositol-triphosphate [IP3] accumulation upon loss of the inositol 5-phosphatase INPP5A or receptor signaling triggers depletion of cholesterol and associated Gb3 from the cell surface, resulting in a blockade of clathrin-independent endocytosis (CIE) of Shiga toxin. This phenotype is caused by the calcium-induced dissociation of oxysterol binding protein (OSBP) from the Golgi complex and from VAP-containing membrane contact sites. Our findings reveal a crucial function for INPP5A-mediated IP3 hydrolysis in the control of lipid exchange at membrane contact sites.
    DOI:  https://doi.org/10.1038/s41467-021-22882-x
  14. FEBS Lett. 2021 May 15.
      The SARS-CoV-2 spike glycoprotein (spike) mediates viral entry by binding ACE2 receptors on host cell surfaces. Spike glycan processing and cleavage, which occur in the Golgi network, are important for fusion at the plasma membrane, promoting both virion infectivity and cell-to-cell viral spreading. We show that a KxHxx motif in the cytosolic tail of spike weakly binds the COPβ' subunit of COPI coatomer, which facilitates some recycling of spike within the Golgi, while releasing the remainder to the cell surface. Although histidine (KxHxx) has been proposed to be equivalent to lysine within di-lysine endoplasmic reticulum (ER) retrieval sequences, we show that histidine-to-lysine substitution (KxKxx) retains spike at the ER, and prevents glycan processing, protease cleavage, and transport to the plasma membrane.
    Keywords:  COPI coatomer; COVID-19 SARS-CoV-2; ER retrieval signal; di-lysine motif; spike glycoprotein
    DOI:  https://doi.org/10.1002/1873-3468.14109
  15. Cell Chem Biol. 2021 Apr 27. pii: S2451-9456(21)00201-4. [Epub ahead of print]
      Ubiquitylation, a highly regulated post-translational modification, controls many cellular pathways that are critical to cell homeostasis. Ubiquitin ligases recruit substrates and promote ubiquitin transfer onto targets, inducing proteasomal degradation or non-degradative signaling. Accumulating evidence highlights the critical role of dysregulated ubiquitin ligases in processes associated with the initiation and progression of cancer. Depending on the substrate specificity and biological context, a ubiquitin ligase can act either as a tumor promoter or as a tumor suppressor. In this review, we focus on the regulatory roles of ubiquitin ligases and how perturbations of their functions contribute to cancer pathogenesis. We also briefly discuss current strategies for targeting or exploiting ubiquitin ligases for cancer therapy.
    DOI:  https://doi.org/10.1016/j.chembiol.2021.04.008
  16. Sci Rep. 2021 May 10. 11(1): 9892
      Enforcing differentiation of cancer stem cells is considered as a potential strategy to sensitize colorectal cancer cells to irradiation and chemotherapy. Activation of the unfolded protein response, due to endoplasmic reticulum (ER) stress, causes rapid stem cell differentiation in normal intestinal and colon cancer cells. We previously found that stem cell differentiation was mediated by a Protein kinase R-like ER kinase (PERK) dependent arrest of mRNA translation, resulting in rapid protein depletion of WNT-dependent transcription factor c-MYC. We hypothesize that ER stress dependent stem cell differentiation may rely on the depletion of additional transcriptional regulators with a short protein half-life that are rapidly depleted due to a PERK-dependent translational pause. Using a novel screening method, we identify novel transcription factors that regulate the intestinal stem cell fate upon ER stress. ER stress was induced in LS174T cells with thapsigargin or subtilase cytotoxin (SubAB) and immediate alterations in nuclear transcription factor activity were assessed by the CatTFRE assay in which transcription factors present in nuclear lysate are bound to plasmid DNA, co-extracted and quantified using mass-spectrometry. The role of altered activity of transcription factor CtBP2 was further examined by modification of its expression levels using CAG-rtTA3-CtBP2 overexpression in small intestinal organoids, shCtBP2 knockdown in LS174T cells, and familial adenomatous polyposis patient-derived organoids. CtBP2 overexpression organoids were challenged by ER stress and ionizing irradiation. We identified a unique set of transcription factors with altered activation upon ER stress. Gene ontology analysis showed that transcription factors with diminished binding were involved in cellular differentiation processes. ER stress decreased CtBP2 protein expression in mouse small intestine. ER stress induced loss of CtBP2 expression which was rescued by inhibition of PERK signaling. CtBP2 was overexpressed in mouse and human colorectal adenomas. Inducible CtBP2 overexpression in organoids conferred higher clonogenic potential, resilience to irradiation-induced damage and a partial rescue of ER stress-induced loss of stemness. Using an unbiased proteomics approach, we identified a unique set of transcription factors for which DNA-binding activity is lost directly upon ER stress. We continued investigating the function of co-regulator CtBP2, and show that CtBP2 mediates ER stress-induced loss of stemness which supports the intestinal stem cell state in homeostatic stem cells and colorectal cancer cells.
    DOI:  https://doi.org/10.1038/s41598-021-89326-w
  17. Nat Commun. 2021 May 11. 12(1): 2621
      Cullin-RING E3 ligases (CRLs) regulate the turnover of approximately 20% of mammalian cellular proteins. Neddylation of individual cullin proteins is essential for the activation of each CRL. We report herein the discovery of DI-1548 and DI-1859 as two potent, selective and covalent DCN1 inhibitors. These inhibitors selectively inhibit neddylation of cullin 3 in cells at low nanomolar concentrations and are 2-3 orders of magnitude more potent than our previously reported reversible DCN1 inhibitor. Mass spectrometric analysis and co-crystal structures reveal that these compounds employ a unique mechanism of covalent bond formation with DCN1. DI-1859 induces a robust increase of NRF2 protein, a CRL3 substrate, in mouse liver and effectively protects mice from acetaminophen-induced liver damage. Taken together, this study demonstrates the therapeutic potential of selective inhibition of cullin neddylation.
    DOI:  https://doi.org/10.1038/s41467-021-22924-4
  18. Proc Natl Acad Sci U S A. 2021 May 18. pii: e2023604118. [Epub ahead of print]118(20):
      Hydrogen sulfide (H2S) is an endogenously generated gaseous signaling molecule, which recently has been implicated in autophagy regulation in both plants and mammals through persulfidation of specific targets. Persulfidation has been suggested as the molecular mechanism through which sulfide regulates autophagy in plant cells. ATG18a is a core autophagy component that is required for bulk autophagy and also for reticulophagy during endoplasmic reticulum (ER) stress. In this research, we revealed the role of sulfide in plant ER stress responses as a negative regulator of autophagy. We demonstrate that sulfide regulates ATG18a phospholipid-binding activity by reversible persulfidation at Cys103, and that this modification activates ATG18a binding capacity to specific phospholipids in a reversible manner. Our findings strongly suggest that persulfidation of ATG18a at C103 regulates autophagy under ER stress, and that the impairment of persulfidation affects both the number and size of autophagosomes.
    Keywords:  ATG18a; ER stress; autophagy; hydrogen sulfide; persulfidation
    DOI:  https://doi.org/10.1073/pnas.2023604118
  19. mSystems. 2021 May 11. pii: e00089-21. [Epub ahead of print]6(3):
      Heat shock protein 90 (Hsp90) is a conserved molecular chaperone responsible for the folding and maturation of nascent proteins. Hsp90 is regarded as a master regulator of protein homeostasis in the cell, and its inhibition affects the functions of a large array of client proteins. The classical Hsp90 inhibitor tanespimycin has shown potent antileishmanial activity. Despite the increasing importance of Hsp90 inhibition in the development of antileishmanial agents, the global effects of these inhibitors on the parasite proteome remain unknown. By combining tanespimycin treatment with bioorthogonal noncanonical amino acid tagging (BONCAT) metabolic labeling and isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic mass spectrometry, for the first time, we robustly profiled the relative changes in the synthesis of hundreds of parasite proteins as functions of dose and duration of the inhibitor treatment. We showed that Hsp90 inhibition dynamically regulates nascent protein synthesis in Leishmania mexicana, with many chaperones and virulence factors showing inhibitor concentration- and treatment duration-dependent changes in relative expression. Many ribosomal proteins showed a downregulation upon severe Hsp90 inhibition, providing the first protein-level evidence that Hsp90 inhibition affects the protein synthesis capacity of the ribosome in this organism. We also provide an unbiased target validation of tanespimycin in L. mexicana using live parasite photoaffinity labeling with a novel chemical probe and quantitative proteomic mass spectrometry. We showed that the classical Hsp90 inhibitor not only engages with its presumed target, Hsp83-1, in L. mexicana promastigotes but also affects multiple proteins involved in protein synthesis and quality control in the parasite. This study defines the Leishmania parasites' response to Hsp90 inhibition at the level of nascent global protein synthesis and provides a rich resource for future studies on Leishmania spp. biology and antileishmanial drug development.IMPORTANCE Leishmania spp. are the causative agents of leishmaniasis, a poverty-related disease, which is endemic in >90 countries worldwide, affecting approximately 12 million people, with an estimated 700,000 to 1 million new cases and around 70,000 deaths annually. Inhibitors of the chaperone protein Hsp90 have shown promising antileishmanial activity. However, further development of the Hsp90 inhibitors as antileishmanials is hampered by a lack of direct information of their downstream effects on the parasite proteome. Using a combination of mass spectrometry-based quantitative proteomics and chemical and metabolic labeling, we provide the first protein-level evidence that Hsp90 inhibition affects global protein synthesis in Leishmania We also provide the precise relative quantitative changes in the expressions of hundreds of affected proteins as functions of both the concentration and duration of the inhibitor treatment. We find that Leishmania regulates its ribosomal proteins under Hsp90 inhibition while a set of virulence factors and chaperones are preferentially synthesized.
    Keywords:  BONCAT; Hsp90; Leishmania; Leishmania mexicana; quantitative proteomic mass spectrometry; tanespimycin
    DOI:  https://doi.org/10.1128/mSystems.00089-21
  20. Autophagy. 2021 May 08. 1-17
      CREG1 is a small glycoprotein which has been proposed as a transcription repressor, a secretory ligand, a lysosomal, or a mitochondrial protein. This is largely because of lack of antibodies for immunolocalization validated through gain- and loss-of-function studies. In the present study, we demonstrate, using antibodies validated for immunofluorescence microscopy, that CREG1 is mainly localized to the endosomal-lysosomal compartment. Gain- and loss-of-function analyses reveal an important role for CREG1 in both macropinocytosis and clathrin-dependent endocytosis. CREG1 also promotes acidification of the endosomal-lysosomal compartment and increases lysosomal biogenesis. Functionally, overexpression of CREG1 enhances macroautophagy/autophagy and lysosome-mediated degradation, whereas knockdown or knockout of CREG1 has opposite effects. The function of CREG1 in lysosomal biogenesis is likely attributable to enhanced endocytic trafficking. Our results demonstrate that CREG1 is an endosomal-lysosomal protein implicated in endocytic trafficking and lysosomal biogenesis.Abbreviations: AIFM1/AIF: apoptosis inducing factor mitochondria associated 1; AO: acridine orange; ATP6V1H: ATPase H+ transporting V1 subunit H; CALR: calreticulin; CREG: cellular repressor of E1A stimulated genes; CTSC: cathepsin C; CTSD: cathepsin D; EBAG9/RCAS1: estrogen receptor binding site associated antigen 9; EIPA: 5-(N-ethyl-N-isopropyl)amiloride; ER: endoplasmic reticulum; GFP: green fluorescent protein; HEXA: hexosaminidase subunit alpha; IGF2R: insulin like growth factor 2 receptor; LAMP1: lysosomal associated membrane protein 1; M6PR: mannose-6-phosphate receptor, cation dependent; MAPK1/ERK2: mitogen-activated protein kinase 1; MTORC1: mechanistic target of rapamycin kinase complex 1; PDIA2: protein disulfide isomerase family A member 2; SQSTM1/p62: sequestosome 1; TF: transferrin; TFEB: transcription factor EB.
    Keywords:  Autophagy; endocytosis; gene targeting; hepatocytes; immunofluorescence
    DOI:  https://doi.org/10.1080/15548627.2021.1909997
  21. J Virol. 2021 May 12. pii: JVI.02234-20. [Epub ahead of print]
      Many positive-stranded RNA viruses encode polyproteins and viral proteins are generated by processing the polyproteins. This system produces an equal amount of each viral protein, though their required amounts are different. In this study, we found that the extra membrane-anchored non-structural (NS) proteins of Japanese encephalitis virus and dengue virus are rapidly and selectively degraded by the endoplasmic reticulum-associated degradation (ERAD) pathway. Our gene targeting study revealed that ERAD involving Derlin2 and SEL1L, but not Derlin1, is required for the viral genome replication. Derlin2 predominantly localized in the convoluted membrane (CM) of viral replication organelle, and viral NS proteins degraded in the CM. Hence, these results suggest that viral protein homeostasis is regulated by Derlin2-mediated ERAD in the CM, and this process is critical for the propagation of these viruses.ImportanceThe results of this study reveal that the cellular ERAD system controls the amount of each viral protein in virus-infected cells; this "viral protein homeostasis" is critical for viral propagation. Furthermore, we clarified that the "convoluted membrane (CM)," which was previously considered a structure with unknown function, serves as a kind of waste dump where viral protein degradation occurs. We also found that the Derlin2/Sel1L/HRD1-specific pathway is involved in this process, whereas the Derlin1-mediated pathway is not. This novel ERAD-mediated fine-tuning system for the stoichiometries of polyprotein-derived viral proteins may represent a common feature among polyprotein-encoding viruses.
    DOI:  https://doi.org/10.1128/JVI.02234-20
  22. Nat Commun. 2021 May 10. 12(1): 2587
      Host cells use several anti-bacterial pathways to defend against pathogens. Here, using a uropathogenic Escherichia coli (UPEC) infection model, we demonstrate that bacterial infection upregulates RhoB, which subsequently promotes intracellular bacteria clearance by inducing LC3 lipidation and autophagosome formation. RhoB binds with Beclin 1 through its residues at 118 to 140 and the Beclin 1 CCD domain, with RhoB Arg133 being the key binding residue. Binding of RhoB to Beclin 1 enhances the Hsp90-Beclin 1 interaction, preventing Beclin 1 degradation. RhoB also directly interacts with Hsp90, maintaining RhoB levels. UPEC infections increase RhoB, Beclin 1 and LC3 levels in bladder epithelium in vivo, whereas Beclin 1 and LC3 levels as well as UPEC clearance are substantially reduced in RhoB+/- and RhoB-/- mice upon infection. We conclude that when stimulated by UPEC infections, host cells promote UPEC clearance through the RhoB-Beclin 1-HSP90 complex, indicating RhoB may be a useful target when developing UPEC treatment strategies.
    DOI:  https://doi.org/10.1038/s41467-021-22726-8
  23. J Proteomics. 2021 May 10. pii: S1874-3919(21)00160-3. [Epub ahead of print] 104261
      Protein ubiquitination is a dynamic post-translational modification involved in various biological processes in eukaryotes. To understand the function of ubiquitinated proteins in maize kernels, we used the specific K-GG antibody coupled with high-resolution LC-MS/MS to identify the ubiquitinated proteins in maize immature kernels. A total of 1999 lysine ubiquitination sites in 881 proteins were identified in maize kernels. Eight conserved ubiquitination motifs included KubD, GKub, EKub, KubXXXE, AKub, NXKub, KubXXXXXN, and KKub were found in ubiquitinated peptides. The ubiquitinated lysine neighborhoods are more frequently presented in ordered structures. Go and KEGG analysis showed the proteins involved in carbohydrate metabolism and protein processing were identified to be the targets of lysine ubiquitination. Other proteins, which related to RNA transport, spliceosome, endocytosis, ubiquitin-mediated proteolysis, proteasome, and MAPK signaling, were also found to be ubiquitinated. Protein-protein interaction network and KEGG analysis indicated that protein ubiquitination plays a major role in regulating many cellular processes and modulating diverse interactions in maize kernel development. The identification of the 881 ubiquitinated proteins in maize kernels provides a foundation for understanding the physiological roles of these ubiquitinated proteins. Our finding also provides a new insight view into the function of ubiquitinated proteins involved in maize kernel development. SIGNIFICANCE: We reported here the comprehensive proteomic analysis of the ubiquitin-modified proteome in maize kernel. We found that there are some new characteristics of them in ubiquitome of maize immature kernels. The results suggested that protein ubiquitination, as a post-translation modification, plays an essential role in regulating many cellular processes in maize kernel development. This study expands our knowledge on the regulatory roles and mechanisms of protein ubiquitination in maize. and other plants.
    Keywords:  Lysine ubiquitination; Maize immature kernels; Mass spectrometry; Post-translational modification; Proteomics; Ubiquitinated protein
    DOI:  https://doi.org/10.1016/j.jprot.2021.104261
  24. Am J Hum Genet. 2021 May 04. pii: S0002-9297(21)00144-0. [Epub ahead of print]
    University of Washington Center for Mendelian Genomics (UW-CMG)
      SLC37A4 encodes an endoplasmic reticulum (ER)-localized multitransmembrane protein required for transporting glucose-6-phosphate (Glc-6P) into the ER. Once transported into the ER, Glc-6P is subsequently hydrolyzed by tissue-specific phosphatases to glucose and inorganic phosphate during times of glucose depletion. Pathogenic variants in SLC37A4 cause an established recessive disorder known as glycogen storage disorder 1b characterized by liver and kidney dysfunction with neutropenia. We report seven individuals who presented with liver dysfunction multifactorial coagulation deficiency and cardiac issues and were heterozygous for the same variant, c.1267C>T (p.Arg423∗), in SLC37A4; the affected individuals were from four unrelated families. Serum samples from affected individuals showed profound accumulation of both high mannose and hybrid type N-glycans, while N-glycans in fibroblasts and undifferentiated iPSC were normal. Due to the liver-specific nature of this disorder, we generated a CRISPR base-edited hepatoma cell line harboring the c.1267C>T (p.Arg423∗) variant. These cells replicated the secreted abnormalities seen in serum N-glycosylation, and a portion of the mutant protein appears to relocate to a distinct, non-Golgi compartment, possibly ER exit sites. These cells also show a gene dosage-dependent alteration in the Golgi morphology and reduced intraluminal pH that may account for the altered glycosylation. In summary, we identify a recurrent mutation in SLC37A4 that causes a dominantly inherited congenital disorder of glycosylation characterized by coagulopathy and liver dysfunction with abnormal serum N-glycans.
    Keywords:  Golgi pH; coagulopathy; congenital disordes of glycosylation; exome sequencing; glycosylation
    DOI:  https://doi.org/10.1016/j.ajhg.2021.04.013
  25. Autophagy. 2021 May 09. 1-20
      Initiation of PINK1- and PRKN-dependent mitophagy is a highly regulated process involving the activity of the AAA-ATPase VCP/p97, a cofactor-guided multifunctional protein central to handling ubiquitinated client proteins. Removal of ubiquitinated substrates such as the mitofusin MFN2 from the outer mitochondrial membrane by VCP is critical for PRKN accumulation on mitochondria, which drives mitophagy. Here we characterize the role of the UBA and UBX-domain containing VCP cofactor UBXN1/SAKS1 during mitophagy. Following mitochondrial depolarization and depending on PRKN, UBXN1 translocated alongside VCP to mitochondria. Prior to mitophagy, loss of UBXN1 led to mitochondrial fragmentation, diminished ATP production, and impaired ER-mitochondrial apposition. When mitophagy was induced in cells lacking UBXN1, mitochondrial translocation of VCP and PRKN was impaired, diminishing mitophagic flux. In addition, UBXN1 physically interacted with PRKN in a UBX-domain depending manner. Interestingly, ectopic expression of the pro-mitophagic VCP cofactor UBXN6/UBXD1 fully reversed impaired PRKN recruitment in UBXN1-/- cells. Mechanistically, UBXN1 acted downstream of PINK1 by facilitating MFN2 removal from mitochondria. In UBXN1-/- cells exposed to mitochondrial stress, MFN2 formed para-mitochondrial blobs likely representing blocked intermediates of the MFN2 removal process partly reversible by expression of UBXN6. Presence of these MFN2 blobs strongly correlated with impaired PRKN translocation to depolarized mitochondria. Our observations connect the VCP cofactor UBXN1 to the initiation and maintenance phase of PRKN-dependent mitophagy, and indicate that, upon mitochondrial stress induction, MFN2 removal from mitochondria occurs through a specialized process.
    Keywords:  MFN2; PRKN; UBXN1; UBXN6; VCP; mitophagy
    DOI:  https://doi.org/10.1080/15548627.2021.1922982
  26. Cell Death Dis. 2021 May 10. 12(5): 466
      Mutations in RNA binding proteins (RBPs) and in genes regulating autophagy are frequent causes of familial amyotrophic lateral sclerosis (fALS). The P56S mutation in vesicle-associated membrane protein-associated protein B (VAPB) leads to fALS (ALS8) and spinal muscular atrophy (SMA). While VAPB is primarily involved in the unfolded protein response (UPR), vesicular trafficking and in initial steps of the autophagy pathway, the effect of mutant P56S-VAPB on autophagy regulation in connection with RBP homeostasis has not been explored yet. Examining the muscle biopsy of our index ALS8 patient of European origin revealed globular accumulations of VAPB aggregates co-localised with autophagy markers LC3 and p62 in partially atrophic and atrophic muscle fibres. In line with this skin fibroblasts obtained from the same patient showed accumulation of P56S-VAPB aggregates together with LC3 and p62. Detailed investigations of autophagic flux in cell culture models revealed that P56S-VAPB alters both initial and late steps of the autophagy pathway. Accordingly, electron microscopy complemented with live cell imaging highlighted the impaired fusion of accumulated autophagosomes with lysosomes in cells expressing P56S-VAPB. Consistent with these observations, neuropathological studies of brain and spinal cord of P56S-VAPB transgenic mice revealed signs of neurodegeneration associated with altered protein quality control and defective autophagy. Autophagy and RBP homeostasis are interdependent, as demonstrated by the cytoplasmic mis-localisation of several RBPs including pTDP-43, FUS, Matrin 3 which often sequestered with P56S-VAPB aggregates both in cell culture and in the muscle biopsy of the ALS8 patient. Further confirming the notion that aggregation of the RBPs proceeds through the stress granule (SG) pathway, we found persistent G3BP- and TIAR1-positive SGs in P56S-VAPB expressing cells as well as in the ALS8 patient muscle biopsy. We conclude that P56S-VAPB-ALS8 involves a cohesive pathomechanism of aberrant RBP homeostasis together with dysfunctional autophagy.
    DOI:  https://doi.org/10.1038/s41419-021-03710-y
  27. Nat Commun. 2021 May 11. 12(1): 2713
      Interleukin-1β (IL-1β) is activated by inflammasome-associated caspase-1 in rare autoinflammatory conditions and in a variety of other inflammatory diseases. Therefore, IL-1β activity must be fine-tuned to enable anti-microbial responses whilst limiting collateral damage. Here, we show that precursor IL-1β is rapidly turned over by the proteasome and this correlates with its decoration by K11-linked, K63-linked and K48-linked ubiquitin chains. The ubiquitylation of IL-1β is not just a degradation signal triggered by inflammasome priming and activating stimuli, but also limits IL-1β cleavage by caspase-1. IL-1β K133 is modified by ubiquitin and forms a salt bridge with IL-1β D129. Loss of IL-1β K133 ubiquitylation, or disruption of the K133:D129 electrostatic interaction, stabilizes IL-1β. Accordingly, Il1bK133R/K133R mice have increased levels of precursor IL-1β upon inflammasome priming and increased production of bioactive IL-1β, both in vitro and in response to LPS injection. These findings identify mechanisms that can limit IL-1β activity and safeguard against damaging inflammation.
    DOI:  https://doi.org/10.1038/s41467-021-22979-3
  28. Trends Cancer. 2021 May 07. pii: S2405-8033(21)00082-0. [Epub ahead of print]
      Mechanisms that control translation play important roles in tumor progression and metastasis. Emerging evidence has revealed that dysregulated translation also impacts immune evasion in response to cellular or oncogenic stress. Here, we summarize current knowledge regarding the translational control of immune checkpoints and implications for cancer immunotherapies.
    Keywords:  PD-1/PD-L1; alternative translation initiation factors; immune checkpoints; integrated stress response (ISR) pathway; translation regulation
    DOI:  https://doi.org/10.1016/j.trecan.2021.04.002
  29. Cell Rep. 2021 May 11. pii: S2211-1247(21)00464-2. [Epub ahead of print]35(6): 109125
      Spinal muscular atrophy (SMA) is a debilitating neurological disorder marked by degeneration of spinal motor neurons and muscle atrophy. SMA results from mutations in survival motor neuron 1 (SMN1), leading to deficiency of survival motor neuron (SMN) protein. Current therapies increase SMN protein and improve patient survival but have variable improvements in motor function, making it necessary to identify complementary strategies to further improve disease outcomes. Here, we perform a genome-wide RNAi screen using a luciferase-based activity reporter and identify genes involved in regulating SMN gene expression, RNA processing, and protein stability. We show that reduced expression of Transcription Export complex components increases SMN levels through the regulation of nuclear/cytoplasmic RNA transport. We also show that the E3 ligase, Neurl2, works cooperatively with Mib1 to ubiquitinate and promote SMN degradation. Together, our screen uncovers pathways through which SMN expression is regulated, potentially revealing additional strategies to treat SMA.
    Keywords:  E3 ligase; RNAi screen; THOC; spinal muscular atrophy; survival motor neuron; ubiquitin proteasome
    DOI:  https://doi.org/10.1016/j.celrep.2021.109125
  30. Autophagy. 2021 May 10. 1-20
      Eukaryotic cells use post-translational modifications to diversify and dynamically coordinate the function and properties of protein networks within various cellular processes. For example, the process of autophagy strongly depends on the balanced action of kinases and phosphatases. Highly conserved from the budding yeast Saccharomyces cerevisiae to humans, autophagy is a tightly regulated self-degradation process that is crucial for survival, stress adaptation, maintenance of cellular and organismal homeostasis, and cell differentiation and development. Many studies have emphasized the importance of kinases and phosphatases in the regulation of autophagy and identified many of the core autophagy proteins as their direct targets. In this review, we summarize the current knowledge on kinases and phosphatases acting on the core autophagy machinery and discuss the relevance of phosphoregulation for the overall process of autophagy.
    Keywords:  Autophagosome; PAS; macroautophagy; phagophore; posttranslational modification
    DOI:  https://doi.org/10.1080/15548627.2021.1909407
  31. Science. 2021 May 14. pii: eaba4220. [Epub ahead of print]372(6543):
      Reactive oxygen species (ROS) increase in activated T cells because of metabolic activity induced to support T cell proliferation and differentiation. We show that these ROS trigger an oxidative stress response that leads to translation repression. This response is countered by Schlafen 2 (SLFN2), which directly binds transfer RNAs (tRNAs) to protect them from cleavage by the ribonuclease angiogenin. T cell-specific SLFN2 deficiency results in the accumulation of tRNA fragments, which inhibit translation and promote stress-granule formation. Interleukin-2 receptor β (IL-2Rβ) and IL-2Rγ fail to be translationally up-regulated after T cell receptor stimulation, rendering SLFN2-deficient T cells insensitive to interleukin-2's mitogenic effects. SLFN2 confers resistance against the ROS-mediated translation-inhibitory effects of oxidative stress normally induced by T cell activation, permitting the robust protein synthesis necessary for T cell expansion and immunity.
    DOI:  https://doi.org/10.1126/science.aba4220
  32. Proc Natl Acad Sci U S A. 2021 May 18. pii: e2018770118. [Epub ahead of print]118(20):
      There is a tight association between mitochondrial dysfunction and neurodegenerative diseases and axons that are particularly vulnerable to degeneration, but how mitochondria are maintained in axons to support their physiology remains poorly defined. In an in vivo forward genetic screen for mutants altering axonal mitochondria, we identified tsg101 Neurons mutant for tsg101 exhibited an increase in mitochondrial number and decrease in mitochondrial size. TSG101 is best known as a component of the endosomal sorting complexes required for transport (ESCRT) complexes; however, loss of most other ESCRT components did not affect mitochondrial numbers or size, suggesting TSG101 regulates mitochondrial biology in a noncanonical, ESCRT-independent manner. The TSG101-mutant phenotype was not caused by lack of mitophagy, and we found that autophagy blockade was detrimental only to the mitochondria in the cell bodies, arguing mitophagy and autophagy are dispensable for the regulation of mitochondria number in axons. Interestingly, TSG101 mitochondrial phenotypes were instead caused by activation of PGC-1ɑ/Nrf2-dependent mitochondrial biogenesis, which was mTOR independent and TFEB dependent and required the mitochondrial fission-fusion machinery. Our work identifies a role for TSG101 in inhibiting mitochondrial biogenesis, which is essential for the maintenance of mitochondrial numbers and sizes, in the axonal compartment.
    Keywords:  ESCRT; TSG101; mitochondria; mitochondrial biogenesis; neurodegeneration
    DOI:  https://doi.org/10.1073/pnas.2018770118
  33. Biol Psychiatry. 2021 Jan 09. pii: S0006-3223(21)00040-8. [Epub ahead of print]
       BACKGROUND: Posttranslational histone modifications play a critical role in the regulation of gene transcription underlying synaptic plasticity and memory formation. One such epigenetic change is histone ubiquitination, a process that is mediated by the ubiquitin-proteasome system in a manner similar to that by which proteins are normally targeted for degradation. However, histone ubiquitination mechanisms are poorly understood in the brain and in learning. In this article, we describe a new role for the ubiquitin-proteasome system in histone crosstalk, showing that learning-induced monoubiquitination of histone H2B (H2Bubi) is required for increases in the transcriptionally active H3 lysine 4 trimethylation (H3K4me3) mark at learning-related genes in the hippocampus.
    METHODS: Using a series of molecular, biochemical, electrophysiological, and behavioral experiments, we interrogated the effects of short interfering RNA-mediated knockdown and CRISPR (clustered regularly interspaced short palindromic repeats)-mediated upregulation of ubiquitin ligases, deubiquitinating enzymes and histone methyltransferases in the rat dorsal hippocampus during memory consolidation.
    RESULTS: We show that H2Bubi recruits H3K4me3 through a process that is dependent on the 19S proteasome subunit RPT6 and that a loss of H2Bubi in the hippocampus prevents learning-induced increases in H3K4me3, gene transcription, synaptic plasticity, and memory formation. Furthermore, we show that CRISPR-dCas9-mediated increases in H2Bubi promote H3K4me3 and memory formation under weak training conditions and that promoting histone methylation does not rescue memory impairments resulting from loss of H2Bubi.
    CONCLUSIONS: These results suggest that H2B ubiquitination regulates histone crosstalk in learning by way of nonproteolytic proteasome function, demonstrating a novel mechanism by which histone modifications are coordinated in response to learning.
    Keywords:  Epigenetics; Histone; Memory; Methylation; Proteasome; Ubiquitination
    DOI:  https://doi.org/10.1016/j.biopsych.2020.12.029
  34. Biochemistry. 2021 May 13.
      Endoplasmic reticulum (ER) stress has been reported in a variety of diseases. Although ER stress can be detected using specific markers, it is still difficult to quantitatively evaluate the degree of stress and to identify the cause of the stress. The ER is the primary site for folding of secretory or transmembrane proteins as well as the site where glycosylation is initiated. This study therefore postulates that tracing the biosynthetic pathway of asparagine-linked glycans (N-glycans) would be a reporter for reflecting the state of the ER and serve as a quantitative descriptor of ER stress. Glycoblotting-assisted mass spectrometric analysis of the HeLa cell line enabled quantitative determination of the changes in the structures of N-glycans and degraded free oligosaccharides (fOSs) in response to tunicamycin- or thapsigargin-induced ER stress. The integrated analysis of neutral and sialylated N-glycans and fOSs showed the potential to elucidate the cause of ER stress, which cannot be readily done by protein markers alone. Changes in the total amount of glycans, increase in the ratio of high-mannose type N-glycans, increase in fOSs, and changes in the ratio of sialylated N-glycans in response to ER stress were shown to be potential descriptors of ER stress. Additionally, drastic clearance of accumulated N-glycans was observed in thapsigargin-treated cells, which may suggest the observation of ER stress-mediated autophagy or ER-phagy in terms of glycomics. Quantitative analysis of N-glycoforms composed of N-glycans and fOSs provides the dynamic indicators reflecting the ER status and the promising strategies for quantitative evaluation of ER stress.
    DOI:  https://doi.org/10.1021/acs.biochem.0c00969
  35. FEBS J. 2021 May 10.
      To ensure correct function, mitochondria have developed several mechanisms of protein quality control (QC). Protein homeostasis highly relies on chaperones and proteases to maintain proper folding and remove damaged proteins that might otherwise form cell-toxic aggregates. Besides quality control, mitochondrial proteases modulate and regulate many essential functions, such as trafficking, processing, and activation of mitochondrial proteins, mitochondrial dynamics, mitophagy, and apoptosis. Therefore, the impaired function of mitochondrial proteases is associated with various pathological conditions, including cancer, metabolic syndromes, and neurodegenerative disorders. This review recapitulates and discusses the emerging roles of two major proteases of the mitochondrial matrix, LON and ClpXP. Although commonly acknowledge for their protein quality control role, recent advances have uncovered several highly regulated processes controlled by the LON and ClpXP connected to mitochondrial gene expression and respiratory chain function maintenance. Furthermore, both proteases have been lately recognized as potent targets for anti-cancer therapies, and we summarize those findings.
    Keywords:  ClpXP; LONP1; cancer; degradation; metabolism; mitochondria; mitochondrial matrix; mtDNA; proteases; protein quality control; proteolysis; respiratory complexes
    DOI:  https://doi.org/10.1111/febs.15964
  36. Proc Natl Acad Sci U S A. 2021 May 18. pii: e2101100118. [Epub ahead of print]118(20):
      Pulmonary fibrosis is a relentlessly progressive and often fatal disease with a paucity of available therapies. Genetic evidence implicates disordered epithelial repair, which is normally achieved by the differentiation of small cuboidal alveolar type 2 (AT2) cells into large, flattened alveolar type 1 (AT1) cells as an initiating event in pulmonary fibrosis pathogenesis. Using models of pulmonary fibrosis in young adult and old mice and a model of adult alveologenesis after pneumonectomy, we show that administration of ISRIB, a small molecule that restores protein translation by EIF2B during activation of the integrated stress response (ISR), accelerated the differentiation of AT2 into AT1 cells. Accelerated epithelial repair reduced the recruitment of profibrotic monocyte-derived alveolar macrophages and ameliorated lung fibrosis. These findings suggest a dysfunctional role for the ISR in regeneration of the alveolar epithelium after injury with implications for therapy.
    Keywords:  ISRIB; fibrosis; proteostasis
    DOI:  https://doi.org/10.1073/pnas.2101100118
  37. J Biol Chem. 2021 May 06. pii: S0021-9258(21)00552-4. [Epub ahead of print] 100759
      The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 global pandemic, utilizes the host receptor angiotensin-converting enzyme 2 (ACE2) for viral entry. However, other host factors might also play important roles in SARS-CoV-2 infection, providing new directions for antiviral treatments. GRP78 is a stress-inducible chaperone important for entry and infectivity for many viruses. Recent molecular docking analyses revealed putative interaction between GRP78 and the receptor binding domain (RBD) of the SARS-CoV-2 Spike protein (SARS-2-S). Here we report that GRP78 can form a complex with SARS-2-S and ACE2 on the surface and at the perinuclear region typical of the endoplasmic reticulum in VeroE6-ACE2 cells, and that the substrate binding domain of GRP78 is critical for this interaction. In vitro binding studies further confirmed that GRP78 can directly bind to the RBD of SARS-2-S and ACE2. To investigate the role of GRP78 in this complex, we knocked down GRP78 in VeroE6-ACE2 cells. Loss of GRP78 markedly reduced cell surface ACE2 expression and led to activation of markers of the unfolded protein response. Treatment of lung epithelial cells with a humanized monoclonal antibody (hMAb159) selected for its safe clinical profile in preclinical models, depleted cell surface GRP78 and reduced cell surface ACE2 expression, as well as SARS-2-S-driven viral entry and SARS-CoV-2 infection in vitro. Our data suggest that GRP78 is an important host auxiliary factor for SARS-CoV-2 entry and infection and a potential target to combat this novel pathogen and other viruses that utilize GRP78 in combination therapy.
    Keywords:  ACE2; Antibody; GRP78; SARS-CoV-2; Spike Protein
    DOI:  https://doi.org/10.1016/j.jbc.2021.100759
  38. J Neurosci. 2021 May 07. pii: JN-RM-2494-20. [Epub ahead of print]
      Protein aggregation can induce explicit neurotoxic events that trigger a number of presently untreatable neurodegenerative disorders. Chaperones, on the other hand, play a neuroprotective role due to their ability to unfold and refold abnormal proteins. Progressive nature of neurotoxic events makes it important to discover endogenous factors that affect pathological and molecular phenotypes of neurodegeneration in animal models. Here, we identified microtubule-associated protein tau, and chaperones Hsp70 (heat shock protein 70) and DNAJA1 (DJ2) as endogenous substrates of cereblon (CRBN), a substrate-recruiting-subunit of cullin4-RING-E3-ligase. This recruitment results in ubiquitin-mediated degradation of tau, Hsp70, and DJ2. Knocking-out CRBN enhances chaperone activity of DJ2, resulting in decreased phosphorylation and aggregation of tau, improved association of tau with microtubules and reduced accumulation of pathological tau across brain. Functionally abundant DJ2 could prevent tau aggregation induced by various factors like okadaic acid and heparin. Depletion of CRBN also decreases the activity of tau-kinases including GSK3α/β, ERK, and p38. Intriguingly, we found a high expression of CRBN and low levels of DJ2 in neuronal tissues of 5XFAD and APP knock-in male mice models of Alzheimer's disease (AD). This implies that CRBN-mediated DJ2/Hsp70-pathway may be compromised in neurodegeneration. Being one of the primary pathogenic events, elevated CRBN can be a contributing factor for tauopathies. Our data provide a functional link between CRBN and DJ2/Hsp70 chaperone machinery in abolishing the cytotoxicity of aggregation-prone tau and suggest that Crbn- /- mice serve as an animal model of resistance against tauopathies to further exploration of the molecular mechanisms of neurodegeneration.SIGNIFICANCE STATEMENTThis work highlights a potential molecular mechanism by which CRBN influcences the aggregation and toxicity of tau via molecular chaperone modulation. Combining in vivo techniques and molecular analyses, we show that CRBN tunes fate of tau by regulating chaperone activity of Hsp70/DJ2, and kinase activity of tau-kinases. Knocking-out CRBN relieves DJ2 to detoxify cell-damaging conformers of tau in vitro and in vivo. Consequently, tau enters into a dynamic folding pathway and associates with microtubules rendering them intact and functional. These findings provide the rationale for proposing CRBN to influence tauopathies via tuning chaperone activities and emphasize that DJ2 can be a promising target for the treatment of tauopathies to reduce the toxicity of abnormal aggregates.
    DOI:  https://doi.org/10.1523/JNEUROSCI.2494-20.2021
  39. Nat Commun. 2021 May 11. 12(1): 2674
      The transcription coactivator YAP plays a vital role in Hippo pathway for organ-size control and tissue homeostasis. Recent studies have demonstrated YAP is closely related to immune disorders and inflammatory diseases, but the underlying mechanisms remain less defined. Here, we find that YAP promotes the activation of NLRP3 inflammasome, an intracellular multi-protein complex that orchestrates host immune responses to infections or sterile injuries. YAP deficiency in myeloid cells significantly attenuates LPS-induced systemic inflammation and monosodium urate (MSU) crystals-induced peritonitis. Mechanistically, YAP physically interacts with NLRP3 and maintains the stability of NLRP3 through blocking the association between NLRP3 and the E3 ligase β-TrCP1, the latter increases the proteasomal degradation of NLRP3 via K27-linked ubiquitination at lys380. Together, these findings establish a role of YAP in the activation of NLRP3 inflammasome, and provide potential therapeutic target to treat the NLRP3 inflammasome-related diseases.
    DOI:  https://doi.org/10.1038/s41467-021-22987-3
  40. J Cell Biol. 2021 Jul 05. pii: e202012091. [Epub ahead of print]220(7):
      Dynamic targeting of the ULK1 complex to the ER is crucial for initiating autophagosome formation and for subsequent formation of ER-isolation membrane (IM; autophagosomal precursor) contact during IM expansion. Little is known about how the ULK1 complex, which comprises FIP200, ULK1, ATG13, and ATG101 and does not exist as a constitutively coassembled complex, is recruited and stabilized on the ER. Here, we demonstrate that the ER-localized transmembrane proteins Atlastin 2 and 3 (ATL2/3) contribute to recruitment and stabilization of ULK1 and ATG101 at the FIP200-ATG13-specified autophagosome formation sites on the ER. In ATL2/3 KO cells, formation of FIP200 and ATG13 puncta is unaffected, while targeting of ULK1 and ATG101 is severely impaired. Consequently, IM initiation is compromised and slowed. ATL2/3 directly interact with ULK1 and ATG13 and facilitate the ATG13-mediated recruitment/stabilization of ULK1 and ATG101. ATL2/3 also participate in forming ER-IM tethering complexes. Our study provides insights into the dynamic assembly of the ULK1 complex on the ER for autophagosome formation.
    DOI:  https://doi.org/10.1083/jcb.202012091
  41. Front Cell Dev Biol. 2021 ;9 671067
      Interferon (IFN) is a crucial first line of defense against viral infection. This cytokine induces the expression of several IFN-Stimulated Genes (ISGs), some of which act as restriction factors. Upon IFN stimulation, cells also express ISG15 and SUMO, two key ubiquitin-like (Ubl) modifiers that play important roles in the antiviral response. IFN itself increases the global cellular SUMOylation in a PML-dependent manner. Mass spectrometry-based proteomics enables the large-scale identification of Ubl protein conjugates to determine the sites of modification and the quantitative changes in protein abundance. Importantly, a key difference amongst SUMO paralogs is the ability of SUMO2/3 to form poly-SUMO chains that recruit SUMO ubiquitin ligases such RING finger protein RNF4 and RNF111, thus resulting in the proteasomal degradation of conjugated substrates. Crosstalk between poly-SUMOylation and ISG15 has been reported recently, where increased poly-SUMOylation in response to IFN enhances IFN-induced ISGylation, stabilizes several ISG products in a TRIM25-dependent fashion, and results in enhanced IFN-induced antiviral activities. This contribution will highlight the relevance of the global SUMO proteome and the crosstalk between SUMO, ubiquitin and ISG15 in controlling both the stability and function of specific restriction factors that mediate IFN antiviral defense.
    Keywords:  ISG15; PML; SUMO; TRIM25; antiviral defense; interferon; restriction factors; ubiquitin
    DOI:  https://doi.org/10.3389/fcell.2021.671067
  42. Cancer Res. 2021 May 13. pii: canres.0922.2020. [Epub ahead of print]
      Triple-negative breast cancer (TNBC) exhibits a high mortality rate and is the most aggressive subtype of breast cancer. As previous studies have shown that histone deacetylases (HDAC) may represent molecular targets for TNBC treatment, we screened a small library of synthetic molecules and identified a potent HDAC inhibitor (HDACi), YF438, which exerts effective anti-TNBC activity both in vitro and in vivo. Proteomic and biochemical studies revealed that YF438 significantly downregulated MDM2 expression. In parallel, loss of MDM2 expression or blocking MDM2 E3 ligase activity rendered TNBC cells less sensitive to YF438 treatment, revealing an essential role of MDM2 E3 ligase activity in YF438-induced inhibition of TNBC. Mechanistically, YF438 disturbed the interaction between HDAC1 and MDM2, induced the dissociation of MDM2-MDMX, and subsequently increased MDM2 self-ubiquitination to accelerate its degradation, which ultimately inhibited growth and metastasis of TNBC cells. In addition, analysis of clinical tissue samples demonstrated high expression levels of MDM2 in TNBC, and MDM2 protein levels closely correlated with TNBC progression and metastasis. Collectively, these findings show that MDM2 plays an essential role in TNBC progression and targeting the HDAC1-MDM2-MDMX signaling axis with YF438 may provide a promising therapeutic option for TNBC. Furthermore, this novel underlying mechanism of a hydroxamate-based HDACi in inducing MDM2 highlights the need for further development of HDACi for TNBC treatment.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-20-0922
  43. Nat Commun. 2021 May 10. 12(1): 2616
      FUN14 domain-containing protein 1 (FUNDC1) is an integral mitochondrial outer-membrane protein, and mediates the formation of mitochondria-associated endoplasmic reticulum membranes (MAMs). This study aims to determine the contributions of FUNDC1-mediated MAMs to angiogenesis in vitro and in vivo. In cultured endothelial cells, VEGF significantly increases the formation of MAMs and MAM-related proteins, including FUNDC1. Endothelial cell-specific deletion of FUNDC1, which disrupts MAM formation in endothelial cells, lowers VEGFR2 expression and reduces tube formation, spheroid-sprouting, and functional blood vessel formation in vitro and in vivo. Conversely, increased MAM formation using MAM linkers mimics the effects of VEGF and promotes endothelial angiogenesis. Mechanistically, increased MAMs formation led to increased levels of Ca2+ in cytosol, promoted the phosphorylation of serum response factor (SRF) and enhanced the binding of SRF to VEGFR2 promoter, resulting in increased VEGFR2 production, with consequent angiogenesis. Moreover, blocking FUNDC1-related MAM formation with a cell-penetrating inhibitory peptide significantly suppresses the expressions of downstream angiogenic genes and inhibits tumor angiogenesis. We conclude that decreased MAMs formation by silencing FUNDC1 can inhibit angiogenesis by decreasing VEGFR2 expression, and targeting FUNDC1-dependent MAMs might be a promising approach for treating human disorders characterized by defective angiogenesis.
    DOI:  https://doi.org/10.1038/s41467-021-22771-3
  44. Mol Cell. 2021 Apr 30. pii: S1097-2765(21)00324-5. [Epub ahead of print]
      The TSC complex is a critical negative regulator of the small GTPase Rheb and mTORC1 in cellular stress signaling. The TSC2 subunit contains a catalytic GTPase activating protein domain and interacts with multiple regulators, while the precise function of TSC1 is unknown. Here we provide a structural characterization of TSC1 and define three domains: a C-terminal coiled-coil that interacts with TSC2, a central helical domain that mediates TSC1 oligomerization, and an N-terminal HEAT repeat domain that interacts with membrane phosphatidylinositol phosphates (PIPs). TSC1 architecture, oligomerization, and membrane binding are conserved in fungi and humans. We show that lysosomal recruitment of the TSC complex and subsequent inactivation of mTORC1 upon starvation depend on the marker lipid PI3,5P2, demonstrating a role for lysosomal PIPs in regulating TSC complex and mTORC1 activity via TSC1. Our study thus identifies a vital role of TSC1 in TSC complex function and mTORC1 signaling.
    Keywords:  TSC; X-ray crystallography; lysosomes; mTORC1; membrane binding; phosphatidylinositol phosphate
    DOI:  https://doi.org/10.1016/j.molcel.2021.04.019
  45. Cancer Cell. 2021 May 10. pii: S1535-6108(21)00169-0. [Epub ahead of print]39(5): 596-598
      Su et al. demonstrate that upon inhibiting autophagy, an intracellular nutrient recycling pathway, pancreatic ductal adenocarcinoma cells upregulate NRF2-mediated transcription of macropinocytosis pathway components, thereby triggering an alternate route for tumors to scavenge nutrients from extracellular sources. Accordingly, the combined inhibition of autophagy and macropinocytosis may improve cancer treatment.
    DOI:  https://doi.org/10.1016/j.ccell.2021.03.011