bims-proteo Biomed News
on Proteostasis
Issue of 2021–03–28
38 papers selected by
Eric Chevet, INSERM



  1. Dev Cell. 2021 Mar 19. pii: S1534-5807(21)00202-1. [Epub ahead of print]
      ER-phagy, literally endoplasmic reticulum (ER)-eating, defines the constitutive or regulated clearance of ER portions within metazoan endolysosomes or yeast and plant vacuoles. The advent of electron microscopy led to the first observations of ER-phagy over 60 years ago, but only recently, with the discovery of a set of regulatory proteins named ER-phagy receptors, has it been dissected mechanistically. ER-phagy receptors are activated by a variety of pleiotropic and ER-centric stimuli. They promote ER fragmentation and engage luminal, membrane-bound, and cytosolic factors, eventually driving lysosomal clearance of select ER domains along with their content. After short historical notes, this review introduces the concept of ER-phagy responses (ERPRs). ERPRs ensure lysosomal clearance of ER portions expendable during nutrient shortage, nonfunctional, present in excess, or containing misfolded proteins. They cooperate with unfolded protein responses (UPRs) and with ER-associated degradation (ERAD) in determining ER size, function, and homeostasis.
    Keywords:  ER-associated degradation (ERAD); ER-phagy; ER-phagy response (ERPR); ER-to-lysosome-associated; autophagosome; autophagy; degradation (ERLAD); endolysosome; lysosome; recov-ER-phagy; unfolded proteins response (UPR); vacuole
    DOI:  https://doi.org/10.1016/j.devcel.2021.03.005
  2. Cell Death Dis. 2021 Mar 22. 12(4): 304
      While germline recessive loss-of-function mutations in SEC23B in humans cause a rare form of anaemia, heterozygous change-of-function mutations result in increased predisposition to cancer. SEC23B encodes SEC23 homologue B, a component of coat protein complex II (COPII), which canonically transports proteins from the endoplasmic reticulum (ER) to the Golgi. Despite the association of SEC23B with anaemia and cancer, the precise pathophysiology of these phenotypic outcomes remains unknown. Recently, we reported that mutant SEC23B has non-canonical COPII-independent function, particularly within the ER stress and ribosome biogenesis pathways, and that may contribute to the pathobiology of cancer predisposition. In this study, we hypothesized that wild-type SEC23B has a baseline function within such cellular stress response pathways, with the mutant protein reflecting exaggerated effects. Here, we show that the wild-type SEC23B protein localizes to the nucleus in addition to classical distribution at the ER/Golgi interface and identify multiple putative nuclear localization and export signals regulating nuclear-cytoplasmic transport. Unexpectedly, we show that, independently of COPII, wild-type SEC23B can also localize to cell nucleoli under proteasome inhibition conditions, with distinct distribution patterns compared to mutant cells. Unbiased proteomic analyses through mass spectrometry further revealed that wild-type SEC23B interacts with a subset of nuclear proteins, in addition to central proteins in the ER stress, protein ubiquitination, and EIF2 signalling pathways. We validate the genotype-specific differential SEC23B-UBA52 (ribosomal protein RPL40) interaction. Finally, utilizing patient-derived lymphoblastoid cell lines harbouring either wild-type or mutant SEC23B, we show that SEC23B levels increase in response to ER stress, further corroborating its role as a cellular stress response sensor and/or effector. Overall, these observations suggest that SEC23B, irrespective of mutation status, has unexplored roles in the cellular stress response pathway, with implications relevant to cancer and beyond that, CDAII and normal cell biology.
    DOI:  https://doi.org/10.1038/s41419-021-03589-9
  3. J Transl Med. 2021 Mar 21. 19(1): 118
      Glucose-regulating protein 78 (GRP78) is a molecular chaperone in the endoplasmic reticulum (ER) that promotes folding and assembly of proteins, controls the quality of proteins, and regulates ER stress signaling through Ca2+ binding to the ER. In tumors, GRP78 is often upregulated, acting as a central stress sensor that senses and adapts to changes in the tumor microenvironment, mediating ER stress of cancer cells under various stimulations of the microenvironment to trigger the folding protein response. Increasing evidence has shown that GRP78 is closely associated with the progression and poor prognosis of lung cancer, and plays an important role in the treatment of lung cancer. Herein, we reviewed for the first time the functions and mechanisms of GRP78 in the pathological processes of lung cancer, including tumorigenesis, apoptosis, autophagy, progression, and drug resistance, giving a comprehensive understanding of the function of GRP78 in lung cancer. In addition, we also discussed the potential role of GRP78 as a prognostic biomarker and therapeutic target for lung cancer, which is conducive to improving the assessment of lung cancer and the development of new therapeutic interventions.
    Keywords:  Autophagy; Endoplasmic reticulum; GRP78; Lung cancer; Unfolded protein response (UPR)
    DOI:  https://doi.org/10.1186/s12967-021-02786-6
  4. EMBO Rep. 2021 Mar 25. e52141
      Tyrosine phosphorylation of secretion machinery proteins is a crucial regulatory mechanism for exocytosis. However, the participation of protein tyrosine phosphatases (PTPs) in different exocytosis stages has not been defined. Here we demonstrate that PTP-MEG2 controls multiple steps of catecholamine secretion. Biochemical and crystallographic analyses reveal key residues that govern the interaction between PTP-MEG2 and its substrate, a peptide containing the phosphorylated NSF-pY83 site, specify PTP-MEG2 substrate selectivity, and modulate the fusion of catecholamine-containing vesicles. Unexpectedly, delineation of PTP-MEG2 mutants along with the NSF binding interface reveals that PTP-MEG2 controls the fusion pore opening through NSF independent mechanisms. Utilizing bioinformatics search and biochemical and electrochemical screening approaches, we uncover that PTP-MEG2 regulates the opening and extension of the fusion pore by dephosphorylating the DYNAMIN2-pY125 and MUNC18-1-pY145 sites. Further structural and biochemical analyses confirmed the interaction of PTP-MEG2 with MUNC18-1-pY145 or DYNAMIN2-pY125 through a distinct structural basis compared with that of the NSF-pY83 site. Our studies thus provide mechanistic insights in complex exocytosis processes.
    Keywords:  PTP-MEG2; catecholamine; exocytosis; structure; tyrosine phosphorylation
    DOI:  https://doi.org/10.15252/embr.202052141
  5. Cell Rep. 2021 Mar 23. pii: S2211-1247(21)00191-1. [Epub ahead of print]34(12): 108877
      Ribosome collision because of translational stalling is recognized as a problematic event in translation by the E3 ubiquitin ligase Hel2, leading to non-canonical subunit dissociation followed by targeting of the faulty nascent peptides for degradation. Although Hel2-mediated quality control greatly contributes to maintenance of cellular protein homeostasis, its physiological role in dealing with endogenous substrates remains unclear. This study utilizes genome-wide analysis, based on selective ribosome profiling, to survey the endogenous substrates for Hel2. This survey reveals that Hel2 binds preferentially to the pre-engaged secretory ribosome-nascent chain complexes (RNCs), which translate upstream of targeting signals. Notably, Hel2 recruitment into secretory RNCs is elevated under signal recognition particle (SRP)-deficient conditions. Moreover, the mitochondrial defects caused by insufficient SRP are enhanced by hel2 deletion, along with mistargeting of secretory proteins into mitochondria. These findings provide insights into risk management in the secretory pathway that maintains cellular protein homeostasis.
    Keywords:  ER; Hel2; SRP; mitochondria; protein mislocalization; protein targeting; quality control; ribosome collision; ribosome stalling; ribosome ubiquitination
    DOI:  https://doi.org/10.1016/j.celrep.2021.108877
  6. iScience. 2021 Mar 19. 24(3): 102244
      The composition of the secretome depends on the combined action of cargo receptors that facilitate protein transport and sequential checkpoints that restrict it to native conformers. Acting after endoplasmic reticulum (ER)-resident chaperones, ERp44 retrieves its clients from downstream compartments. To guarantee efficient quality control, ERp44 should exit the ER as rapidly as its clients, or more. Here, we show that appending ERp44 to different cargo proteins increases their secretion rates. ERp44 binds the cargo receptor ER-Golgi intermediate compartment (ERGIC)-53 in the ER to negotiate preferential loading into COPII vesicles. Silencing ERGIC-53, or competing for its COPII binding with 4-phenylbutyrate, causes secretion of Prdx4, an enzyme that relies on ERp44 for intracellular localization. In more acidic, zinc-rich downstream compartments, ERGIC-53 releases its clients and ERp44, which can bind and retrieve non-native conformers via KDEL receptors. By coupling the transport of cargoes and inspector proteins, cells ensure efficiency and fidelity of secretion.
    Keywords:  Biochemistry; Biological Sciences; Cell Biology; Molecular Biology
    DOI:  https://doi.org/10.1016/j.isci.2021.102244
  7. FEMS Microbiol Rev. 2021 Mar 25. pii: fuab016. [Epub ahead of print]
      Viruses elicit cell and organismic stress, and offset homeostasis. They trigger intrinsic, innate and adaptive immune responses, which limit infection. Viruses restore homeostasis by harnessing evolutionary conserved stress responses, such as the endoplasmic reticulum (ER) unfolded protein response (UPRER). The canonical UPRER restores homeostasis based on a cell-autonomous signalling network modulating transcriptional and translational output. The UPRER remedies cell damage, but upon severe and chronic stress leads to cell death. Signals from the UPRER flow along three branches with distinct stress sensors, the inositol requiring enzyme (Ire) 1, protein kinase R (PKR)-like ER kinase (PERK), and the activating transcription factor 6 (ATF6). This review shows how both enveloped and non-enveloped viruses use the UPRER to control cell stress and metabolic pathways, and thereby enhance infection and progeny formation, or undergo cell death. We highlight how the Ire1 axis bypasses apoptosis, boosts viral transcription and maintains dormant viral genomes during latency and persistence periods concurrent with long term survival of infected cells. These considerations open new options for oncolytic virus therapies against cancer cells where the UPRER is frequently upregulated. We conclude with a discussion of the evolutionary impact that viruses, in particular retroviruses, and anti-viral defense has on the UPRER.
    Keywords:  Endoplasmic reticulum unfolded protein response; cell death; evolution; homeostasis; stress response; virus-induced cell stress
    DOI:  https://doi.org/10.1093/femsre/fuab016
  8. Mol Cancer Res. 2021 Mar 22. pii: molcanres.0883.2020. [Epub ahead of print]
      High-grade serous ovarian cancer (HGSOC) is characterized by chromosomal instability, DNA damage, oxidative stress, and high metabolic demand which exacerbate misfolded, unfolded, and damaged protein burden resulting in increased proteotoxicity. However, the underlying mechanisms that maintain protein homeostasis to promote HGSOC growth remain poorly understood. This study reports that the neuronal deubiquitinating enzyme, ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), is overexpressed in HGSOC and maintains protein homeostasis. UCHL1 expression was markedly increased in HGSOC patient tumors and serous tubal intraepithelial carcinoma (HGSOC precursor lesions). High UCHL1 levels correlated with higher tumor grade and poor patient survival. UCHL1 inhibition reduced HGSOC cell proliferation and invasion as well as significantly decreased the in vivo metastatic growth of ovarian cancer xenografts. Transcriptional profiling of UCHL1 silenced HGSOC cells revealed down-regulation of genes implicated with proteasome activity along with upregulation of endoplasmic reticulum (ER) stress-induced genes. Reduced expression of proteasome subunit alpha 7 (PSMA7) and acylaminoacyl peptide hydrolase (APEH), upon silencing UCHL1, resulted in a significant decrease in proteasome activity, impaired protein degradation, and abrogated HGSOC growth. Furthermore, the accumulation of polyubiquitinated proteins in the UCHL1 silenced cells led to attenuation of mTORC1 activity and protein synthesis, and induction of terminal unfolded protein response. Collectively, these results indicate that UCHL1 promotes HGSOC growth by mediating protein homeostasis through the PSMA7-APEH-proteasome axis. Implications: This study identifies the novel links in the proteostasis network to target protein homeostasis in HGSOC and recognizes the potential of inhibiting UCHL1 and APEH to sensitize cancer cells to proteotoxic stress in solid tumors.
    DOI:  https://doi.org/10.1158/1541-7786.MCR-20-0883
  9. Cell Physiol Biochem. 2021 Mar 27. 55(2): 141-159
       BACKGROUND/AIMS: Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that binds to the antioxidant response element(s) (ARE) in target gene promoters, enabling oxidatively stressed cells to respond in order to restore redox homeostasis. Post-translational modifications (PTMs) that mediate activation of Nrf2, in the cytosol and its release from Keap1, have been extensively studied but PTMs that impact its biology after activation are beginning to emerge. In this regard, PTMs like acetylation, phosphorylation, ubiquitination and sumoylation contribute towards the Nrf2 subcellular localization, and its transactivation function. We previously demonstrated that Nrf2 traffics to the promyelocytic leukemia-nuclear bodies (PML-NB), where it is a target for modification by small ubiquitin-like modifier (SUMO) proteins (sumoylation), but the site(s) for SUMO conjugation have not been determined. In this study, we aim to identify SUMO-2 conjugation site(s) and explore the impact, sumoylation of the site(s) have on Nrf2 stability, nuclear localization and transcriptional activation of its target gene expression upon oxidative stress.
    METHODS: The putative SUMO-binding sites in Nrf2 for human isoform1 (NP_006155.2) and mouse homolog (NP_035032.1) were identified using a computer-based SUMO-predictive software (SUMOplot™). Site-directed mutagenesis, immunoblot analysis, and ARE-mediated reporter gene assays were used to assess the impact of sumoylation on these site(s) in vitro. Effect of mutation of these sumoylation sites of Nrf2 on expression of Heme Oxygenase1 (HO-1) was determined in HEK293T cell.
    RESULTS: 
Eight putative sumoylation sites were identified by SUMOplot™ analysis. Out of the eight predicted sites only one 532LKDE535 of human (h) and its homologous 524LKDE527 of mouse (m) Nrf2, exactly matches the SUMO-binding consensus motif. The other high probability SUMO-acceptor site identified was residue K110, in the motifs 109PKSD112 and 109PKQD112 of human and mouse Nrf2, respectively. Mutational analysis of putative sumoylation sites (human (h)/mouse (m)
K110, hK533 and mK525) showed that these residues are needed for SUMO-2 conjugation, nuclear localization and ARE driven transcription of reporter genes and the endogenous HO-1 expression by Nrf2. These residues also stabilized Nrf2, as evident from shorter half-lives of the mutant protein compared to wild-type Nrf2.
    CONCLUSION: Our findings indicate that SUMO-2
mediated sumoylation of K110 and K533 in human Nrf2 regulates in part its transcriptional activity by enhancing its stabilization and nuclear localization.
    Keywords:  Nrf2; SUMOylation; LKDE; PKSD; PKQD; SUMO-2; Sumoylation; Nuclear cytoplasmic localization
    DOI:  https://doi.org/10.33594/000000351
  10. J Virol. 2021 Mar 24. pii: JVI.00453-21. [Epub ahead of print]
      Influenza A viruses (IAVs) utilize host shutoff mechanisms to limit antiviral gene expression and redirect translation machinery to the synthesis of viral proteins. Previously, we showed that IAV replication is sensitive to protein synthesis inhibitors that block translation initiation and induce formation of cytoplasmic condensates of untranslated messenger ribonucleoprotein complexes called stress granules (SGs). In this study, using an image-based high-content screen, we identified two thiopurines, 6-thioguanine (6-TG) and 6-thioguanosine (6-TGo), that triggered SG formation in IAV-infected cells and blocked IAV replication in a dose-dependent manner without eliciting SG formation in uninfected cells. 6-TG and 6-TGo selectively disrupted the synthesis and maturation of IAV glycoproteins hemagglutinin (HA) and neuraminidase (NA) without affecting the levels of the viral RNAs that encode them. By contrast, these thiopurines had minimal effect on other IAV proteins or the global host protein synthesis. Disruption of IAV glycoprotein accumulation by 6-TG and 6-TGo correlated with activation of unfolded protein response (UPR) sensors activating transcription factor-6 (ATF6), inositol requiring enzyme-1 (IRE1) and PKR-like endoplasmic reticulum kinase (PERK), leading to downstream UPR gene expression. Treatment of infected cells with the chemical chaperone 4-phenylbutyric acid diminished thiopurine-induced UPR activation and partially restored the processing and accumulation of HA and NA. By contrast, chemical inhibition of the integrated stress response downstream of PERK restored accumulation of NA monomers but did not restore processing of viral glycoproteins. Genetic deletion of PERK enhanced the antiviral effect of 6-TG without causing overt cytotoxicity, suggesting that while UPR activation correlates with diminished viral glycoprotein accumulation, PERK could limit the antiviral effects of drug-induced ER stress. Taken together, these data indicate that 6-TG and 6-TGo are effective host-targeted antivirals that trigger the UPR and selectively disrupt accumulation of viral glycoproteins.IMPORTANCESecreted and transmembrane proteins are synthesized in the endoplasmic reticulum (ER), where they are folded and modified prior to transport. Many viruses rely on the ER for the synthesis and processing of viral glycoproteins that will ultimately be incorporated into viral envelopes. Viral burden on the ER can trigger the unfolded protein response (UPR). Much remains to be learned about how viruses co-opt the UPR to ensure efficient synthesis of viral glycoproteins. Here, we show that two FDA-approved thiopurine drugs, 6-TG and 6-TGo, induce the UPR, which represents a previously unrecognized effect of these drugs on cell physiology. This thiopurine-mediated UPR activation blocks influenza virus replication by impeding viral glycoprotein accumulation. Our findings suggest that 6-TG and 6-TGo may have broad antiviral effect against enveloped viruses that require precise tuning of the UPR to support viral glycoprotein synthesis.
    DOI:  https://doi.org/10.1128/JVI.00453-21
  11. Cell Death Dis. 2021 Mar 22. 12(4): 305
      Post-translational modification by covalent attachment of the Small ubiquitin-like modifier (Sumo) polypeptide regulates a multitude of processes in vertebrates. Despite demonstrated roles of Sumo in the development and function of the nervous system, the identification of key factors displaying a sumoylation-dependent activity during neurogenesis remains elusive. Through a SILAC (stable isotope labeling by/with amino acids in cell culture)-based proteomic approach, we have identified the Sumo proteome of the model cell line P19 under proliferation and neuronal differentiation conditions. More than 300 proteins were identified as putative Sumo targets differentially associated with one or the other condition. A group of proteins of interest were validated and investigated in functional studies. Among these, Utf1 was revealed as a new Sumo target. Gain-of-function experiments demonstrated marked differences between the effects on neurogenesis of overexpressing wild-type and sumoylation mutant versions of the selected proteins. While sumoylation of Prox1, Sall4a, Trim24, and Utf1 was associated with a positive effect on neurogenesis in P19 cells, sumoylation of Kctd15 was associated with a negative effect. Prox1, Sall4a, and Kctd15 were further analyzed in the vertebrate neural tube of living embryos, with similar results. Finally, a detailed analysis of Utf1 showed the sumoylation dependence of Utf1 function in controlling the expression of bivalent genes. Interestingly, this effect seems to rely on two mechanisms: sumoylation modulates binding of Utf1 to the chromatin and mediates recruitment of the messenger RNA-decapping enzyme Dcp1a through a conserved SIM (Sumo-interacting motif). Altogether, our results indicate that the combined sumoylation status of key proteins determines the proper progress of neurogenesis.
    DOI:  https://doi.org/10.1038/s41419-021-03590-2
  12. Cancer Res. 2021 Mar 24. pii: canres.3258.2020. [Epub ahead of print]
      Molecular mechanisms underlying intratumoral androgenesis and aberrant androgen receptor (AR) activation in prostate cancer (PCa) remain poorly understood. Here we demonstrate that ectopic expression of the E3 ubiquitin ligase adaptor speckle-type poxvirus and zinc finger domain protein (SPOP) stabilizes 17βHSD4. SPOP bound a functional substrate-binding consensus (SBC) motif 315RATST319 in 17βHSD4 and promoted non-degradable K27- and K29-linked poly-ubiquitination of 17βHSD4. The effect of SPOP was antagonized by serum- and glucocorticoid kinase-3 (SGK3)-mediated phosphorylation of serine 318 (S318) in the SBC and S318 phosphorylation-dependent binding of SKP2 E3 ligase and subsequent K48-linked poly-ubiquitination and proteasomal degradation of 17βHSD4. PCa-associated SPOP mutations impaired the SPOP-17βHSD4 interaction, caused 17βHSD4 protein destruction in PCa cells in culture and patient specimens, and increased testosterone production and PCa cell growth in vitro and in mouse models. Thus, we have identified SPOP and SKP2 as two essential E3 ubiquitin ligases that exert opposite effects on 17βHSD4 protein degradation and intratumoral androgenesis in PCa cells. We further demonstrate that SPOP mutations or SKP2 overexpression contribute to PCa progression by decreasing 17βHSD4 expression and increasing intratumoral androgen synthesis.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-20-3258
  13. Proc Natl Acad Sci U S A. 2021 Mar 30. pii: e2008772118. [Epub ahead of print]118(13):
      Most glioblastomas (GBMs) achieve cellular immortality by acquiring a mutation in the telomerase reverse transcriptase (TERT) promoter. TERT promoter mutations create a binding site for a GA binding protein (GABP) transcription factor complex, whose assembly at the promoter is associated with TERT reactivation and telomere maintenance. Here, we demonstrate increased binding of a specific GABPB1L-isoform-containing complex to the mutant TERT promoter. Furthermore, we find that TERT promoter mutant GBM cells, unlike wild-type cells, exhibit a critical near-term dependence on GABPB1L for proliferation, notably also posttumor establishment in vivo. Up-regulation of the protein paralogue GABPB2, which is normally expressed at very low levels, can rescue this dependence. More importantly, when combined with frontline temozolomide (TMZ) chemotherapy, inducible GABPB1L knockdown and the associated TERT reduction led to an impaired DNA damage response that resulted in profoundly reduced growth of intracranial GBM tumors. Together, these findings provide insights into the mechanism of cancer-specific TERT regulation, uncover rapid effects of GABPB1L-mediated TERT suppression in GBM maintenance, and establish GABPB1L inhibition in combination with chemotherapy as a therapeutic strategy for TERT promoter mutant GBM.
    Keywords:  CRISPR; TERT; cancer; glioblastoma; temozolomide
    DOI:  https://doi.org/10.1073/pnas.2008772118
  14. Nat Commun. 2021 03 22. 12(1): 1812
      Human hexokinase 2 is an essential regulator of glycolysis that couples metabolic and proliferative activities in cancer cells. The binding of hexokinase 2 to the outer membrane of mitochondria is critical for its oncogenic activity. However, the regulation of hexokinase 2 binding to mitochondria remains unclear. Here, we report that SUMOylation regulates the binding of hexokinase 2 to mitochondria. We find that hexokinase 2 can be SUMOylated at K315 and K492. SUMO-specific protease SENP1 mediates the de-SUMOylation of hexokinase 2. SUMO-defective hexokinase 2 preferably binds to mitochondria and enhances both glucose consumption and lactate production and decreases mitochondrial respiration in parallel. This metabolic reprogramming supports prostate cancer cell proliferation and protects cells from chemotherapy-induced cell apoptosis. Moreover, we demonstrate an inverse relationship between SENP1-hexokinase 2 axis and chemotherapy response in prostate cancer samples. Our data provide evidence for a previously uncovered posttranslational modification of hexokinase 2 in cancer cells, suggesting a potentially actionable strategy for preventing chemotherapy resistance in prostate cancer.
    DOI:  https://doi.org/10.1038/s41467-021-22163-7
  15. EMBO J. 2021 Mar 22. e107238
      Glycosphingolipids are important components of the plasma membrane where they modulate the activities of membrane proteins including signalling receptors. Glycosphingolipid synthesis relies on competing reactions catalysed by Golgi-resident enzymes during the passage of substrates through the Golgi cisternae. The glycosphingolipid metabolic output is determined by the position and levels of the enzymes within the Golgi stack, but the mechanisms that coordinate the intra-Golgi localisation of the enzymes are poorly understood. Here, we show that a group of sequentially-acting enzymes operating at the branchpoint among glycosphingolipid synthetic pathways binds the Golgi-localised oncoprotein GOLPH3. GOLPH3 sorts these enzymes into vesicles for intra-Golgi retro-transport, acting as a component of the cisternal maturation mechanism. Through these effects, GOLPH3 controls the sub-Golgi localisation and the lysosomal degradation rate of specific enzymes. Increased GOLPH3 levels, as those observed in tumours, alter glycosphingolipid synthesis and plasma membrane composition thereby promoting mitogenic signalling and cell proliferation. These data have medical implications as they outline a novel oncogenic mechanism of action for GOLPH3 based on glycosphingolipid metabolism.
    Keywords:  GOLPH3; Golgi; Trafficking; cisternal maturation; mTOR
    DOI:  https://doi.org/10.15252/embj.2020107238
  16. Hum Mol Genet. 2021 Mar 22. pii: ddab080. [Epub ahead of print]
      Human neurodegenerative proteinopathies are disorders associated with abnormal protein depositions in brain neurons. They include polyglutamine (polyQ) conditions such as Huntington's disease (HD) and α-synucleinopathies such as Parkinson's disease (PD). Overexpression of NMNAT/Nma1, an enzyme in the NAD+ biosynthetic salvage pathway, acts as an efficient suppressor of proteotoxicities in yeast, fly, and mouse models. Screens in yeast models of HD and PD allowed us to identify three additional enzymes of the same pathway that achieve similar protection against proteotoxic stress: Npt1, Pnc1, and Qns1. The mechanism by which these proteins maintain proteostasis has not been identified. Here, we report that their ability to maintain proteostasis in yeast models of HD and PD is independent of their catalytic activity and does not require cellular protein quality control systems such as the proteasome or autophagy. Furthermore, we show that, under proteotoxic stress, the four proteins are recruited as molecular chaperones with holdase and foldase activities. The NAD+ salvage proteins act by preventing misfolding and, together with the Hsp90 chaperone, promoting the refolding of extended polyQ domains and α-synuclein (α-Syn). Our results illustrate the existence of an evolutionarily conserved strategy of repurposing or moonlighting housekeeping enzymes under stress conditions to maintain proteostasis. We conclude that the entire salvage NAD+ biosynthetic pathway links NAD+ metabolism and proteostasis and emerges as a target for therapeutics to combat age-associated neurodegenerative proteotoxicities.
    DOI:  https://doi.org/10.1093/hmg/ddab080
  17. Cell Death Dis. 2021 Mar 26. 12(4): 329
      Breast cancer has the highest incidence and mortality in women worldwide. There are 70% of breast cancers considered as estrogen receptor α (ERα) positive. Therefore, the ERα-targeted therapy has become one of the most effective solution for patients with breast cancer. Whereas a better understanding of ERα regulation is critical to shape evolutional treatments for breast cancer. By exploring the regulatory mechanisms of ERα at levels of post-translational modifications, we identified the deubiquitinase USP15 as a novel protector for preventing ERα degradation and a critical driver for breast cancer progression. Specifically, we demonstrated that USP15 promoted the proliferation of ERα+, but not ERα- breast cancer, in vivo and in vitro. Meanwhile, USP15 knockdown notably enhanced the antitumor activities of tamoxifen on breast cancer cells. Importantly, USP15 knockdown induced the downregulation of ERα protein via promoting its K48-linked ubiquitination, which is required for proliferative inhibition of breast cancer cells. These findings not only provide a novel treatment for overcoming resistance to endocrine therapy, but also represent a therapeutic strategy on ERα degradation by targeting USP15-ERα axis.
    DOI:  https://doi.org/10.1038/s41419-021-03607-w
  18. J Biol Chem. 2021 Mar 19. pii: S0021-9258(21)00345-8. [Epub ahead of print] 100567
      Molecular chaperones maintain proteostasis by ensuring the proper folding of polypeptides. Loss of proteostasis has been linked to numerous neurodegenerative disorders including Alzheimer's, Parkinson's, and Huntington's disease. Hsp110 is related to the canonical Hsp70 class of protein folding molecular chaperones and interacts with Hsp70 as a nucleotide exchange factor (NEF). In addition to its NEF activity, Hsp110 possesses an Hsp70-like substrate binding domain (SBD) whose biological roles remain undefined. Previous work in Drosophila melanogaster has implicated the sole Hsp110 gene (Hsc70cb) in proteinopathic neurodegeneration. We hypothesize that in addition to its role as an Hsp70 NEF, Drosophila Hsp110 may function as a protective protein "holdase", preventing the aggregation of unfolded polypeptides via the SBD-b subdomain. We demonstrate for the first time that Drosophila Hsp110 effectively prevents aggregation of the model substrate citrate synthase. We also report the discovery of a redundant and heretofore unknown potent holdase capacity in a 138 amino-acid region of Hsp110 carboxyl-terminal to both SBD-b and SBD-α (henceforth called the C-terminal extension). This sequence is highly conserved in metazoan Hsp110 genes, completely absent from fungal representatives, and is computationally predicted to contain an intrinsically disordered region (IDR). We demonstrate that this IDR sequence within the human Hsp110s, Apg-1 and Hsp105α, inhibits the formation of amyloid Aβ-42 and α-synuclein fibrils in vitro but cannot mediate fibril disassembly. Together these findings establish capacity for metazoan Hsp110 chaperones to suppress both general protein aggregation and amyloidogenesis, raising the possibility of exploitation of this IDR for therapeutic benefit.
    Keywords:  Alzheimer’s disease; Hsp110; Hsp70; Parkinson’s disease; amyloid; chaperone; protein aggregation; proteostasis
    DOI:  https://doi.org/10.1016/j.jbc.2021.100567
  19. J Cancer. 2021 ;12(8): 2456-2464
      Endoplasmic reticulum resident protein 57 (ERp57) has a molecular weight of 57 kDa, belongs to the protein disulfide-isomerase (PDI) family, and is primarily located in the endoplasmic reticulum (ER). ERp57 functions in the quality control of nascent synthesized glycoproteins, participates in major histocompatibility complex (MHC) class I molecule assembly, regulates immune responses, maintains immunogenic cell death (ICD), regulates the unfolded protein response (UPR), functions as a 1,25-dihydroxy vitamin D3 (1,25(OH)2D3) receptor, regulates the NF-κB and STAT3 pathways, and participates in DNA repair processes and cytoskeletal remodeling. Recent studies have reported ERp57 overexpression in various human cancers, and altered expression and aberrant functionality of ERp57 are associated with cancer growth and progression and changes in the chemosensitivity of cancers. ERp57 may become a potential biomarker and therapeutic target to combat cancer development and chemoresistance. Here, we summarize the available knowledge of the role of ERp57 in cancer and the underlying mechanisms.
    Keywords:  DNA repair.; ERp57/PDIA3; cancer; immune response; immunogenic cell death; unfolded protein response
    DOI:  https://doi.org/10.7150/jca.48707
  20. Mol Cell. 2021 Mar 11. pii: S1097-2765(21)00167-2. [Epub ahead of print]
      The conserved Gcn2 protein kinase mediates cellular adaptations to amino acid limitation through translational control of gene expression that is exclusively executed by phosphorylation of the α-subunit of the eukaryotic translation initiation factor 2 (eIF2α). Using quantitative phosphoproteomics, however, we discovered that Gcn2 targets auxiliary effectors to modulate translation. Accordingly, Gcn2 also phosphorylates the β-subunit of the trimeric eIF2 G protein complex to promote its association with eIF5, which prevents spontaneous nucleotide exchange on eIF2 and thereby restricts the recycling of the initiator methionyl-tRNA-bound eIF2-GDP ternary complex in amino-acid-starved cells. This mechanism contributes to the inhibition of translation initiation in parallel to the sequestration of the nucleotide exchange factor eIF2B by phosphorylated eIF2α. Gcn2 further phosphorylates Gcn20 to antagonize, in an inhibitory feedback loop, the formation of the Gcn2-stimulatory Gcn1-Gcn20 complex. Thus, Gcn2 plays a substantially more intricate role in controlling translation initiation than hitherto appreciated.
    Keywords:  Gcn2; Gcn20; TORC1; amino acid starvation; eIF2; eIF5; eukaryotic initiation factor 2; eukaryotic initiation factor 5; general control nonderepressible 2; target of rapamycin complex 1; translation initiation
    DOI:  https://doi.org/10.1016/j.molcel.2021.02.037
  21. Cell Commun Signal. 2021 Mar 24. 19(1): 40
       BACKGROUND: Lysosome-associated membrane protein type 2A (LAMP-2A) is the key component of chaperone-mediated autophagy (CMA), a cargo-selective lysosomal degradation pathway. Aberrant LAMP-2A expression and CMA activation have been demonstrated in various human malignancies. The study focusing on the intrinsic role of LAMP-2A and CMA in glioblastoma (GBM), and downstream mechanism could provide valuable insight into the pathogenesis and novel therapeutic modality of GBM.
    METHODS: The levels of LAMP-2A, nuclear receptor co-repressor (N-CoR), unfolded protein response (UPR) and apoptosis were examined in clinical samples. LAMP-2A siRNA and shRNA were constructed to manipulate CMA activation. The role of CMA and downstream mechanism through degradation of N-CoR and arresting UPR mediated apoptosis were explored in GBM cells and nude mouse xenograft model.
    RESULTS: Elevated LAMP-2A and associated decreased N-CoR expression were observed in GBM as compared with peritumoral region and low-grade glioma. Inhibited UPR and apoptosis were observed in GBM with high LAMP-2A expression. In vitro study demonstrated co-localization and interaction between LAMP-2A and N-CoR. LAMP-2A silencing up-regulated N-CoR and aroused UPR pathway, leading to apoptosis, while N-CoR silencing led to an opposite result. In vivo study further confirmed that LAMP-2A inhibition arrested tumor growth by promoting apoptosis.
    CONCLUSIONS: Our results demonstrated the central role of CMA in mediating N-CoR degradation and protecting GBM cells against UPR and apoptosis, and provided evidence of LAMP-2A as potential biomarker. Further research focusing on CMA with other tumorigenic process is needed and selective modulators of LAMP-2A remain to be investigated to provide a novel therapeutic strategy for GBM. Video Abstract.
    Keywords:  Apoptosis; Chaperone-mediated autophagy; Glioblastoma; LAMP-2A; Nuclear receptor co-repressor; Unfolded protein response
    DOI:  https://doi.org/10.1186/s12964-021-00729-8
  22. Elife. 2021 Mar 22. pii: e61590. [Epub ahead of print]10
      Mutation of the Wiskott-Aldrich syndrome protein and SCAR homology (WASH) complex subunit, SWIP, is implicated in human intellectual disability, but the cellular etiology of this association is unknown. We identify the neuronal WASH complex proteome, revealing a network of endosomal proteins. To uncover how dysfunction of endosomal SWIP leads to disease, we generate a mouse model of the human WASHC4c.3056C>G mutation. Quantitative spatial proteomics analysis of SWIPP1019R mouse brain reveals that this mutation destabilizes the WASH complex and uncovers significant perturbations in both endosomal and lysosomal pathways. Cellular and histological analyses confirm that SWIPP1019R results in endo-lysosomal disruption and uncover indicators of neurodegeneration. We find that SWIPP1019R not only impacts cognition, but also causes significant progressive motor deficits in mice. A retrospective analysis of SWIPP1019R patients reveals similar movement deficits in humans. Combined, these findings support the model that WASH complex destabilization, resulting from SWIPP1019R, drives cognitive and motor impairments via endo-lysosomal dysfunction in the brain.
    Keywords:  SWIP; WASH complex; cell biology; endosome; human; lysosome; motor impairment; mouse; neuroscience; proteomics
    DOI:  https://doi.org/10.7554/eLife.61590
  23. Hum Mol Genet. 2021 Mar 22. pii: ddab078. [Epub ahead of print]
      Mutations in CHCHD10, coding for a mitochondrial intermembrane space protein, are a rare cause of autosomal dominant amyotrophic lateral sclerosis (ALS). Mutation-specific toxic gain of function or haploinsufficiency models have been proposed to explain pathogenicity. To decipher the metabolic dysfunction associated with the haploinsufficient p.R15L variant we integrated transcriptomic, metabolomic and proteomic data sets in patient cells subjected to an energetic stress that forces the cells to rely on oxidative phosphorylation for ATP production. Patient cells had a complex I deficiency that resulted in an increased NADH/NAD+ ratio, diminished TCA cycle activity, a reorganization of one carbon metabolism, and an increased AMP/ATP ratio leading to phosphorylation of AMPK and inhibition of mTORC1. These metabolic changes activated the unfolded protein response (UPR) in the ER through the IRE1/XBP1 pathway, upregulating downstream targets including ATF3, ATF4, CHOP and EGLN3, and two cytokine markers of mitochondrial disease, GDF15 and FGF21. Activation of the mitochondrial UPR was mediated through an upregulation of the transcription factors ATF4 and ATF5, leading to increased expression of mitochondrial proteases and heat shock proteins. There was a striking transcriptional up regulation of at least seven dual specific phosphatases, associated with an almost complete dephosphorylation of JNK isoforms, suggesting a concerted deactivation of MAP kinase pathways. This study demonstrates that loss of CHCHD10 function elicits an energy deficit that activates unique responses to nutrient stress in both the mitochondria and ER, which may contribute to the selective vulnerability of motor neurons.
    DOI:  https://doi.org/10.1093/hmg/ddab078
  24. Front Pharmacol. 2021 ;12 620812
      Endoplasmic reticulum (ER) stress is often closely linked to autophagy, hypoxia signaling, mitochondrial biogenesis and reactive oxygen species (ROS) responses. Understanding the interaction between ER stress, mitochondrial function and autophagy is of great importance to provide new mechanisms for the pathology, prevention and treatment of cardiovascular diseases. Our previous study has reported that Panax notoginseng saponins (PNS) protection against thapsigargin (TG)-induced ER stress response and associated cell apoptosis in cardiac myocytes is calcium dependent and mediated by ER Ca2+ release through RyR2. However, whether its protection upon ER stress and associated apoptosis is related to mitochondrial function and autophagy remains largely unknown. Here, we investigated the roles of PNS played in TG-induced mitochondrial function, ROS accumulation and autophagy. We also assessed its effects on Ca2+ homeostasis, ER stress response and associated cell death in the presence of autophagy inhibition. PNS-pretreated primary cultured neonatal rat cardiomyocytes were stimulated with TG to induce ER stress response. Mitochondrial potential (Δψm) was measured by JC-1. The general and mitochondrial ROS were measured by DCFH-DA and MitoSOX Red, respectively. Autophagy was evaluated by immunofluorescence of LC3, and immunoblots of LC3, p62, ATG7 and PINK1. In addition, mRFP-GFP-LC3 labeling was used to assess the autophagic influx. SiATG7 transfected H9c2 cells were generated to inhibit autophagy. Cytosolic and ER Ca2+ dynamics were investigated by calcium imaging. RyR2 oxidation was tested by oxyblot. Cell viability was examined by TUNEL assay. ER stress response and cell apoptosis were detected by immunoblots of BiP, CHOP, Cleaved Caspase-3 and Caspase-12. The results demonstrated that firstly, PNS protects against TG-induced mitochondrial injury and ROS accumulation. Secondly, PNS enhances autophagy in TG-induced cardiac myocytes. Thirdly, inhibition of autophagy diminishes PNS prevention of TG-induced mitochondrial injury, ROS accumulation and disruption of Ca2+ homeostasis. Last but not least, inhibition of autophagy abolishes PNS protection against TG-induced ER stress response and associated apoptosis. In summary, PNS protection against ER stress response and associated apoptosis is related to the regulation of mitochondrial injury and ROS overproduction via modulation of autophagy. These data provide new insights for molecular mechanisms of PNS as a potential preventive approach to the management of cardiovascular diseases.
    Keywords:  Ca2+ homeostasis; ER stress; PNS; ROS; RyR2 oxidation; apoptosis; autophagy; mitochondrial injury
    DOI:  https://doi.org/10.3389/fphar.2021.620812
  25. EMBO Rep. 2021 Mar 26. e52063
      Psoriasis is mainly characterized by abnormal hyperplasia of keratinocytes and immune cells infiltrating into the dermis and epidermis. Neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) is a highly conserved HECT type E3 ligase that plays an important role in regulating physiological and pathological processes. Here, we identify NEDD4L as a negative regulator of psoriasis. Nedd4l significantly inhibits imiquimod (IMQ)-induced skin hyperplasia, and this effect is attributed to the inhibitory effect of NEDD4L on IL-6/GP130 signaling in keratinocytes. Mechanistically, NEDD4L directly interacts with GP130 and mediates its Lys-27-linked ubiquitination and proteasomal degradation. Moreover, the expression of NEDD4L is downregulated in the epidermis from IMQ-treated mice and psoriasis patients and negatively correlates with the protein levels of GP130 and p-STAT3 in clinical samples. Collectively, we uncover an inhibitory role of NEDD4L in the pathogenesis of psoriasis and suggest a new therapeutic strategy for the treatment of psoriasis.
    Keywords:  GP130; NEDD4L; hyperplasia; psoriasis; ubiquitination
    DOI:  https://doi.org/10.15252/embr.202052063
  26. Nat Immunol. 2021 Mar 25.
      Evasion of host immunity is a hallmark of cancer; however, mechanisms linking oncogenic mutations and immune escape are incompletely understood. Through loss-of-function screening of 1,001 tumor suppressor genes, we identified death-associated protein kinase 3 (DAPK3) as a previously unrecognized driver of anti-tumor immunity through the stimulator of interferon genes (STING) pathway of cytosolic DNA sensing. Loss of DAPK3 expression or kinase activity impaired STING activation and interferon (IFN)-β-stimulated gene induction. DAPK3 deficiency in IFN-β-producing tumors drove rapid growth and reduced infiltration of CD103+CD8α+ dendritic cells and cytotoxic lymphocytes, attenuating the response to cancer chemo-immunotherapy. Mechanistically, DAPK3 coordinated post-translational modification of STING. In unstimulated cells, DAPK3 inhibited STING K48-linked poly-ubiquitination and proteasome-mediated degradation. After cGAMP stimulation, DAPK3 was required for STING K63-linked poly-ubiquitination and STING-TANK-binding kinase 1 interaction. Comprehensive phospho-proteomics uncovered a DAPK3-specific phospho-site on the E3 ligase LMO7, critical for LMO7-STING interaction and STING K63-linked poly-ubiquitination. Thus, DAPK3 is an essential kinase for STING activation that drives tumor-intrinsic innate immunity and tumor immune surveillance.
    DOI:  https://doi.org/10.1038/s41590-021-00896-3
  27. Bioorg Med Chem Lett. 2021 Mar 19. pii: S0960-894X(21)00199-2. [Epub ahead of print] 127973
      α1-antitrypsin deficiency is characterised by the misfolding and intracellular polymerisation of mutant α1-antitrypsin protein within the endoplasmic reticulum (ER) of hepatocytes. Small molecules that bind and stabilise Z α1-antitrypsin were identified via a DNA-encoded library screen. A subsequent structure based optimisation led to a series of highly potent, selective and cellular active α1-antitrypsin correctors.
    Keywords:  2-oxindole; Misfolding; α1-antitrypsin
    DOI:  https://doi.org/10.1016/j.bmcl.2021.127973
  28. Elife. 2021 Mar 24. pii: e59687. [Epub ahead of print]10
      Endoplasmic reticulum (ER) and mitochondria form close physical associations to facilitate calcium transfer, thereby regulating mitochondrial function. Neurons with high metabolic demands, such as sensory hair cells, are especially dependent on precisely regulated ER-mitochondria associations. We previously showed that the secreted metalloprotease Pregnancy associated plasma protein-aa (Pappaa) regulates mitochondrial function in zebrafish lateral line hair cells (Alassaf et al., 2019). Here, we show that pappaa mutant hair cells exhibit excessive and abnormally close ER-mitochondria associations, suggesting increased ER-mitochondria calcium transfer. pappaa mutant hair cells are more vulnerable to pharmacological induction of ER-calcium transfer. Additionally, pappaa mutant hair cells display ER stress and dysfunctional downstream processes of the ER-mitochondria axis including altered mitochondrial morphology and reduced autophagy. We further show that Pappaa influences ER-calcium transfer and autophagy via its ability to stimulate insulin-like growth factor-1 bioavailability. Together our results identify Pappaa as a novel regulator of the ER-mitochondria axis.
    Keywords:  cell biology; neuroscience; zebrafish
    DOI:  https://doi.org/10.7554/eLife.59687
  29. FEBS Lett. 2021 Mar 22.
      Calcium (Ca2+ ) is a second messenger essential for cellular homeostasis. Inside the cell, Ca2+ is compartmentalized and exchanged among organelles in response to both external and internal stimuli. Mitochondria-associated membranes (MAMs) provide a platform for proteins and channels involved in Ca2+ transfer between the endoplasmic reticulum (ER) and mitochondria. Deregulated Ca2+ signaling and proteins regulating ER-mitochondria interactions have been linked to liver diseases and intensively investigated in recent years. In this review, we summarize the role of MAM-resident proteins in Ca2+ transfer and their association with different liver diseases.
    Keywords:  Mitochondria-associated membranes; calcium transfer; endoplasmic reticulum; liver diseases; mitochondria
    DOI:  https://doi.org/10.1002/1873-3468.14078
  30. J Biochem. 2021 Mar 22. pii: mvab034. [Epub ahead of print]
      Death receptors, members of the tumor necrosis factor receptor (TNFR) superfamily, are characterized by the presence of a death domain in the cytosolic region. TNFR1, Fas, and TNF-related apoptosis-inducing ligand receptors, which are prototypical death receptors, exert pleiotropic functions in cell death, inflammation, and immune surveillance. Hence, they are involved in several human diseases. The activation of death receptors and downstream intracellular signaling are regulated by various post-translational modifications, such as phosphorylation, ubiquitination, and glycosylation. Glycosylation is one of the most abundant and versatile modifications to proteins and lipids, and it plays a critical role in the development and physiology of organisms, as well as the pathology of many human diseases. Glycans control a number of cellular events, such as receptor activation, signal transduction, endocytosis, cell recognition, and cell adhesion. It has been demonstrated that oligo- and monosaccharides modify death receptors and intracellular signaling proteins, and regulate their functions. Here, we review the current understanding of glycan modifications of death receptor signaling and their impact on signaling activity.
    DOI:  https://doi.org/10.1093/jb/mvab034
  31. EMBO J. 2021 Mar 25. e108070
      Glycosphingolipids are a structurally diverse class of lipids that regulate plasma membrane protein function. Rizzo et al (2021) now show that GOLPH3 promotes intra-Golgi transport of several enzymes that function at branching points of sphingolipid biosynthesis. By regulating the cellular sphingolipidome, GOLPH3 promotes growth factor signaling and cell proliferation, which may explain its oncogenic properties.
    DOI:  https://doi.org/10.15252/embj.2021108070
  32. J Biol Chem. 2021 Mar 22. pii: S0021-9258(21)00357-4. [Epub ahead of print] 100578
      In eukaryotes, various alternative translation initiation mechanisms have been unveiled for the translation of specific mRNAs. Some do not conform to the conventional scanning-initiation model. Translation initiation of histone H4 mRNA combines both canonical (cap-dependent) and viral initiation strategies (no-scanning, internal recruitment of initiation factors). Specific H4 mRNA structures tether the translation machinery directly onto the initiation codon and allow massive production of histone H4 during the S phase of the cell cycle. The human eukaryotic translation initiation factor 3 (eIF3), composed of 13 subunits (a-m), was shown to selectively recruit and control the expression of several cellular mRNAs. Whether eIF3 mediates H4 mRNA translation remains to be elucidated. Here, we report that eIF3 binds to a stem-loop structure (eIF3-BS) located in the coding region of H4 mRNA. Combining cross-linking and ribonucleoprotein immunoprecipitation experiments in vivo and in vitro, we also found that eIF3 binds to H1, H2A, H2B and H3 histone mRNAs. We identified direct contacts between eIF3c, d, e, g subunits and histone mRNAs but observed distinct interaction patterns to each histone mRNA. Our results show that eIF3 depletion in vivo reduces histone mRNA binding and modulates histone neosynthesis, suggesting that synthesis of histones is sensitive to the levels of eIF3. Thus, we provide evidence that eIF3 acts as a regulator of histone translation.
    Keywords:  RNA structure; RNA‐protein interaction; eukaryotic initiation factor; histone mRNA; protein synthesis; translation initiation; translation regulation
    DOI:  https://doi.org/10.1016/j.jbc.2021.100578
  33. PLoS Pathog. 2021 Mar 24. 17(3): e1009437
      Legionella pneumophila (L. pneumophila) is a gram-negative bacterium that replicates in a compartment that resembles the host endoplasmic reticulum (ER). To create its replicative niche, L. pneumophila manipulates host membrane traffic and fusion machineries. Bacterial proteins called Legionella effectors are translocated into the host cytosol and play a crucial role in these processes. In an early stage of infection, Legionella subverts ER-derived vesicles (ERDVs) by manipulating GTPase Rab1 to facilitate remodeling of the Legionella-containing vacuole (LCV). Subsequently, the LCV associates with the ER in a mechanism that remains elusive. In this study, we show that L. pneumophila recruits GTPases Rab33B and Rab6, which regulate vesicle trafficking from the Golgi to the ER, to the LCV to promote the association of LCV with the ER. We found that recruitment of Rab6 to the LCV depends on Rab33B. Legionella effector SidE family proteins, which phosphoribosyl-ubiquitinate Rab33B, were found to be necessary for the recruitment of Rab33B to the LCV. Immunoprecipitation experiments revealed that L. pneumophila facilitates the interaction of Rab6 with ER-resident SNAREs comprising syntaxin 18, p31, and BNIP1, but not tethering factors including NAG, RINT-1, and ZW10, which are normally required for syntaxin 18-mediated fusion of Golgi-derived vesicles with the ER. Our results identified a Rab33B-Rab6 cascade on the LCV and the interaction of Rab6 with ER-resident SNARE proteins for the association of LCV with the ER and disclosed the unidentified physiological role of SidE family proteins.
    DOI:  https://doi.org/10.1371/journal.ppat.1009437
  34. Pol Arch Intern Med. 2021 Mar 26.
      In the last two decades we witnessed unprecedented progress in the field of multiple myeloma research. Median survival of patients doubled and with the introduction of subsequent new therapeutics we expect even better results in the nearest future. However, the disease still remains incurable. It is attributed to recurring nature of multiple myeloma with reappearance of subclones resistant to previously used therapies. More than 15 years after approval of first-in-class proteasome inhibitor - bortezomib, the mechanisms responsible for resistance to this class of drugs are still not entirely untangled. One of the most promising explanations involves modulation of endoplasmic reticulum stress caused by accumulation of misfolded proteins. Due to excessive monoclonal protein production multiple myeloma cells are particularly susceptible to proteotoxicity. Under normal circumstances they counteract it with activation of adaptive mechanism - the unfolded protein response. This pathway, however, can also lead to cell's apoptosis when unable to restore proteostasis. It is the expected effect of proteasome inhibition. Resistant cells develop mechanisms that decrease the endoplasmic reticulum stress. This review covers current efforts to understand the nature of this adaptation. It focuses on druggable targets that can potentially enhance proteasome inhibitors activity or re-sensitize resistant patients to this type of therapy.
    DOI:  https://doi.org/10.20452/pamw.15896
  35. Biophys J. 2021 Mar 18. pii: S0006-3495(21)00242-3. [Epub ahead of print]
      Hsp70 chaperone is one of the key protein machines responsible for the quality control of protein production in cells. Facilitating in vivo protein folding by counteracting misfolding and aggregation is the essence of its biological functions. Although the allosteric cycle during its functional actions has been well characterized both experimentally and computationally, by what mechanism the Hsp70 assists protein folding is still not fully understood. In this work, we studied the Hsp70 mediated folding of model proteins with rugged energy landscape by using molecular simulations. Different from the canonical scenario of the Hsp70 functioning, which assumes that folding of substrate proteins occurs spontaneously after releasing from chaperones, our results showed that the substrate protein remains in contacts with the chaperone during its folding process. The direct chaperone-substrate interactions at the open conformation of the Hsp70 tends to shield the substrate sites prone to form non-native contacts, which therefore avoids the frustrated folding pathway, leading to higher folding rate and less probability of misfolding. Our results suggest that in addition to the unfoldase and holdase functions widely addressed in previous studies, the Hsp70 can facilitate the folding of its substrate proteins by remodeling the folding energy landscape and directing the folding processes, demonstrating the foldase scenario. These findings added new insights into the general molecular mechanisms of chaperone mediated protein folding.
    DOI:  https://doi.org/10.1016/j.bpj.2021.03.013
  36. bioRxiv. 2021 Mar 08. pii: 2021.03.08.434440. [Epub ahead of print]
      Human coronaviruses have become an increasing threat to global health; three highly pathogenic strains have emerged since the early 2000s, including most recently SARS-CoV-2, the cause of COVID-19. A better understanding of the molecular mechanisms of coronavirus pathogenesis is needed, including how these highly virulent strains differ from those that cause milder, common-cold like disease. While significant progress has been made in understanding how SARS-CoV-2 proteins interact with the host cell, non-structural protein 3 (nsp3) has largely been omitted from the analyses. Nsp3 is a viral protease with important roles in viral protein biogenesis, replication complex formation, and modulation of host ubiquitinylation and ISGylation. Herein, we use affinity purification-mass spectrometry to study the host-viral protein-protein interactome of nsp3 from five coronavirus strains: pathogenic strains SARS-CoV-2, SARS-CoV, and MERS-CoV; and endemic common-cold strains hCoV-229E and hCoV-OC43. We divide each nsp3 into three fragments and use tandem mass tag technology to directly compare the interactors across the five strains for each fragment. We find that few interactors are common across all variants for a particular fragment, but we identify shared patterns between select variants, such as ribosomal proteins enriched in the N-terminal fragment (nsp3.1) dataset for SARS-CoV-2 and SARS-CoV. We also identify unique biological processes enriched for individual homologs, for instance nuclear protein important for the middle fragment of hCoV-229E, as well as ribosome biogenesis of the MERS nsp3.2 homolog. Lastly, we further investigate the interaction of the SARS-CoV-2 nsp3 N-terminal fragment with ATF6, a regulator of the unfolded protein response. We show that SARS-CoV-2 nsp3.1 directly binds to ATF6 and can suppress the ATF6 stress response. Characterizing the host interactions of nsp3 widens our understanding of how coronaviruses co-opt cellular pathways and presents new avenues for host-targeted antiviral therapeutics.
    DOI:  https://doi.org/10.1101/2021.03.08.434440
  37. Biochem Biophys Res Commun. 2021 Mar 19. pii: S0006-291X(21)00364-8. [Epub ahead of print]552 191-195
      Autophagy is an evolutionarily conserved intracellular degradation system and is regulated by various signaling pathways including the Beclin 1/Vacuolar protein sorting 34 (Vps34) complex. Protein phosphatase 6 (PP6) is an essential serine/threonine phosphatase that regulates various biological processes. Recently, we found that PP6 protein is degraded by p62-dependent selective autophagy. In this study, we show that PP6 conversely inhibits autophagy. PP6 associate with the C-terminal region of Beclin 1, which is close to the binding region of Vps34. The protein levels of PP6 affect Beclin 1/Vps34 complex formation and phosphatase activity of PP6 is not involved in this. We also show that chemically induced PP6/Beclin 1 association leads to Vps34 dissociation from Beclin 1. Overall, our data reveal a novel regulatory mechanism for autophagy by PP6.
    Keywords:  Autophagy; Beclin 1; Protein-protein interaction; Serine/threonine protein phosphatase 6
    DOI:  https://doi.org/10.1016/j.bbrc.2021.02.136
  38. Cell Death Dis. 2021 03 24. 12(4): 310
    COVID Human Genetic Effort
      SARS-CoV-2 is responsible for the ongoing world-wide pandemic which has already taken more than two million lives. Effective treatments are urgently needed. The enzymatic activity of the HECT-E3 ligase family members has been implicated in the cell egression phase of deadly RNA viruses such as Ebola through direct interaction of its VP40 Protein. Here we report that HECT-E3 ligase family members such as NEDD4 and WWP1 interact with and ubiquitylate the SARS-CoV-2 Spike protein. Furthermore, we find that HECT family members are overexpressed in primary samples derived from COVID-19 infected patients and COVID-19 mouse models. Importantly, rare germline activating variants in the NEDD4 and WWP1 genes are associated with severe COVID-19 cases. Critically, I3C, a natural NEDD4 and WWP1 inhibitor from Brassicaceae, displays potent antiviral effects and inhibits viral egression. In conclusion, we identify the HECT family members of E3 ligases as likely novel biomarkers for COVID-19, as well as new potential targets of therapeutic strategy easily testable in clinical trials in view of the established well-tolerated nature of the Brassicaceae natural compounds.
    DOI:  https://doi.org/10.1038/s41419-021-03513-1