bims-proteo Biomed News
on Proteostasis
Issue of 2021–03–07
47 papers selected by
Eric Chevet, INSERM



  1. Int J Mol Sci. 2021 Feb 19. pii: 2078. [Epub ahead of print]22(4):
      The endoplasmic reticulum (ER) is an interconnected organelle that plays fundamental roles in the biosynthesis, folding, stabilization, maturation, and trafficking of secretory and transmembrane proteins. It is the largest organelle and critically modulates nearly all aspects of life. Therefore, in the endoplasmic reticulum, an enormous investment of resources, including chaperones and protein folding facilitators, is dedicated to adequate protein maturation and delivery to final destinations. Unfortunately, the folding and assembly of proteins can be quite error-prone, which leads to the generation of misfolded proteins. Notably, protein homeostasis, referred to as proteostasis, is constantly exposed to danger by flows of misfolded proteins and subsequent protein aggregates. To maintain proteostasis, the ER triages and eliminates terminally misfolded proteins by delivering substrates to the ubiquitin-proteasome system (UPS) or to the lysosome, which is termed ER-associated degradation (ERAD) or ER-phagy, respectively. ERAD not only eliminates misfolded or unassembled proteins via protein quality control but also fine-tunes correctly folded proteins via protein quantity control. Intriguingly, the diversity and distinctive nature of E3 ubiquitin ligases determine efficiency, complexity, and specificity of ubiquitination during ERAD. ER-phagy utilizes the core autophagy machinery and eliminates ERAD-resistant misfolded proteins. Here, we conceptually outline not only ubiquitination machinery but also catalytic mechanisms of E3 ubiquitin ligases. Further, we discuss the mechanistic insights into E3 ubiquitin ligases involved in the two guardian pathways in the ER, ERAD and ER-phagy. Finally, we provide the molecular mechanisms by which ERAD and ER-phagy conduct not only protein quality control but also protein quantity control to ensure proteostasis and subsequent organismal homeostasis.
    Keywords:  E3 ubiquitin ligase; ER-associated degradation (ERAD); ER-phagy; endoplasmic reticulum (ER); protein quality control; protein quantity control; ubiquitin
    DOI:  https://doi.org/10.3390/ijms22042078
  2. J Biol Chem. 2021 Feb 26. pii: S0021-9258(21)00258-1. [Epub ahead of print] 100484
      Mutations in the human gene encoding the neuron-specific Eag1 voltage-gated K+ channel are associated with neurodevelopmental diseases, indicating an important role of Eag1 during brain development. A disease-causing Eag1 mutation is linked to decreased protein stability that involves enhanced protein degradation by the E3 ubiquitin ligase cullin 7 (CUL7). The general mechanisms governing protein homeostasis of plasma membrane- and endoplasmic reticulum (ER)-localized Eag1 K+ channels, however, remains unclear. By using yeast two-hybrid screening, we identified another E3 ubiquitin ligase, makorin ring finger protein 1 (MKRN1), as a novel binding partner primarily interacting with the carboxyl-terminal region of Eag1. MKRN1 mainly interacts with ER-localized immature core-glycosylated, as well as nascent non-glycosylated, Eag1 proteins. MKRN1 promotes polyubiquitination and ER-associated proteasomal degradation of immature Eag1 proteins. Although both CUL7 and MKRN1 contribute to ER quality control of immature core-glycosylated Eag1 proteins, MKRN1, but not CUL7, associates with and promotes degradation of nascent, non-glycosylated Eag1 proteins at the ER. In direct contrast to the role of CUL7 in regulating both ER and peripheral quality controls of Eag1, MKRN1 is exclusively responsible for the early stage of Eag1 maturation at the ER. We further demonstrated that both CUL7 and MKRN1 contribute to protein quality control of additional disease-causing Eag1 mutants associated with defective protein homeostasis. Our data suggest that the presence of this dual ubiquitination system differentially maintains Eag1 protein homeostasis and may ensure efficient removal of disease-associated misfolded Eag1 mutant channels.
    Keywords:  ER quality control; ER-associated degradation; Ubiquitin ligase; glycosylation; homeostasis; potassium channel; protein degradation
    DOI:  https://doi.org/10.1016/j.jbc.2021.100484
  3. Cell Chem Biol. 2021 Feb 23. pii: S2451-9456(21)00057-X. [Epub ahead of print]
      Attachment of the ubiquitin (UB) peptide to proteins via the E1-E2-E3 enzymatic machinery regulates diverse biological pathways, yet identification of the substrates of E3 UB ligases remains a challenge. We overcame this challenge by constructing an "orthogonal UB transfer" (OUT) cascade with yeast E3 Rsp5 to enable the exclusive delivery of an engineered UB (xUB) to Rsp5 and its substrate proteins. The OUT screen uncovered new Rsp5 substrates in yeast, such as Pal1 and Pal2, which are partners of endocytic protein Ede1, and chaperones Hsp70-Ssb, Hsp82, and Hsp104 that counteract protein misfolding and control self-perpetuating amyloid aggregates (prions), resembling those involved in human amyloid diseases. We showed that prion formation and effect of Hsp104 on prion propagation are modulated by Rsp5. Overall, our work demonstrates the capacity of OUT to deconvolute the complex E3-substrate relationships in crucial biological processes such as endocytosis and protein assembly disorders through protein ubiquitination.
    Keywords:  Hsp104; Ssb; Sup35; amyloid; chaperone; endocytosis; protein engineering; ubiquitin ligase; yeast cell surface display; yeast prion
    DOI:  https://doi.org/10.1016/j.chembiol.2021.02.005
  4. Bio Protoc. 2019 Jul 20. 9(14): e3307
      The kinase/RNase IRE1 is a key effector of the cellular response to endoplasmic reticulum stress. The RNase activity of IRE1 can be measured in cells or in the test tube. Here we describe a protocol for the in vitro cleavage and analysis of RNA substrates of IRE1. The method consists of the in vitro transcription, purification and re-folding of IRE1 substrate RNAs followed by their cleavage using recombinant cytosolic kinase/RNase domains of IRE1 and the separation of the resulting fragments by denaturing polyacrylamide gel electrophoresis. This protocol allows the study of the cleavage kinetics of IRE1's RNA substrates in vitro.
    Keywords:  ER stress; IRE1; RNA cleavage; Regulated IRE1-dependent decay; Unfolded protein response; XBP1
    DOI:  https://doi.org/10.21769/BioProtoc.3307
  5. Int J Mol Sci. 2021 Feb 22. pii: 2161. [Epub ahead of print]22(4):
      The endoplasmic reticulum (ER) is the central site for folding, post-translational modifications, and transport of secretory and membrane proteins. An imbalance between the load of misfolded proteins and the folding capacity of the ER causes ER stress and an unfolded protein response. Emerging evidence has shown that ER stress or the derangement of ER proteostasis contributes to the development and progression of a variety of glomerular and tubular diseases. This review gives a comprehensive summary of studies that have elucidated the role of the three ER stress signaling pathways, including inositol-requiring enzyme 1 (IRE1), protein kinase R-like ER kinase (PERK), and activating transcription factor 6 (ATF6) signaling in the pathogenesis of kidney disease. In addition, we highlight the recent discovery of ER-associated biomarkers, including MANF, ERdj3, ERdj4, CRELD2, PDIA3, and angiogenin. The implementation of these novel biomarkers may accelerate early diagnosis and therapeutic intervention in rare kidney disease.
    Keywords:  biomarkers; endoplasmic reticulum; kidney disease
    DOI:  https://doi.org/10.3390/ijms22042161
  6. Bio Protoc. 2019 Jun 05. 9(11): e3255
      Cytosolic rRNAs are highly dynamic and can be degraded under conditions such as apoptosis, starvation and magnesium depletion. The degradation is also related to their specific localization, as fractions of cytosolic ribosomes are localized on the surfaces of intracellular organelles, such as endoplasmic reticulum (ER) and mitochondria. Such localized translation facilitates translocation of nascent proteins into these organelles co-translationally, contributing to fast responses to cellular stresses and precise regulations of the organelle. Here, we describe a protocol to establish the in organello system to investigate rRNA degradation on mitochondrial outer membrane or ER. The protocol consists of organelle isolation, rRNA degradation on organelles and agarose gel electrophoresis to examine the remaining rRNAs.
    Keywords:  Cytosolic rRNAs; ER-associated ribosomes; In organello; Localized translation; Mitochondrion-associated ribosomes; Ribosomal RNA; rRNA degradation
    DOI:  https://doi.org/10.21769/BioProtoc.3255
  7. Proc Natl Acad Sci U S A. 2021 Mar 09. pii: e2021351118. [Epub ahead of print]118(10):
      The versatility of mitogen-activated protein kinases (MAPKs) in translating exogenous and endogenous stimuli into appropriate cellular responses depends on its substrate specificity. In animals, several mechanisms have been proposed about how MAPKs maintain specificity to regulate distinct functional pathways. However, little is known of mechanisms that enable substrate selectivity in plant MAPKs. Small ubiquitin-like modifier (SUMO), a posttranslational modification system, plays an important role in plant development and defense by rapid reprogramming of cellular events. In this study we identified a functional SUMO interaction motif (SIM) in Arabidopsis MPK3 and MPK6 that reveals a mechanism for selective interaction of MPK3/6 with SUMO-conjugated WRKY33, during defense. We show that WRKY33 is rapidly SUMOylated in response to Botrytis cinerea infection and flg22 elicitor treatment. SUMOylation mediates WRKY33 phosphorylation by MPKs and consequent transcription factor activity. Disruption of either WRKY33 SUMO or MPK3/6 SIM sites attenuates their interaction and inactivates WRKY33-mediated defense. However, MPK3/6 SIM mutants show normal interaction with a non-SUMOylated form of another transcription factor, SPEECHLESS, unraveling a role for SUMOylation in differential substrate selectivity by MPKs. We reveal that the SUMO proteases, SUMO PROTEASE RELATED TO FERTILITY1 (SPF1) and SPF2 control WRKY33 SUMOylation and demonstrate a role for these SUMO proteases in defense. Our data reveal a mechanism by which MPK3/6 prioritize molecular pathways by differentially selecting substrates using the SUMO-SIM module during defense responses.
    Keywords:  MAPKs; SUMO; WRKY33; immunity; plants
    DOI:  https://doi.org/10.1073/pnas.2021351118
  8. Int J Mol Sci. 2021 Feb 13. pii: 1875. [Epub ahead of print]22(4):
      The maintenance of proteome homeostasis, or proteostasis, is crucial for preserving cellular functions and for cellular adaptation to environmental challenges and changes in physiological conditions. The capacity of cells to maintain proteostasis requires precise control and coordination of protein synthesis, folding, conformational maintenance, and clearance. Thus, protein degradation by the ubiquitin-proteasome system (UPS) or the autophagy-lysosomal system plays an essential role in cellular functions. However, failure of the UPS or the autophagic process can lead to the development of various diseases (aging-associated diseases, cancer), thus both these pathways have become attractive targets in the treatment of protein conformational diseases, such as alpha 1-antitrypsin deficiency (AATD). The Z alpha 1-antitrypsin (Z-AAT) misfolded variant of the serine protease alpha 1-antitrypsin (AAT) is caused by a structural change that predisposes it to protein aggregation and dramatic accumulation in the form of inclusion bodies within liver hepatocytes. This can lead to clinically significant liver disease requiring liver transplantation in childhood or adulthood. Treatment of mice with autophagy enhancers was found to reduce hepatic Z-AAT aggregate levels and protect them from AATD hepatotoxicity. To date, liver transplantation is the only curative therapeutic option for patients with AATD-mediated liver disease. Therefore, the development and discovery of new therapeutic approaches to delay or overcome disease progression is a top priority. Herein, we review AATD-mediated liver disease and the overall process of autophagy. We highlight the role of this system in the regulation of Z-variant degradation and its implication in AATD-medicated liver disease, including some open questions that remain challenges in the field and require further elucidation. Finally, we discuss how manipulation of autophagy could provide multiple routes of therapeutic benefit in AATD-mediated liver disease.
    Keywords:  Z aggregates; alpha-1 antitrypsin deficiency; autophagy; clearance; proteostasis; ubiquitin–proteasome system (UPS)
    DOI:  https://doi.org/10.3390/ijms22041875
  9. iScience. 2021 Mar 19. 24(3): 102146
      Stress-coupled NEDDylation potentially regulates the aggregation of nuclear proteins, which could protect the nuclear ubiquitin-proteasome system from proteotoxic stress. However, it remains unclear how NEDDylation controls protein-aggregation responses to diverse stress conditions. Here, we identified HDAC6 as a direct NEDD8-binding partner that regulates the formation of aggresome-like bodies (ALBs) containing NEDDylated cytosolic protein aggregates during ubiquitin stress. HDAC6 colocalizes with stress-induced ALBs, and HDAC6 inhibition suppresses ALBs formation, but not stress-induced NEDDylation, suggesting that HDAC6 carries NEDDylated-proteins to generate ALBs. Then, we monitored the ALBs-associated proteostasis network and found that p62 directly controls ALBs formation as an acceptor of NEDDylated cytosolic aggregates. Interestingly, we also observed that ALBs are highly condensed in chloroquine-treated cells with impaired autophagic flux, indicating that ALBs rely on autophagy. Collectively, our data suggest that NEDD8, HDAC6, and p62 are involved in the management of proteotoxic stress by forming cytosolic ALBs coupled to the aggresome-autophagy flux.
    Keywords:  Biological Sciences; Cell Biology; Molecular Biology
    DOI:  https://doi.org/10.1016/j.isci.2021.102146
  10. PLoS Pathog. 2021 Mar 01. 17(3): e1009347
      In the field, many insect-borne crop viral diseases are more suitable for maintenance and spread in hot-temperature areas, but the mechanism remains poorly understood. The epidemic of a planthopper (Sogatella furcifera)-transmitted rice reovirus (southern rice black-streaked dwarf virus, SRBSDV) is geographically restricted to southern China and northern Vietnam with year-round hot temperatures. Here, we reported that two factors of endoplasmic reticulum-associated degradation (ERAD) machinery, the heat shock protein DnaJB11 and ER membrane protein BAP31, were activated by viral infection to mediate the adaptation of S. furcifera to high temperatures. Infection and transmission efficiencies of SRBSDV by S. furcifera increased with the elevated temperatures. We observed that high temperature (35°C) was beneficial for the assembly of virus-containing tubular structures formed by nonstructural protein P7-1 of SRBSDV, which facilitates efficient viral transmission by S. furcifera. Both DnaJB11 and BAP31 competed to directly bind to the tubule protein P7-1 of SRBSDV; however, DnaJB11 promoted whereas BAP31 inhibited P7-1 tubule assembly at the ER membrane. Furthermore, the binding affinity of DnaJB11 with P7-1 was stronger than that of BAP31 with P7-1. We also revealed that BAP31 negatively regulated DnaJB11 expression through their direct interaction. High temperatures could significantly upregulate DnaJB11 expression but inhibit BAP31 expression, thereby strongly facilitating the assembly of abundant P7-1 tubules. Taken together, we showed that a new temperature-dependent protein quality control pathway in the ERAD machinery has evolved for strong activation of DnaJB11 for benefiting P7-1 tubules assembly to support efficient transmission of SRBSDV in high temperatures. We thus deduced that ERAD machinery has been hitchhiked by insect-borne crop viruses to enhance their transmission in tropical climates.
    DOI:  https://doi.org/10.1371/journal.ppat.1009347
  11. Proc Natl Acad Sci U S A. 2021 Mar 09. pii: e2026608118. [Epub ahead of print]118(10):
      Intracellular procollagen folding begins at the protein's C-terminal propeptide (C-Pro) domain, which initiates triple-helix assembly and defines the composition and chain register of fibrillar collagen trimers. The C-Pro domain is later proteolytically cleaved and excreted from the body, while the mature triple helix is incorporated into the extracellular matrix. The procollagen C-Pro domain possesses a single N-glycosylation site that is widely conserved in all the fibrillar procollagens across humans and diverse other species. Given that the C-Pro domain is removed once procollagen folding is complete, the N-glycan might be presumed to be important for folding. Surprisingly, however, there is no difference in the folding and secretion of N-glycosylated versus non-N-glycosylated collagen type-I, leaving the function of the N-glycan unclear. We hypothesized that the collagen N-glycan might have a context-dependent function, specifically, that it could be required to promote procollagen folding only when proteostasis is challenged. We show that removal of the N-glycan from misfolding-prone C-Pro domain variants does indeed cause serious procollagen and ER proteostasis defects. The N-glycan promotes folding and secretion of destabilized C-Pro variants by providing access to the ER's lectin-based chaperone machinery. Finally, we show that the C-Pro N-glycan is actually critical for the folding and secretion of even wild-type procollagen under ER stress conditions. Such stress is commonly incurred during development, wound healing, and other processes in which collagen production plays a key role. Collectively, these results establish an essential, context-dependent function for procollagen's previously enigmatic N-glycan, wherein the carbohydrate moiety buffers procollagen folding against proteostatic challenge.
    Keywords:  ER protein folding; N-glycosylation; calnexin and calreticulin; collagen folding and proteostasis; extracellular matrix biosynthesis
    DOI:  https://doi.org/10.1073/pnas.2026608118
  12. FEBS J. 2021 Mar 02.
      Protein ubiquitination has been historically associated with protein degradation, but recent studies have demonstrated other cellular functions associated with substrate ubiquitination. Amongst the RING type ubiquitin E3 ligase enzymes present in the human genome, RNF167 is a transmembrane protein located in endosomes and lysosomes and is implicated in controlling the endolysosomal pathway. Substrates of RNF167 have been identified, but the ubiquitin conjugating E2 enzymes involved in the mechanism remain unknown. In this study, we describe the interaction between RNF167 and conjugating E2 enzymes. By means of in vitro auto-ubiquitination and binding assays, we show that RNF167 functionally interacts with many conjugating E2s while fluorescence microscopy illustrates that these interactions occur in endosomes and lysosomes. Kinetic analyses of the interaction between RNF167 and selected conjugating E2 enzymes reveal submicromolar dissociation constants. The computed model of interaction between the RING domain of RNF167 and conjugating enzymes gives us insights on how RNF167 could interact with conjugating E2 enzymes. Furthermore, the results reveal that in vitro polyubiquitination of the AMPA-type glutamate receptor subunit GluA2, one of RNF167's known substrate, is possible by the conjugating E2 enzyme UBE2N only after GluA2 has been primed by ubiquitin subsequent to the action of an initiating conjugating E2 enzyme functionally binding RNF167. Pharmacological inhibition of UBE2N in cultured hippocampal neurons diminishes AMPA-induced GluA2 ubiquitination. This study characterizes interacting partners of RNF167 and constitutes an initial step towards the identification of functional pairs assembled from RNF167 and ubiquitin conjugating E2 enzymes involved in the ubiquitination of RNF167's substrate.
    DOI:  https://doi.org/10.1111/febs.15796
  13. J Biol Chem. 2021 Feb 24. pii: S0021-9258(21)00233-7. [Epub ahead of print] 100460
      Bacterial survival during lethal heat stress relies on the cellular ability to reactivate aggregated proteins. This activity is typically executed by the canonical Hsp70-ClpB bichaperone disaggregase, which is most widespread in Bacteria. The ClpB disaggregase is a member of the AAA+ protein family and exhibits an ATP-driven threading activity. Substrate binding and stimulation of ATP hydrolysis depends on the Hsp70 partner, who initiates the disaggregation reaction. Recently elevated heat resistance in gamma-proteobacterial species was shown to be mediated by the AAA+ protein ClpG as an alternative disaggregase. Pseudomonas aeruginosa ClpG functions autonomously and does not cooperate with Hsp70 for substrate binding, enhanced ATPase activity and disaggregation. With the underlying molecular basis largely unknown, the fundamental differences in ClpG- and ClpB-dependent disaggregation are reflected by the presence of sequence alterations and additional ClpG-specific domains. By analyzing the effects of mutants lacking ClpG specific domains and harboring mutations in conserved motifs implicated in ATP hydrolysis and substrate threading, we show that the N-terminal, ClpG-specific N1 domain generally mediates protein aggregate binding as the molecular basis of autonomous disaggregation activity. Peptide substrate binding strongly stimulates ClpG ATPase activity by overriding repression by the N-terminal N1 and N2 domains. High ATPase activity requires two functional AAA domains and drives substrate threading which ultimately extracts polypeptides from the aggregate. ClpG ATPase and disaggregation activity is thereby directly controlled by substrate availability.
    Keywords:  70 kilodalton heat shock protein (Hsp70); ATPase associated with diverse cellular activities (AAA); molecular chaperone; protein aggregation; stress
    DOI:  https://doi.org/10.1016/j.jbc.2021.100460
  14. Mol Cells. 2021 Feb 28. 44(2): 101-115
      The INO80 chromatin remodeling complex has roles in many essential cellular processes, including DNA replication. However, the mechanisms that regulate INO80 in these processes remain largely unknown. We previously reported that the stability of Ino80, the catalytic ATPase subunit of INO80, is regulated by the ubiquitin proteasome system and that BRCA1-associated protein-1 (BAP1), a nuclear deubiquitinase with tumor suppressor activity, stabilizes Ino80 via deubiquitination and promotes replication fork progression. However, the E3 ubiquitin ligase that targets Ino80 for proteasomal degradation was unknown. Here, we identified the C-terminus of Hsp70-interacting protein (CHIP), the E3 ubiquitin ligase that functions in cooperation with Hsp70, as an Ino80-interacting protein. CHIP polyubiquitinates Ino80 in a manner dependent on Hsp70. Contrary to our expectation that CHIP degrades Ino80, CHIP instead stabilizes Ino80 by extending its halflife. The data suggest that CHIP stabilizes Ino80 by inhibiting degradative ubiquitination. We also show that CHIP works together with BAP1 to enhance the stabilization of Ino80, leading to its chromatin binding. Interestingly, both depletion and overexpression of CHIP compromise replication fork progression with little effect on fork stalling, as similarly observed for BAP1 and Ino80, indicating that an optimal cellular level of Ino80 is important for replication fork speed but not for replication stress suppression. This work therefore idenitifes CHIP as an E3 ubiquitin ligase that stabilizes Ino80 via nondegradative ubiquitination and suggests that CHIP and BAP1 act in concert to regulate Ino80 ubiquitination to fine-tune its stability for efficient DNA replication.
    Keywords:  BRCA1-associated protein 1; C-terminus of Hsp70-interacting protein; DNA replication; INO80 chromatin remodeler; ubiquitin
    DOI:  https://doi.org/10.14348/molcells.2021.2258
  15. Cell Death Discov. 2021 Mar 02. 7(1): 44
      Ischemia-reperfusion (IR) injury to the renal epithelia is associated with endoplasmic reticulum stress (ERS) and mitochondria dysfunction, which lead to oxidative stress-induced acute kidney injury (AKI). X-box binding protein 1 (XBP1), an ERS response protein, could play a prominent role in IR-induced AKI. In this study, we revealed that XBP1 and its downstream target HRD1 participated in the crosstalk between ERS and mitochondrial dysfunction via regulation of NRF2/HO-1-mediated reactive oxidative stress (ROS) signaling. Mice with reduced expression of XBP1 (heterozygous Xbp1±) were resistant to IR-induced AKI due to the enhanced expression of NRF2/HO-1 and diminished ROS in the kidney. Downregulation of XBP1 in renal epithelial cells resulted in reduced HRD1 expression and increased NRF2/HO-1 function, accompanied with enhanced antioxidant response. Furthermore, HRD1 served as an E3-ligase to facilitate the downregulation of NRF2 through ubiquitination-degradation pathway, and the QSLVPDI motif on NRF2 constituted an active site for its interaction with HRD1. Thus, our findings unveil an important physiological role for XBP1/HRD1 in modulating the antioxidant function of NRF2/HO-1 in the kidney under stress conditions. Molecular therapeutic approaches that target XBP1-HRD1-NRF2 pathway may represent potential effective means to treat renal IR injury.
    DOI:  https://doi.org/10.1038/s41420-021-00425-z
  16. J Biol Chem. 2021 Feb 24. pii: S0021-9258(21)00241-6. [Epub ahead of print] 100468
      The proteasome selectively degrades proteins. It consists of a core particle (CP) which contains proteolytic active sites that can associate with different regulators to form various complexes. How these different complexes are regulated and affected by changing physiological conditions, however, remains poorly understood. In this study, we focused on the activator Blm10 and the regulatory particle (RP). In yeast, increased expression of Blm10 outcompeted RP for CP binding, which suggests that controlling the cellular levels of Blm10 can affect the relative amounts of RP-bound CP. While strong overexpression of BLM10 almost eliminated the presence of RP-CP complexes, the phenotypes this should induce were not observed. Our results show this was due to the induction of Blm10-CP autophagy under prolonged growth in YPD. Similarly, under conditions of endogenous BLM10 expression, Blm10 was degraded through autophagy as well. This suggests that reducing the levels of Blm10 allows for more CP binding surfaces and the formation of RP-CP complexes under nutrient stress. This work provides important insights into maintaining the proteasome landscape and how protein expression levels affect proteasome function.
    Keywords:  Blm10; Proteasome; Proteasome Storage Granule; autophagy; protein degradation; stress response; ubiquitin; yeast
    DOI:  https://doi.org/10.1016/j.jbc.2021.100468
  17. Sci Adv. 2021 Mar;pii: eabe8591. [Epub ahead of print]7(10):
      Endoplasmic reticulum-associated degradation (ERAD) is a process directing misfolded proteins from the ER lumen and membrane to the degradation machinery in the cytosol. A key step in ERAD is the translocation of ER proteins to the cytosol. Derlins are essential for protein translocation in ERAD, but the mechanism remains unclear. Here, we solved the structure of human Derlin-1 by cryo-electron microscopy. The structure shows that Derlin-1 forms a homotetramer that encircles a large tunnel traversing the ER membrane. The tunnel has a diameter of about 12 to 15 angstroms, large enough to allow an α helix to pass through. The structure also shows a lateral gate within the membrane, providing access of transmembrane proteins to the tunnel, and thus, human Derlin-1 forms a protein channel for translocation of misfolded proteins. Our structure is different from the monomeric yeast Derlin structure previously reported, which forms a semichannel with another protein.
    DOI:  https://doi.org/10.1126/sciadv.abe8591
  18. Cells. 2021 Feb 16. pii: 404. [Epub ahead of print]10(2):
      DJ-1 is an abundant and ubiquitous component of cellular proteomes. DJ-1 supposedly exerts a wide variety of molecular functions, ranging from enzymatic activities as a deglycase, protease, and esterase to chaperone functions. However, a consensus perspective on its molecular function in the cellular context has not yet been reached. Structurally, the C-terminal helix 8 of DJ-1 has been proposed to constitute a propeptide whose proteolytic removal transforms a DJ-1 zymogen to an active hydrolase with potential proteolytic activity. To better understand the cell-contextual functionality of DJ-1 and the role of helix 8, we employed post-mitotically differentiated, neuron-like SH-SY5Y neuroblastoma cells with stable over-expression of full length DJ-1 or DJ-1 lacking helix 8 (ΔH8), either with a native catalytically active site (C106) or an inactive site (C106A active site mutation). Global proteome comparison of cells over-expressing DJ-1 ΔH8 with native or mutated active site cysteine indicated a strong impact on mitochondrial biology. N-terminomic profiling however did not highlight direct protease substrate candidates for DJ-1 ΔH8, but linked DJ-1 to elevated levels of activated lysosomal proteases, albeit presumably in an indirect manner. Finally, we show that DJ-1 ΔH8 loses the deglycation activity of full length DJ-1. Our study further establishes DJ-1 as deglycation enzyme. Helix 8 is essential for the deglycation activity but dispensable for the impact on lysosomal and mitochondrial biology; further illustrating the pleiotropic nature of DJ-1.
    Keywords:  PARK7; TAILS; cathepsin b; degradation; glycase; lysosome; neurodegenerative disease; parkinson disease; protease; proteomics
    DOI:  https://doi.org/10.3390/cells10020404
  19. Nat Struct Mol Biol. 2021 Mar 04.
      Members of the Oxa1 superfamily perform membrane protein insertion in bacteria, the eukaryotic endoplasmic reticulum (ER), and endosymbiotic organelles. Here, we review recent structures of the three ER-resident insertases and discuss the extent to which structure and function are conserved with their bacterial counterpart YidC.
    DOI:  https://doi.org/10.1038/s41594-021-00567-9
  20. Oncogenesis. 2021 Mar 05. 10(3): 24
      Ubiquitination-dependent DNA damage response (DDR) signals play a critical role in the cellular choice of DNA damage repair pathways. Human DNA helicase RecQL4 participates in DNA replication and repair, and loss of RecQL4 is associated with autosomal recessive genetic disorders characterized by genomic instability features. In an earlier study, RecQL4 was isolated as a stable complex that contained two ubiquitin ligases of the N-end rule (UBR1 and UBR2). However, it is unknown whether or not RecQL4 ubiquitination status is critical for its DNA repair function. Here, we report that RecQL4 directly interacts with RNF8 (a RING finger ubiquitin E3 ligase), and both co-localize at DNA double-strand break (DSB) sites. Our findings indicate that RNF8 ubiquitinates RecQL4 protein mainly at the lysine sites of 876, 1048, and 1101, thereby facilitating the dissociation of RecQL4 from DSB sites. RecQL4 mutant at ubiquitination sites had a significantly prolonged retention at DSBs, which hinders the recruitment of its direct downstream DSB repair proteins (CtIP & Ku80). Interestingly, reduced DSB repair capacity observed in RecQL4 depleted cells was restored only by the reconstitution of wild-type RecQL4, but not the ubiquitination mutant. Additionally, RecQL4 directly interacts with WRAP53β that is known to recruit RNF8 to DSBs and WRAP53β enhances the association of RecQL4 with RNF8. WRAP53β silencing resulted in a nearly diminished recruitment of RNF8 to DSBs and in a greatly attenuated dissociation of RecQL4 from the DSB sites. Collectively, our study demonstrates that the ubiquitination event mediated by RNF8 constitutes an essential component for RecQL4's function in DSB repair.
    DOI:  https://doi.org/10.1038/s41389-021-00315-0
  21. Mol Neurobiol. 2021 Mar 04.
      Gliomas constitute the most frequent tumors of the brain. High-grade gliomas are characterized by a poor prognosis caused by a set of attributes making treatment difficult, such as heterogeneity and cell infiltration. Additionally, there is a subgroup of glioma cells with properties similar to those of stem cells responsible for tumor recurrence after treatment. Since proteasomal degradation regulates multiple cellular processes, any mutation causing disturbances in the function or expression of its elements can lead to various disorders such as cancer. Several studies have focused on protein degradation modulation as a mechanism of glioma control. The ubiquitin proteasome system is the main mechanism of cellular proteolysis that regulates different events, intervening in pathological processes with exacerbating or suppressive effects on diseases. This review analyzes the role of proteasomal degradation in gliomas, emphasizing the elements of this system that modulate different cellular mechanisms in tumors and discussing the potential of distinct compounds controlling brain tumorigenesis through the proteasomal pathway.
    Keywords:  Deubiquitinases; E3 ligase; Glioma; PROTACs; Proteasome; Ubiquitin
    DOI:  https://doi.org/10.1007/s12035-021-02339-4
  22. Cells. 2021 02 26. pii: 503. [Epub ahead of print]10(3):
      Coronaviruses (CoVs) assemble by budding into the lumen of the intermediate compartment (IC) at the endoplasmic reticulum (ER)-Golgi interface. However, why CoVs have chosen the IC as their intracellular site of assembly and how progeny viruses are delivered from this compartment to the extracellular space has remained unclear. Here we address these enigmatic late events of the CoV life cycle in light of recently described properties of the IC. Of particular interest are the emerging spatial and functional connections between IC elements and recycling endosomes (REs), defined by the GTPases Rab1 and Rab11, respectively. The establishment of IC-RE links at the cell periphery, around the centrosome and evidently also at the noncompact zones of the Golgi ribbon indicates that-besides traditional ER-Golgi communication-the IC also promotes a secretory process that bypasses the Golgi stacks, but involves its direct connection with the endocytic recycling system. The initial confinement of CoVs to the lumen of IC-derived large transport carriers and their preferential absence from Golgi stacks is consistent with the idea that they exit cells following such an unconventional route. In fact, CoVs may share this pathway with other intracellularly budding viruses, lipoproteins, procollagen, and/or protein aggregates experimentally introduced into the IC lumen.
    Keywords:  ER-Golgi intermediate compartment (IC or ERGIC); Golgi bypass; Golgi ribbon; Rab1; Rab11; coronavirus (CoV); megavesicles; recycling endosome (RE); unconventional secretion; vesicular tubular cluster (VTC); virus assembly; virus egress
    DOI:  https://doi.org/10.3390/cells10030503
  23. Mol Psychiatry. 2021 Mar 01.
      Disturbed activation or regulation of the stress response through the hypothalamic-pituitary-adrenal (HPA) axis is a fundamental component of multiple stress-related diseases, including psychiatric, metabolic, and immune disorders. The FK506 binding protein 51 (FKBP5) is a negative regulator of the glucocorticoid receptor (GR), the main driver of HPA axis regulation, and FKBP5 polymorphisms have been repeatedly linked to stress-related disorders in humans. However, the specific role of Fkbp5 in the paraventricular nucleus of the hypothalamus (PVN) in shaping HPA axis (re)activity remains to be elucidated. We here demonstrate that the deletion of Fkbp5 in Sim1+ neurons dampens the acute stress response and increases GR sensitivity. In contrast, Fkbp5 overexpression in the PVN results in a chronic HPA axis over-activation, and a PVN-specific rescue of Fkbp5 expression in full Fkbp5 KO mice normalizes the HPA axis phenotype. Single-cell RNA sequencing revealed the cell-type-specific expression pattern of Fkbp5 in the PVN and showed that Fkbp5 expression is specifically upregulated in Crh+ neurons after stress. Finally, Crh-specific Fkbp5 overexpression alters Crh neuron activity, but only partially recapitulates the PVN-specific Fkbp5 overexpression phenotype. Together, the data establish the central and cell-type-specific importance of Fkbp5 in the PVN in shaping HPA axis regulation and the acute stress response.
    DOI:  https://doi.org/10.1038/s41380-021-01044-x
  24. J Cell Sci. 2021 Mar 01. pii: jcs.255026. [Epub ahead of print]
      Membrane contact sites (MCSs) between endoplasmic reticulum (ER) and late endosomes/lysosomes (LE/lys) are emerging as critical hubs for diverse cellular events, and changes in their extents are linked to severe neurological diseases. While recent studies show that synaptotagmin-like mitochondrial-lipid-binding (SMP) domain-containing protein PDZD8 may mediate the ER-LE/lys MCSs, the cellular functions of PDZD8 remain largely elusive. Here we attempt to investigate lipid transfer activities of PDZD8 and the extent to which its cellular functions depend on its lipid transfer activities. In accordance with recent studies, we demonstrate that PDZD8 is a Protrudin-interacting protein and PDZD8 acts as a tether at ER-LE/lys MCSs. Further, we discover that the SMP domain of PDZD8 binds glycerophospholipids and ceramides both in vivo and in vitro, and the SMP domain can transport lipids between membranes in vitro Functionally, PDZD8 is required for LE/lys positioning and neurite outgrowth, which is dependent on the lipid transfer activity of the SMP domain.
    Keywords:  Endoplasmic reticulum; Late endosome/lysosomes; Lipid transfer; Membrane contact sites; PDZD8
    DOI:  https://doi.org/10.1242/jcs.255026
  25. Biomolecules. 2021 Feb 26. pii: 354. [Epub ahead of print]11(3):
      With the extension of life span in recent decades, there is an increasing burden of late-onset neurodegenerative diseases, for which effective treatments are lacking. Neurodegenerative diseases include the widespread Alzheimer's disease (AD) and Parkinson's disease (PD), the less frequent Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS) and also rare early-onset diseases linked to mutations that cause protein aggregation or loss of function in genes that maintain protein homeostasis. The difficulties in applying gene therapy approaches to tackle these diseases is drawing increasing attention to strategies that aim to inhibit cellular toxicity and restore homeostasis by intervening in cellular pathways. These include the unfolded protein response (UPR), activated in response to endoplasmic reticulum (ER) stress, a cellular affliction that is shared by these diseases. Special focus is turned to the PKR-like ER kinase (PERK) pathway of the UPR as a target for intervention. However, the complexity of the pathway and its ability to promote cell survival or death, depending on ER stress resolution, has led to some confusion in conflicting studies. Both inhibition and activation of the PERK pathway have been reported to be beneficial in disease models, although there are also some reports where they are counterproductive. Although with the current knowledge a definitive answer cannot be given on whether it is better to activate or to inhibit the pathway, the most encouraging strategies appear to rely on boosting some steps without compromising downstream recovery.
    Keywords:  ALS; Alzheimer’s disease; ER stress; Huntington’s disease; Parkinson’s disease; eIF2; integrated stress response; unfolded protein response
    DOI:  https://doi.org/10.3390/biom11030354
  26. Proc Natl Acad Sci U S A. 2021 Mar 09. pii: e2018312118. [Epub ahead of print]118(10):
      Oomycete pathogens such as Phytophthora secrete a repertoire of effectors into host cells to manipulate host immunity and benefit infection. In this study, we found that an RxLR effector, Avr1d, promoted Phytophthora sojae infection in soybean hairy roots. Using a yeast two-hybrid screen, we identified the soybean E3 ubiquitin ligase GmPUB13 as a host target for Avr1d. By coimmunoprecipitation (Co-IP), gel infiltration, and isothermal titration calorimetry (ITC) assays, we confirmed that Avr1d interacts with GmPUB13 both in vivo and in vitro. Furthermore, we found that Avr1d inhibits the E3 ligase activity of GmPUB13. The crystal structure Avr1d in complex with GmPUB13 was solved and revealed that Avr1d occupies the binding site for E2 ubiquitin conjugating enzyme on GmPUB13. In line with this, Avr1d competed with E2 ubiquitin conjugating enzymes for GmPUB13 binding in vitro, thereby decreasing the E3 ligase activity of GmPUB13. Meanwhile, we found that inactivation of the ubiquitin ligase activity of GmPUB13 stabilized GmPUB13 by blocking GmPUB13 degradation. Silencing of GmPUB13 in soybean hairy roots decreased P. sojae infection, suggesting that GmPUB13 acts as a susceptibility factor. Altogether, this study highlights a virulence mechanism of Phytophthora effectors, by which Avr1d competes with E2 for GmPUB13 binding to repress the GmPUB13 E3 ligase activity and thereby stabilizing the susceptibility factor GmPUB13 to facilitate Phytophthora infection. This study unravels the structural basis for modulation of host targets by Phytophthora effectors and will be instrumental for boosting plant resistance breeding.
    Keywords:  U-box; crystal structure; effector; self-ubiquitination; susceptibility factor
    DOI:  https://doi.org/10.1073/pnas.2018312118
  27. Dev Cell. 2021 Feb 24. pii: S1534-5807(21)00120-9. [Epub ahead of print]
      Mitochondria are essential organelles that execute and coordinate various metabolic processes in the cell. Mitochondrial dysfunction severely affects cell fitness and contributes to disease. Proper organellar function depends on the biogenesis and maintenance of mitochondria and its >1,000 proteins. As a result, the cell has evolved mechanisms to coordinate protein and organellar quality control, such as the turnover of proteins via mitochondria-associated degradation, the ubiquitin-proteasome system, and mitoproteases, as well as the elimination of mitochondria through mitophagy. Specific quality control mechanisms are engaged depending upon the nature and severity of mitochondrial dysfunction, which can also feed back to elicit transcriptional or proteomic remodeling by the cell. Here, we will discuss the current understanding of how these different quality control mechanisms are integrated and overlap to maintain protein and organellar quality and how they may be relevant for cellular and organismal health.
    Keywords:  ISR; MDVs; UPRmt; UPS; mitochondria; mitochondrial dynamics; mitophagy; mitoproteases
    DOI:  https://doi.org/10.1016/j.devcel.2021.02.009
  28. Elife. 2021 Mar 04. pii: e65712. [Epub ahead of print]10
      Fine control of protein stoichiometry at synapses underlies brain function and plasticity. How proteostasis is controlled independently for each type of synaptic protein in a synapse-specific and activity-dependent manner remains unclear. Here we show that Susd4, a gene coding for a complement-related transmembrane protein, is expressed by many neuronal populations starting at the time of synapse formation. Constitutive loss-of-function of Susd4 in the mouse impairs motor coordination adaptation and learning, prevents long-term depression at cerebellar synapses, and leads to misregulation of activity-dependent AMPA receptor subunit GluA2 degradation. We identified several proteins with known roles in the regulation of AMPA receptor turnover, in particular ubiquitin ligases of the NEDD4 subfamily, as SUSD4 binding partners. Our findings shed light on the potential role of SUSD4 mutations in neurodevelopmental diseases.
    Keywords:  mouse; neuroscience
    DOI:  https://doi.org/10.7554/eLife.65712
  29. Cancer Gene Ther. 2021 Mar 04.
      Hypoxia-inducible factor-1 (HIF-1), a master transcriptional factor for protecting cells from hypoxia, plays a critical role in spermatogenesis and tumorigenesis. For the past two decades, numerous small molecule inhibitors that block mRNA synthesis, protein translation, or DNA binding of HIF-1α have entered clinical trials. To date, few have advanced to FDA approval for clinical applications due to limited efficacy at their toxicity-tolerable dosages. New windows for developing effective and safe therapeutics require better understanding of the specific mechanism of action. The finding that a chaperone-defective mutant heat shock protein-90-alpha (Hsp90α) blocks spermatogenesis, a known hypoxia-driven process in mouse testis prompted us to focus on the role of Hsp90α in HIF-1α. Here we demonstrate that Hsp90α gene knockout causes a dramatic reduction of the high steady-state level of HIF-1α in the testis, blocking sperm production and causing infertility of the mice. In HIF-1α-dependent tumor cells, we found that Hsp90α forms protein complexes with hypoxia-elevated HIF-1α and Hsp90α knockout prevents hypoxia-induced HIF-1α accumulation. In contrast, downregulation of Hsp90β had little effect on hypoxia-induced accumulation of HIF-1α. Instead, Hsp90β protects signaling molecules responsible for cellular homeostasis from assault by 17-AAG (17-N-allylamino-17-demethoxygeldanamycin), a general ATPase inhibitor of both Hsp90α and Hsp90β. Since targeting Hsp90β gene is lethal in both cultured cells and in mice, our new finding explains the toxicity of the previous inhibitor trials and identifies the specific binding of Hsp90α to HIF-1α as a new therapeutic window for developing safer and more effective treatment of male infertility and cancer.
    DOI:  https://doi.org/10.1038/s41417-021-00316-6
  30. Nat Commun. 2021 03 02. 12(1): 1379
      Many immune responses depend upon activation of NF-κB, an important transcription factor in the elicitation of a cytokine response. Here we show that N4BP1 inhibits TLR-dependent activation of NF-κB by interacting with the NF-κB signaling essential modulator (NEMO, also known as IκB kinase γ) to attenuate NEMO-NEMO dimerization or oligomerization. The UBA-like (ubiquitin associated-like) and CUE-like (ubiquitin conjugation to ER degradation-like) domains in N4BP1 mediate interaction with the NEMO COZI domain. Both in vitro and in mice, N4bp1 deficiency specifically enhances TRIF-independent (TLR2, TLR7, or TLR9-mediated) but not TRIF-dependent (TLR3 or TLR4-mediated) NF-κB activation, leading to increased production of proinflammatory cytokines. In response to TLR4 or TLR3 activation, TRIF causes activation of caspase-8, which cleaves N4BP1 distal to residues D424 and D490 and abolishes its inhibitory effect. N4bp1-/- mice also have diminished numbers of T cells in the peripheral blood. Our work identifies N4BP1 as an inhibitory checkpoint protein that must be overcome to activate NF-κB, and a TRIF-initiated caspase-8-dependent mechanism by which this is accomplished.
    DOI:  https://doi.org/10.1038/s41467-021-21711-5
  31. Cell Death Dis. 2021 Mar 04. 12(3): 239
      E3 ubiquitin ligase RNF126 (ring finger protein 126) is highly expressed in various cancers and strongly associated with tumorigenesis. However, its specific function in bladder cancer (BCa) is still debatable. Here, we found that RNF126 was significantly upregulated in BCa tissue by TCGA database, and our studies indicated that downregulation of RNF126 significantly inhibited cell proliferation and metastasis through the EGFR/PI3K/AKT signaling pathway in BCa cells. Furthermore, we identified PTEN, an inhibitor of the PI3K/AKT signaling pathway, as a novel substrate for RNF126. By co-immunoprecipitation assays, we proved that RNF126 directly interacts with PTEN. Predominantly, PTEN binds to the C-terminal containing the RING domain of RNF126. The in vivo ubiquitination assay showed that RNF126 specifically regulates PTEN stability through poly-ubiquitination. Furthermore, PTEN knockdown restored cell proliferation, metastasis, and tumor formation of BCa cells inhibited by RNF126 silencing in vitro and in vivo. In conclusion, these results identified RNF126 as an oncogene that functions through ubiquitination and degradation of PTEN in BCa.
    DOI:  https://doi.org/10.1038/s41419-021-03521-1
  32. Nat Commun. 2021 03 03. 12(1): 1418
      Sarcopenia is a degenerative condition that consists in age-induced atrophy and functional decline of skeletal muscle cells (myofibers). A common hypothesis is that inducing myofiber hypertrophy should also reinstate myofiber contractile function but such model has not been extensively tested. Here, we find that the levels of the ubiquitin ligase UBR4 increase in skeletal muscle with aging, and that UBR4 increases the proteolytic activity of the proteasome. Importantly, muscle-specific UBR4 loss rescues age-associated myofiber atrophy in mice. However, UBR4 loss reduces the muscle specific force and accelerates the decline in muscle protein quality that occurs with aging in mice. Similarly, hypertrophic signaling induced via muscle-specific loss of UBR4/poe and of ESCRT members (HGS/Hrs, STAM, USP8) that degrade ubiquitinated membrane proteins compromises muscle function and shortens lifespan in Drosophila by reducing protein quality control. Altogether, these findings indicate that these ubiquitin ligases antithetically regulate myofiber size and muscle protein quality control.
    DOI:  https://doi.org/10.1038/s41467-021-21738-8
  33. EMBO J. 2021 Mar 01. e106922
      The compartmentalization of eukaryotic cells, which is essential for their viability and functions, is ensured by single or double bilayer membranes that separate the cell from the exterior and form boundaries between the cell's organelles and the cytosol. Nascent nuclear envelopes and autophagosomes, which both are enveloped by double membranes, need to be sealed during the late stage of their biogenesis. On the other hand, the integrity of cellular membranes such as the plasma membrane, lysosomes and the nuclear envelope can be compromised by pathogens, chemicals, radiation, inflammatory responses and mechanical stress. There are cellular programmes that restore membrane integrity after injury. Here, we review cellular mechanisms that have evolved to maintain membrane integrity during organelle biogenesis and after injury, including membrane scission mediated by the endosomal sorting complex required for transport (ESCRT), vesicle patching and endocytosis.
    Keywords:  ESCRT; autophagy; endocytosis; lysosome; membrane repair
    DOI:  https://doi.org/10.15252/embj.2020106922
  34. Dev Cell. 2021 Feb 25. pii: S1534-5807(21)00119-2. [Epub ahead of print]
      The endoplasmic reticulum (ER) is a ubiquitous organelle that is vital to the life of eukaryotic cells. It synthesizes essential lipids and proteins and initiates the glycosylation of intracellular and surface proteins. As such, the ER is necessary for cell growth and communication with the external environment. The ER is also a highly dynamic organelle, whose structure is continuously remodeled through an interaction with the cytoskeleton and the action of specialized ER shapers. Recent and significant advances in ER studies have brought to light conserved and unique features underlying the structure and function of this organelle in plant cells. In this review, exciting developments in the understanding of the mechanisms for plant ER structural and functional homeostasis, particularly those that underpin ER network architecture and ER degradation, are presented and discussed.
    Keywords:  ER shapers; ER-PM contact sites; ER-phagy; endoplasmic reticulum
    DOI:  https://doi.org/10.1016/j.devcel.2021.02.008
  35. Cell Death Differ. 2021 Mar 01.
      Emerging evidence suggests that USP39 plays an important role in the development of hepatocellular carcinoma (HCC). However, the molecular mechanism by which USP39 promotes HCC progression has not been well defined, especially regarding its putative ubiquitination function. Zinc-finger E-box-binding homeobox 1 (ZEB1) is a crucial inducer of epithelial-to-mesenchymal transition (EMT) to promote tumor proliferation and metastasis, but the regulatory mechanism of ZEB1 stability in HCC remains enigmatic. Here, we reveal that USP39 is highly expressed in human HCC tissues and correlated with poor prognosis. Moreover, USP39 depletion inhibits HCC cell proliferation and metastasis by promoting ZEB1 degradation. Intriguingly, deubiquitinase USP39 has a direct interaction with the E3 ligase TRIM26 identified by co-immunoprecipitation assays and immunofluorescence staining assays. We further demonstrate that TRIM26 is lowly expressed in human HCC tissues and inhibits HCC cell proliferation and migration. TRIM26 promotes the degradation of ZEB1 protein by ubiquitination in HCC. Deubiquitinase USP39 and E3 ligase TRIM26 function in an antagonistic pattern, but not a competitive pattern, and play key roles in controlling ZEB1 stability to determine the HCC progression. In summary, our data reveal a previously unknown mechanism that USP39 and TRIM26 balance the level of ZEB1 ubiquitination and thereby determine HCC cell proliferation and migration. This novel mechanism may provide new approaches to target treatment for inhibiting HCC development by restoring TRIM26 or suppressing USP39 expression in HCC cases with high ZEB1 protein levels.
    DOI:  https://doi.org/10.1038/s41418-021-00754-7
  36. Commun Biol. 2021 Mar 05. 4(1): 291
      Pivotal to the maintenance of cellular homeostasis, macroautophagy (hereafter autophagy) is an evolutionarily conserved degradation system that involves sequestration of cytoplasmic material into the double-membrane autophagosome and targeting of this transport vesicle to the lysosome/late endosome for degradation. EPG5 is a large-sized metazoan protein proposed to serve as a tethering factor to enforce autophagosome-lysosome/late endosome fusion specificity, and its deficiency causes a severe multisystem disorder known as Vici syndrome. Here, we show that human EPG5 (hEPG5) adopts an extended "shepherd's staff" architecture. We find that hEPG5 binds preferentially to members of the GABARAP subfamily of human ATG8 proteins critical to autophagosome-lysosome fusion. The hEPG5-GABARAPs interaction, which is mediated by tandem LIR motifs that exhibit differential affinities, is required for hEPG5 recruitment to mitochondria during PINK1/Parkin-dependent mitophagy. Lastly, we find that the Vici syndrome mutation Gln336Arg does not affect the hEPG5's overall stability nor its ability to engage in interaction with the GABARAPs. Collectively, results from our studies reveal new insights into how hEPG5 recognizes mature autophagosome and establish a platform for examining the molecular effects of Vici syndrome disease mutations on hEPG5.
    DOI:  https://doi.org/10.1038/s42003-021-01830-x
  37. J Cell Sci. 2021 Mar 05. pii: jcs.255596. [Epub ahead of print]
      Disturbances to protein homeostasis (proteostasis) can lead to protein aggregation and inclusion formation, processes associated with a variety of neurodegenerative disorders. DNAJBs are molecular chaperones which have been identified as potent suppressors of disease-related protein aggregation. In this work, a destabilised isoform of firefly luciferase (R188Q/R261Q Fluc; FlucDM) was overexpressed in cells to assess the capacity of DNAJBs to inhibit inclusion formation. Co-expression of all DNAJBs tested significantly inhibited the intracellular aggregation of FlucDM Moreover, we show that DNAJBs suppress aggregation by supporting the Hsp70-dependent degradation of FlucDM via the proteasome. The serine-rich stretch in DNAJB6 and DNAJB8, essential for preventing fibrillar aggregation, is not involved in the suppression of FlucDM inclusion formation. Conversely, deletion of the C-terminal TTK-LKS motif in DNAJB6 and DNAJB8, a region not required to suppress polyQ aggregation, abolished its ability to inhibit inclusion formation by FlucDM Thus, our data suggest that DNAJB6 and DNAJB8 possess two distinct regions for binding substrates, one that is responsible for binding β-hairpins that form during amyloid formation and another that interacts with exposed hydrophobic patches in aggregation-prone clients.
    Keywords:  DNAJB; Heat shock protein; Inclusions; Molecular chaperone; Neurodegenerative disorders; Protein aggregation
    DOI:  https://doi.org/10.1242/jcs.255596
  38. FEBS J. 2021 Feb 28.
      Notch signaling is an evolutionarily conserved pathway that is widely used for multiple cellular events during development. Activation of the Notch pathway occurs when the ligand from a neighboring cell binds to the Notch receptor and induces cleavage of the intracellular domain of Notch, which further translocates into the nucleus to activate its downstream genes. The involvement of the Notch pathway in diverse biological events is possible due to the complexity in its regulation. In order to maintain tight spatiotemporal regulation, the Notch receptor, as well as its ligand, undergoes a series of physical and biochemical modifications that, in turn, helps in proper maintenance and fine-tuning of the signaling outcome. Ubiquitination is the post-translational addition of a ubiquitin molecule to a substrate protein, and the process is regulated by E3 ubiquitin ligases. The present review describes the involvement of different E3 ubiquitin ligases that play an important role in the regulation and maintenance of proper Notch signaling and how perturbation in ubiquitination results in abnormal Notch signaling leading to a number of human diseases.
    Keywords:  E3 ubiquitin ligase; Human disorders; Notch signaling; Ubiquitination
    DOI:  https://doi.org/10.1111/febs.15792
  39. Cancers (Basel). 2021 Feb 11. pii: 745. [Epub ahead of print]13(4):
      More than 40 years of research on p53 have given us tremendous knowledge about this protein. Today we know that p53 plays a role in different biological processes such as proliferation, invasion, pluripotency, metabolism, cell cycle control, ROS (reactive oxygen species) production, apoptosis, inflammation and autophagy. In the nucleus, p53 functions as a bona-fide transcription factor which activates and represses transcription of a number of target genes. In the cytoplasm, p53 can interact with proteins of the apoptotic machinery and by this also induces cell death. Despite being so important for the fate of the cell, expression levels of p53 are kept low in unstressed cells and the protein is largely inactive. The reason for the low expression level is that p53 is efficiently degraded by the ubiquitin-proteasome system and the vast inactivity of the tumor suppressor protein under normal growth conditions is due to the absence of activating and the presence of inactivating posttranslational modifications. E3s are important enzymes for these processes as they decorate p53 with ubiquitin and small ubiquitin-like proteins and by this control p53 degradation, stability and its subcellular localization. In this review, we provide an overview about E3s that target p53 and discuss the connection between p53, E3s and tumorigenesis.
    Keywords:  E3s; p53; tumor
    DOI:  https://doi.org/10.3390/cancers13040745
  40. J Biol Chem. 2021 Feb 25. pii: S0021-9258(21)00239-8. [Epub ahead of print] 100466
      DNA mismatch repair (MMR) maintains genome stability primarily by correcting replication errors. MMR deficiency can lead to cancer development and bolsters cancer cell resistance to chemotherapy. However, recent studies have shown that checkpoint blockade therapy is effective in MMR deficient cancers, thus the ability to identify cancer etiology would greatly benefit cancer treatment. MutS homolog 2 (MSH2) is an obligate subunit of mismatch recognition proteins MutSα (MSH2-MSH6) and MutSβ (MSH2-MSH3). Precise regulation of MSH2 is critical, as either over- or under-expression of MSH2 results in an increased mutation frequency. The mechanism by which cells maintain MSH2 proteostasis is unknown. Using functional ubiquitination and deubiquitination assays, we show that the ovarian tumor (OTU) family deubiquitinase ubiquitin aldehyde binding 1 (OTUB1) inhibits MSH2 ubiquitination by blocking the E2 ligase ubiquitin transfer activity. Depleting OTUB1 in cells promotes the ubiquitination and subsequent degradation of MSH2, leading to greater mutation frequency and cellular resistance to genotoxic agents, including the common chemotherapy agents N-methyl-N'-nitro-N-nitrosoguanidine and cisplatin. Taken together, our data identify OTUB1 as an important regulator of MSH2 stability and provide evidence that OTUB1 is a potential biomarker for cancer etiology and therapy.
    Keywords:  DNA damage; DNA mismatch repair; OTUB1; deubiquitination; mutability; protein stability
    DOI:  https://doi.org/10.1016/j.jbc.2021.100466
  41. STAR Protoc. 2021 Mar 19. 2(1): 100316
      N-glycosylation is a fundamental post-translational protein modification in the endoplasmic reticulum of eukaryotic cells. The biosynthetic and catabolic flux of N-glycans in eukaryotic cells has long been analyzed by metabolic labeling using radiolabeled sugars. Here, we introduce a non-radiolabeling protocol for the isolation, structural determination, and quantification of N-glycan precursors, dolichol-linked oligosaccharides, and the related metabolites, including phosphorylated oligosaccharides and nucleotide sugars. Our protocol allows for capturing of the biosynthesis and degradation of N-glycan precursors at steady state. For complete details on the use and execution of this protocol, please refer to Harada et al. (2013), Harada et al. (2020), and Nakajima et al. (2013).
    Keywords:  Cell biology; Mass spectrometry; Metabolism; Protein biochemistry; Protein expression and purification
    DOI:  https://doi.org/10.1016/j.xpro.2021.100316
  42. Cancers (Basel). 2021 Feb 17. pii: 833. [Epub ahead of print]13(4):
      The dysregulation of post-translational modifications (PTM) transversally impacts cancer hallmarks and constitutes an appealing vulnerability for drug development. In breast cancer there is growing preclinical evidence of the role of ubiquitin and ubiquitin-like SUMO and Nedd8 peptide conjugation to the proteome in tumorigenesis and drug resistance, particularly through their interplay with estrogen receptor signaling and DNA repair. Herein we explored genomic alterations in these processes using RNA-seq and mutation data from TCGA and METABRIC datasets, and analyzed them using a bioinformatic pipeline in search of those with prognostic and predictive capability which could qualify as subjects of drug research. Amplification of UBE2T, UBE2C, and BIRC5 conferred a worse prognosis in luminal A/B and basal-like tumors, luminal A/B tumors, and luminal A tumors, respectively. Higher UBE2T expression levels were predictive of a lower rate of pathological complete response in triple negative breast cancer patients following neoadjuvant chemotherapy, whereas UBE2C and BIRC5 expression was higher in luminal A patients with tumor relapse within 5 years of endocrine therapy or chemotherapy. The transcriptomic signatures of USP9X and USP7 gene mutations also conferred worse prognosis in luminal A, HER2-enriched, and basal-like tumors, and in luminal A tumors, respectively. In conclusion, we identified and characterized the clinical value of a group of genomic alterations in ubiquitination, SUMOylation, and neddylation enzymes, with potential for drug development in breast cancer.
    Keywords:  SUMOylation; biomarkers; breast cancer; neddylation; post-translational modification; prognosis; ubiquitination
    DOI:  https://doi.org/10.3390/cancers13040833
  43. EMBO Mol Med. 2021 Mar 05. e12461
      By accentuating drug efficacy and impeding resistance mechanisms, combinatorial, multi-agent therapies have emerged as key approaches in the treatment of complex diseases, most notably cancer. Using high-throughput drug screens, we uncovered distinct metabolic vulnerabilities and thereby identified drug combinations synergistically causing a starvation-like lethal catabolic response in tumor cells from different cancer entities. Domperidone, a dopamine receptor antagonist, as well as several tricyclic antidepressants (TCAs), including imipramine, induced cancer cell death in combination with the mitochondrial uncoupler niclosamide ethanolamine (NEN) through activation of the integrated stress response pathway and the catabolic CLEAR network. Using transcriptome and metabolome analyses, we characterized a combinatorial response, mainly driven by the transcription factors CHOP and TFE3, which resulted in cell death through enhanced pyrimidine catabolism as well as reduced pyrimidine synthesis. Remarkably, the drug combinations sensitized human organoid cultures to the standard-of-care chemotherapy paclitaxel. Thus, our combinatorial approach could be clinically implemented into established treatment regimen, which would be further facilitated by the advantages of drug repurposing.
    Keywords:  cancer metabolism; integrated stress response; metabolic vulnerabilities; pyrimidine metabolism; tricyclic antidepressants
    DOI:  https://doi.org/10.15252/emmm.202012461
  44. EMBO J. 2021 Mar 05. e106283
      Mitochondrial DNA (mtDNA) encodes several key components of respiratory chain complexes that produce cellular energy through oxidative phosphorylation. mtDNA is vulnerable to damage under various physiological stresses, especially oxidative stress. mtDNA damage leads to mitochondrial dysfunction, and dysfunctional mitochondria can be removed by mitophagy, an essential process in cellular homeostasis. However, how damaged mtDNA is selectively cleared from the cell, and how damaged mtDNA triggers mitophagy, remain mostly unknown. Here, we identified a novel mitophagy receptor, ATAD3B, which is specifically expressed in primates. ATAD3B contains a LIR motif that binds to LC3 and promotes oxidative stress-induced mitophagy in a PINK1-independent manner, thus promoting the clearance of damaged mtDNA induced by oxidative stress. Under normal conditions, ATAD3B hetero-oligomerizes with ATAD3A, thus promoting the targeting of the C-terminal region of ATAD3B to the mitochondrial intermembrane space. Oxidative stress-induced mtDNA damage or mtDNA depletion reduces ATAD3B-ATAD3A hetero-oligomerization and leads to exposure of the ATAD3B C-terminus at the mitochondrial outer membrane and subsequent recruitment of LC3 for initiating mitophagy. Furthermore, ATAD3B is little expressed in m.3243A > G mutated cells and MELAS patient fibroblasts showing endogenous oxidative stress, and ATAD3B re-expression promotes the clearance of m.3243A > G mutated mtDNA. Our findings uncover a new pathway to selectively remove damaged mtDNA and reveal that increasing ATAD3B activity is a potential therapeutic approach for mitochondrial diseases.
    Keywords:  ATAD3B; mitochondrial DNA; mitophagy; oxidative stress
    DOI:  https://doi.org/10.15252/embj.2020106283
  45. Eur J Pharmacol. 2021 Feb 25. pii: S0014-2999(21)00140-0. [Epub ahead of print] 173987
      Necroptosis is a programmed form of necrotic cell death. Necroptosis is regulated by the necroptosis-regulating proteins including receptor-interacting protein (RIP) 1, RIP3, and mixed lineage kinase domain-like (MLKL), the activities of which are modulated by the molecular chaperone heat-shock protein (Hsp) 90. Presently, to clarify the relationship between Hsp90 and necroptotic pathway proteins, RIP1, RIP3, and MLKL in the development of heart failure, we examined the effects of Hsp90 inhibitor treatment on the RIP1-RIP3-MLKL pathway in mice following transverse aortic constriction (TAC). In this study, TAC mice showed typical signs of heart failure at the 8th week after the operation. In the failing heart, the levels of these regulatory proteins and those of their phosphorylated forms were increased, suggesting that necroptosis contributed to the development of heart failure in the TAC mice. The increases in RIP1, RIP3, and MLKL after TAC were reversed by the administration of an Hsp90 inhibitor. Furthermore, the rise in the phosphorylation levels of these 3 proteins were attenuated by the Hsp90 inhibitor. Concomitantly, cardiac functions were preserved. We also found that exposure of cultured adult mouse cardiomyocytes to the Hsp90 inhibitor attenuated necrotic cell death induced by tumor necrosis factor-α via suppression of RIP1, RIP3, and MLKL activation in in vitro experiments. Taken together, our findings suggest that inhibition of Hsp90 should have therapeutic effects by reducing the activation of RIP1-RIP3-MLKL pathway in the hypertrophied heart and thus could be a new therapeutic strategy for chronic heart failure.
    Keywords:  Heart failure; Hsp90; MLKL; RIP1; RIP3
    DOI:  https://doi.org/10.1016/j.ejphar.2021.173987
  46. Pituitary. 2021 Mar 05.
      Wolfram syndrome (WS) is mainly caused by mutations in the WFS1 gene and characterized by diabetes mellitus, optic atrophy, hearing loss, and central diabetes insipidus (CDI). WFS1 is an endoplasmic reticulum (ER)-resident transmembrane protein, and Wfs1 knockout (Wfs1-/-) mice, which have been used as a mouse model for WS, reportedly manifested impairment of glucose tolerance due to pancreatic β-cell loss. In the present study, we examined water balance, arginine vasopressin (AVP) secretion, and ER stress in AVP neurons of the hypothalamus in Wfs1-/- mice. There were no differences in urine volumes between Wfs1-/- and wild-type mice with free access to water. Conversely, when mice were subjected to intermittent water deprivation (WD) for 20 weeks, during which water was unavailable for 2 days a week, urine volumes were larger in Wfs1-/- mice, accompanied by lower urine AVP concentrations and urine osmolality, compared to wild-type mice. The mRNA expression of immunoglobulin heavy chain binding protein, a marker of ER stress, was significantly increased in the supraoptic nucleus and paraventricular nuclei in Wfs1-/- mice compared to wild-type mice after WD. Our results thus showed that Wfs1 knockout leads to a decrease in AVP secretion during dehydration, which could explain in part the mechanisms by which Wfs1 mutations cause CDI in humans.
    Keywords:  Arginine vasopressin; BiP; Diabetes insipidus; Endoplasmic reticulum stress; Wolfram syndrome
    DOI:  https://doi.org/10.1007/s11102-021-01135-6
  47. Elife. 2021 Mar 01. pii: e63326. [Epub ahead of print]10
      The mechanistic target of rapamycin complex 1 (mTORC1) stimulates a coordinated anabolic program in response to growth-promoting signals. Paradoxically, recent studies indicate that mTORC1 can activate the transcription factor ATF4 through mechanisms distinct from its canonical induction by the integrated stress response (ISR). However, its broader roles as a downstream target of mTORC1 are unknown. Therefore, we directly compared ATF4-dependent transcriptional changes induced upon insulin-stimulated mTORC1 signaling to those activated by the ISR. In multiple mouse embryo fibroblast (MEF) and human cancer cell lines, the mTORC1-ATF4 pathway stimulated expression of only a subset of the ATF4 target genes induced by the ISR, including genes involved in amino acid uptake, synthesis, and tRNA charging. We demonstrate that ATF4 is a metabolic effector of mTORC1 involved in both its established role in promoting protein synthesis and in a previously unappreciated function for mTORC1 in stimulating cellular cystine uptake and glutathione synthesis.
    Keywords:  cancer biology; cell biology; human; mouse; rat
    DOI:  https://doi.org/10.7554/eLife.63326