bims-proteo Biomed News
on Proteostasis
Issue of 2020–12–27
thirty-one papers selected by
Eric Chevet, INSERM



  1. Mitochondrion. 2020 Dec 16. pii: S1567-7249(20)30226-9. [Epub ahead of print]
       BACKGROUND: Biogenesis and function of mitochondria is profoundly dependent on cytosolic translation of mitochondrial pre-proteins and its subsequent translocation and folding inside the organelle. Continuous exposure of non-native precursor proteins, exposure to damaging by-products of oxidative phosphorylation, load of mis-targeted or misfolded proteins from neighbouring compartments and unremitting demand of communication between mitochondrial and nuclear genomes, continuously pose proteotoxic threats to the organelle. Our knowledge of cellular mechanisms to cope up with such impending threat of proteotoxicity to mitochondria, is currently evolving. In recent years, several unique response and survival pathways have been discovered shedding light on cellular strategies to cope with stressed and dysfunctional mitochondria. As mitochondria compulsorily communicate with nucleus, cytosol and endoplasmic reticulum (ER) for its own biogenesis and function and in turn maintain critical cellular processes for survival, any impairment in communication by stressed or dysfunctional mitochondria may end up with fatal consequences.
    DISCUSSION: and Implication: In this review, we have discussed about possible sources of mitochondrial proteotoxicity and the recent developments regarding cellular strategies to counter such stress to overcome dysfunctions of the organelle. Mitochondrial communication with neighbouring subcellular compartments like ER and cytosol during proteotoxic stress have been explored. In the context of mitochondrial proteotoxicity, alterations of crucial inter-organelle connections like ER-mitochondria contact sites and its implication on mitochondrial signaling activity like Ca2+ signaling have been dissected. Furthermore, an overview of pathological conditions, mainly neurodegenerative disorders that are known to be associated with mitochondrial proteotoxicity and Ca2+ dysregulation has been presented.
    Keywords:  Apoptosis; Ca(2+) signaling; Mitochondria; Mitochondria associated ER-membranes (MAMs); Proteotoxic Stress; Unfolded Protein Response (UPR)
    DOI:  https://doi.org/10.1016/j.mito.2020.12.003
  2. J Cell Biol. 2021 Jan 04. pii: e202001116. [Epub ahead of print]220(1):
      While it is well-known that E3 ubiquitin ligases can selectively ubiquitinate membrane proteins in response to specific environmental cues, the underlying mechanisms for the selectivity are poorly understood. In particular, the role of transmembrane regions, if any, in target recognition remains an open question. Here, we describe how Ssh4, a yeast E3 ligase adaptor, recognizes the PQ-loop lysine transporter Ypq1 only after lysine starvation. We show evidence of an interaction between two transmembrane helices of Ypq1 (TM5 and TM7) and the single transmembrane helix of Ssh4. This interaction is regulated by the conserved PQ motif. Strikingly, recent structural studies of the PQ-loop family have suggested that TM5 and TM7 undergo major conformational changes during substrate transport, implying that transport-associated conformational changes may determine the selectivity. These findings thus provide critical information concerning the regulatory mechanism through which transmembrane domains can be specifically recognized in response to changing environmental conditions.
    DOI:  https://doi.org/10.1083/jcb.202001116
  3. EMBO J. 2020 Dec 21. e106696
      Eukaryotic transfer RNAs can become selectively fragmented upon various stresses, generating tRNA-derived small RNA fragments. Such fragmentation has been reported to impact a small fraction of the tRNA pool and thus presumed to not directly impact translation. We report that oxidative stress can rapidly generate tyrosine-tRNAGUA fragments in human cells-causing significant depletion of the precursor tRNA. Tyrosine-tRNAGUA depletion impaired translation of growth and metabolic genes enriched in cognate tyrosine codons. Depletion of tyrosine tRNAGUA or its translationally regulated targets USP3 and SCD repressed proliferation-revealing a dedicated tRNA-regulated growth-suppressive pathway for oxidative stress response. Tyrosine fragments are generated in a DIS3L2 exoribonuclease-dependent manner and inhibit hnRNPA1-mediated transcript destabilization. Moreover, tyrosine fragmentation is conserved in C. elegans. Thus, tRNA fragmentation can coordinately generate trans-acting small RNAs and functionally deplete a tRNA. Our findings reveal the existence of an underlying adaptive codon-based regulatory response inherent to the genetic code.
    Keywords:  hnRNPA1; oxidative stress; tRNA; tRNA fragments; translation
    DOI:  https://doi.org/10.15252/embj.2020106696
  4. Autophagy. 2020 Dec 19. 1-16
      The pathogenetic mechanism of contrast-induced acute kidney injury (CI-AKI), which is the third most common cause of hospital-acquired AKI, has not been elucidated. Previously, we demonstrated that renal injury and cell apoptosis were attenuated in nlrp3 knockout CI-AKI mice. Here, we investigated the mechanism underlying NLRP3 inhibition-mediated attenuation of apoptosis in CI-AKI. The RNA sequencing analysis of renal cortex revealed that the nlrp3 or casp1 knockout CI-AKI mice exhibited upregulated cellular response to hypoxia, mitochondrial oxidation, and autophagy when compared with the wild-type (WT) CI-AKI mice, which indicated that NLRP3 inflammasome inhibition resulted in the upregulation of hypoxia signaling pathway and mitophagy. The nlrp3 or casp1 knockout CI-AKI mice and iohexol-treated HK-2 cells with MCC950 pretreatment exhibited upregulated levels of HIF1A, BECN1, BNIP3, and LC3B-II, as well as enhanced colocalization of LC3B with BNIP3 and mitochondria, and colocalization of mitochondria with lysosomes. Additionally, roxadustat, a HIF prolyl-hydroxylase inhibitor, protected the renal tubular epithelial cells against iohexol-induced injury through stabilization of HIF1A and activation of downstream BNIP3-mediated mitophagy in vivo and in vitro. Moreover, BNIP3 deficiency markedly decreased mitophagy, and also significantly exacerbated apoptosis and renal injury. This suggested the protective function of BNIP3-mediated mitophagy in CI-AKI. This study elucidated a novel mechanism in which NLRP3 inflammasome inhibition attenuated apoptosis and upregulated HIF1A and BNIP3-mediated mitophagy in CI-AKI. Additionally, this study demonstrated the potential applications of MCC950 and roxadustat in clinical CI-AKI treatment. Abbreviations: BNIP3: BCL2/adenovirus E1B interacting protein 3; Ctrl: control; DAPI: 4',6-diamidino-2-phenylindole dihydrochloride; EGLN2/PHD1: egl-9 family hypoxia-inducible factor 2; HIF1A: hypoxia inducible factor 1, alpha subunit; H-E: hematoxylin and eosin; IL18: interleukin 18; IL1B: interleukin 1 beta; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; mRNA: messenger RNA; NFKB/NF-κB: nuclear factor of kappa light polypeptide gene enhancer in B cells; NLRP3: NLR family, pyrin domain containing 3; NS: normal saline; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; PINK1: PTEN induced putative kinase 1; RNA: ribonucleic acid; SEM: standard error of the mean; siRNA: small interfering RNA; TEM: transmission electron microscopy; TUBA/α-tubulin: tubulin, alpha; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling; VDAC: voltage-dependent anion channel; WT: wild-type.
    Keywords:  Acute kidney injury; NLRP3 inflammasome; contrast media; hypoxia inducible factor; mitophagy
    DOI:  https://doi.org/10.1080/15548627.2020.1848971
  5. J Integr Plant Biol. 2020 Dec 21.
      Both plant receptor-like protein kinases (RLKs) and ubiquitin-mediated proteolysis play crucial roles in plant responses to drought stress. However, the mechanism by which E3 ubiquitin ligases modulate RLKs is poorly understood. In this study, we showed that Arabidopsis PLANT U-BOX PROTEIN 11 (PUB11), an E3 ubiquitin ligase, negatively regulates abscisic acid (ABA)-mediated drought responses. PUB11 interacts with and ubiquitinates two receptor-like protein kinases, LEUCINE RICH REPEAT PROTEIN 1 (LRR1) and KINASE 7 (KIN7), and mediates their degradation during plant responses to drought stress in vitro and in vivo. pub11 mutants were more tolerant, whereas lrr1 and kin7 mutants were more sensitive, to drought stress than the wild type. Genetic analyses show that the pub11 lrr1 kin7 triple mutant exhibited similar drought sensitivity as the lrr1 kin7 double mutant, placing PUB11 upstream of the two RLKs. ABA and drought treatment promoted the accumulation of PUB11, which likely accelerates LRR1 and KIN7 degradation. Together, our results reveal that PUB11 negatively regulates plant responses to drought stress by destabilizing the LRR1 and KIN7 receptor-like kinases. This article is protected by copyright. All rights reserved.
    Keywords:  E3 ligase; abscisic acid; drought response; receptor-like kinase; ubiquitination
    DOI:  https://doi.org/10.1111/jipb.13058
  6. Mol Microbiol. 2020 Dec 20.
      Hsp70 is an evolutionarily conserved chaperone involved in maintaining protein homeostasis during normal growth and upon exposure to stresses. Mutations in the β6/β7 region of the substrate-binding domain (SBD) disrupt the SBD hydrophobic core resulting in impairment of the heat-shock response and prion propagation in yeast. To elucidate the mechanisms behind Hsp70 loss of function due to disruption of the SBD, we undertook targeted mutational analysis of key residues in the β6/β7 region. We demonstrate the critical functional role of the F475 residue across yeast cytosolic Hsp70-Ssa family. We identify the size of the hydrophobic side chain at 475 as the key factor in maintaining SBD stability and functionality. The introduction of amino acid variants to either residue 475, or close neighbour 483, caused instability and cleavage of the Hsp70 SBD and subsequent degradation. Interestingly, we found that Hsp70-Ssa cleavage may occur through a vacuolar carboxypeptidase (Pep4)-dependent mechanism rather than proteasomal. Mutations at 475 and 483 result in compromised ATPase function, which reduces protein re-folding activity and contributes to depletion of cytosolic Hsp70 in vivo. The combination of reduced functionality and stability of Hsp70-Ssa results in yeast cells that are compromised in their stress response and cannot propagate the [PSI+ ] prion.
    Keywords:  Hsp70; Pep4; heat shock; prion; protein cleavage; protein-folding; substrate-binding domain
    DOI:  https://doi.org/10.1111/mmi.14671
  7. EMBO J. 2020 Dec 21. e107407
      The endoplasmic reticulum (ER) membrane protein complex (EMC) was identified over a decade ago in a genetic screen for ER protein homeostasis. The EMC inserts transmembrane domains (TMDs) with limited hydrophobicity. Two recent cryo-EM structures, and a third model based on partial high- and low-resolution structures, suggest how this is accomplished.
    DOI:  https://doi.org/10.15252/embj.2020107407
  8. Cell Metab. 2020 Dec 09. pii: S1550-4131(20)30604-5. [Epub ahead of print]
      Endoplasmic reticulum stress (ERS) has a pathophysiological role in obesity-associated insulin resistance. Yet, the coordinated tissue response to ERS remains unclear. Increased connexin 43 (Cx43)-mediated intercellular communication has been implicated in tissue-adaptive and -maladaptive response to various chronic stresses. Here, we demonstrate that in hepatocytes, ERS results in increased Cx43 expression and cell-cell coupling. Co-culture of ER-stressed "donor" cells resulted in intercellular transmission of ERS and dysfunction to ERS-naive "recipient" cells ("bystander response"), which could be prevented by genetic or pharmacologic suppression of Cx43. Hepatocytes from obese mice were able to transmit ERS to hepatocytes from lean mice, and mice lacking liver Cx43 were protected from diet-induced ERS, insulin resistance, and hepatosteatosis. Taken together, our results indicate that in obesity, the increased Cx43-mediated cell-cell coupling allows intercellular propagation of ERS. This novel maladaptive response to over-nutrition exacerbates the tissue ERS burden, promoting hepatosteatosis and impairing whole-body glucose metabolism.
    Keywords:  connexin 43; diabetes; endoplasmic reticulum stress; gap junctions; insulin resistance; intercellular communication; unfolded protein response
    DOI:  https://doi.org/10.1016/j.cmet.2020.11.009
  9. Bioorg Med Chem. 2020 Dec 09. pii: S0968-0896(20)30761-6. [Epub ahead of print]30 115931
      The ubiquitin-proteasome system (UPS) plays an important role in maintaining protein homeostasis by degrading intracellular proteins. In the proteasome, poly-ubiquitinated proteins are deubiquitinated by three deubiquitinases (DUBs) associated with 19S regulatory particle before degradation via 20S core particle. Ubiquitin carboxyl-terminal hydrolase L5 (UCHL5) is one of three proteasome-associated DUBs that control the fate of ubiquitinated substrates implicated in cancer survival and progression. In this study, we have performed virtual screening of an FDA approved drug library with UCHL5 and discovered tiaprofenic acid (TA) as a potential binder. With molecular docking analysis and in-vitro DUB assay, we have designed, synthesized, and evaluated a series of TA derivatives for inhibition of UCHL5 activity. We demonstrate that one TA derivative, TAB2, acts as an inhibitor of UCHL5.
    Keywords:  Deubiquitinase; Proteasome; Tiaprofenic acid; UCHL5 inhibitor
    DOI:  https://doi.org/10.1016/j.bmc.2020.115931
  10. J Cell Biol. 2021 Jan 04. pii: e202002151. [Epub ahead of print]220(1):
      Centrosome duplication occurs under strict spatiotemporal regulation once per cell cycle, and it begins with cartwheel assembly and daughter centriole biogenesis at the lateral sites of the mother centrioles. However, although much of this process is understood, how centrosome duplication is initiated remains unclear. Here, we show that cartwheel assembly followed by daughter centriole biogenesis is initiated on the NEDD1-containing layer of the pericentriolar material (PCM) by the recruitment of SAS-6 to the mother centriole under the regulation of PLK4. We found that PLK4-mediated phosphorylation of NEDD1 at its S325 amino acid residue directly promotes both NEDD1 binding to SAS-6 and recruiting SAS-6 to the centrosome. Overexpression of phosphomimicking NEDD1 mutant S325E promoted cartwheel assembly and daughter centriole biogenesis initiations, whereas overexpression of nonphosphorylatable NEDD1 mutant S325A abolished the initiations. Collectively, our results demonstrate that PLK4-regulated NEDD1 facilitates initiation of the cartwheel assembly and of daughter centriole biogenesis in mammals.
    DOI:  https://doi.org/10.1083/jcb.202002151
  11. Elife. 2020 Dec 22. pii: e60968. [Epub ahead of print]9
      Chloroplast biogenesis describes the transition of non-photosynthetic proplastids to photosynthetically active chloroplasts in the cells of germinating seeds. Chloroplast biogenesis requires the import of thousands of nuclear-encoded preproteins by essential import receptor TOC159. We demonstrate that the SUMO (Small Ubiquitin-related Modifier) pathway crosstalks with the ubiquitin-proteasome pathway to affect TOC159 stability during early plant development. We identified a SUMO3-interacting motif (SIM) in the TOC159 GTPase domain and a SUMO3 covalent SUMOylation site in the membrane domain. A single K to R substitution (K1370R) in the M-domain disables SUMOylation. Compared to wild type TOC159, TOC159K1370R was destabilized under UPS-inducing stress conditions. However, TOC159K1370R recovered to same protein level as wild type TOC159 in the presence of a proteasome inhibitor. Thus, SUMOylation partially stabilizes TOC159 against UPS-dependent degradation under stress conditions. Our data contribute to the evolving model of tightly controlled proteostasis of the TOC159 import receptor during proplastid to chloroplast transition.
    Keywords:  A. thaliana; plant biology
    DOI:  https://doi.org/10.7554/eLife.60968
  12. Nucleic Acids Res. 2020 Dec 21. pii: gkaa1183. [Epub ahead of print]
      During mRNA translation, tRNAs are charged by aminoacyl-tRNA synthetases and subsequently used by ribosomes. A multi-enzyme aminoacyl-tRNA synthetase complex (MSC) has been proposed to increase protein synthesis efficiency by passing charged tRNAs to ribosomes. An alternative function is that the MSC repurposes specific synthetases that are released from the MSC upon cues for functions independent of translation. To explore this, we generated mammalian cells in which arginyl-tRNA synthetase and/or glutaminyl-tRNA synthetase were absent from the MSC. Protein synthesis, under a variety of stress conditions, was unchanged. Most strikingly, levels of charged tRNAArg and tRNAGln remained unchanged and no ribosome pausing was observed at codons for arginine and glutamine. Thus, increasing or regulating protein synthesis efficiency is not dependent on arginyl-tRNA synthetase and glutaminyl-tRNA synthetase in the MSC. Alternatively, and consistent with previously reported ex-translational roles requiring changes in synthetase cellular localizations, our manipulations of the MSC visibly changed localization.
    DOI:  https://doi.org/10.1093/nar/gkaa1183
  13. J Cell Biol. 2021 Jan 04. pii: e202012041. [Epub ahead of print]220(1):
      Elimination of membrane proteins often requires recognition of their transmembrane domains (TMDs) in the lipid bilayer. In this issue, Arines et al. (2020. J. Cell Biol.https://doi.org/10.1083/jcb.202001116) show that in Saccharomyces cerevisiae, the vacuole-associated Rsp5 ubiquitin ligase uses a TMD in substrate adaptor Ssh4 to recognize membrane helices in Ypq1, which targets this lysine transporter for lysosomal degradation during lysine starvation.
    DOI:  https://doi.org/10.1083/jcb.202012041
  14. Biochim Biophys Acta Gen Subj. 2020 Dec 16. pii: S0304-4165(20)30340-8. [Epub ahead of print] 129829
       BACKGROUND: Iron export via the transport protein ferroportin (Fpn) plays a critical role in the regulation of dietary iron absorption and iron recycling in macrophages. Fpn plasma membrane expression is controlled by the hepatic iron-regulated hormone hepcidin in response to high iron availability and inflammation. Hepcidin binds to the central cavity of the Fpn transporter to block iron export either directly or by inducing Fpn internalization and lysosomal degradation. Here, we investigated whether iron deficiency affects Fpn protein turnover.
    METHODS: Therefore, we ectopically expressed Fpn in HeLa cells and used cycloheximide chase experiments to study basal and hepcidin-induced Fpn degradation under extracellular and intracellular iron deficiency.
    RESULTS: We show that iron deficiency does not affect basal Fpn turnover but causes a significant delay in hepcidin-induced degradation when cytosolic iron levels are low.
    CONCLUSIONS/GENERAL SIGNIFICANCE: These data have important mechanistic implications supporting the hypothesis that iron export is required for efficient targeting of Fpn by hepcidin. Additionally, we show that Fpn degradation is not involved in protecting cells from intracellular iron deficiency.
    Keywords:  Ferroportin; Hepcidin; Iron deficiency; Iron metabolism; Ligand-induced degradation; SLC40A1
    DOI:  https://doi.org/10.1016/j.bbagen.2020.129829
  15. J Invest Dermatol. 2021 Jan;pii: S0022-202X(20)32185-0. [Epub ahead of print]141(1): 5-9.e1
      Autophagy is required for normal skin homeostasis and its disordered regulation is implicated in a range of cutaneous diseases. Several well-characterized biomarkers of autophagy are used experimentally to quantify autophagic activity or clinically to correlate autophagy with disease progression. This article discusses the advantages and limitations of different approaches for measuring autophagy as well as the techniques for modulating autophagy. These include analysis of endogenous LC3, a central autophagy regulatory protein, and measurement of LC3 flux using a dual-fluorescent reporter, which provides a quantitative readout of autophagy in cell culture systems in vitro and animal models in vivo. Degradation of SQSTM1/p62 during autophagy is proposed as an alternative biomarker allowing the analysis of autophagy both experimentally and clinically. However, the complex regulation of individual autophagy proteins and their involvement in multiple pathways means that several proteins must be analyzed together, preferably over a time course to accurately interpret changes in autophagic activity. Genetic modification of autophagy proteins can be used to better understand basic autophagic mechanisms contributing to health and disease, whereas small molecule inhibitors of autophagy regulatory proteins, lysosomal inhibitors, or activators of cytotoxic autophagy have been explored as potential treatments for skin disorders where autophagy is defective.
    DOI:  https://doi.org/10.1016/j.jid.2020.10.004
  16. J Mammary Gland Biol Neoplasia. 2020 Dec 22.
      Breast cancer (BC) is responsible for 15% of all the cancer deaths among women in the USA. The tumor microenvironment (TME) has the potential to act as a driver of breast cancer progression and metastasis. The TME is composed of stromal cells within an extracellular matrix and soluble cytokines, chemokines and extracellular vesicles and nanoparticles that actively influence cell behavior. Extracellular vesicles include exosomes, microvesicles and large oncosomes that orchestrate fundamental processes during tumor progression through direct interaction with target cells. Long before tumor cell spread to future metastatic sites, tumor-secreted exosomes enter the circulation and establish distant pre-metastatic niches, hospitable and permissive milieus for metastatic colonization. Emerging evidence suggests that breast cancer exosomes promote tumor progression and metastasis by inducing vascular leakiness, angiogenesis, invasion, immunomodulation and chemoresistance. Exosomes are found in almost all physiological fluids including plasma, urine, saliva, and breast milk, providing a valuable resource for the development of non-invasive cancer biomarkers. Here, we review work on the role of exosomes in breast cancer progression and metastasis, and describe the most recent advances in models of exosome secretion, isolation, characterization and functional analysis. We highlight the potential applications of plasma-derived exosomes as predictive biomarkers for breast cancer diagnosis, prognosis and therapy monitoring. We finally describe the therapeutic approaches of exosomes in breast cancer.
    Keywords:  Biomarker; Breast cancer; Exosome; Metastasis; Proteomics; Ultracentrifuge
    DOI:  https://doi.org/10.1007/s10911-020-09473-0
  17. Front Physiol. 2020 ;11 608474
      The selective removal of damaged mitochondria, also known as mitophagy, is an important mechanism that regulates mitochondrial quality control. Evidence suggests that mitophagy is adversely affected in aged skeletal muscle, and this is thought to contribute toward the age-related decline of muscle health. While our knowledge of the molecular mechanisms that regulate mitophagy are derived mostly from work in non-muscle cells, whether these mechanisms are conferred in muscle under physiological conditions has not been thoroughly investigated. Recent findings from our laboratory and those of others have made several novel contributions to this field. Herein, we consolidate current literature, including our recent work, while evaluating how ubiquitin-dependent mitophagy is regulated both in muscle and non-muscle cells through the steps of mitochondrial fission, ubiquitylation, and autophagosomal engulfment. During ubiquitin-dependent mitophagy in non-muscle cells, mitochondrial depolarization activates PINK1-Parkin signaling to elicit mitochondrial ubiquitylation. TANK-binding kinase 1 (TBK1) then activates autophagy receptors, which in turn, tether ubiquitylated mitochondria to autophagosomes prior to lysosomal degradation. In skeletal muscle, evidence supporting the involvement of PINK1-Parkin signaling in mitophagy is lacking. Instead, 5'-AMP-activated protein kinase (AMPK) is emerging as a critical regulator. Mechanistically, AMPK activation promotes mitochondrial fission before enhancing autophagosomal engulfment of damaged mitochondria possibly via TBK1. While TBK1 may be a point of convergence between PINK1-Parkin and AMPK signaling in muscle, the critical question that remains is: whether mitochondrial ubiquitylation is required for mitophagy. In future, improving understanding of molecular processes that regulate mitophagy in muscle will help to develop novel strategies to promote healthy aging.
    Keywords:  AMPK; PINK1; Parkin; TBK1; ULK1; mitochondrial fission; mitophagy; skeletal muscle
    DOI:  https://doi.org/10.3389/fphys.2020.608474
  18. Int J Mol Sci. 2020 Dec 17. pii: E9648. [Epub ahead of print]21(24):
      Tumor progression to a metastatic and ultimately lethal stage relies on a tumor-supporting microenvironment that is generated by reciprocal communication between tumor and stromal host cells. The tumor-stroma crosstalk is instructed by the genetic alterations of the tumor cells-the most frequent being mutations in the gene Tumor protein p53 (TP53) that are clinically correlated with metastasis, drug resistance and poor patient survival. The crucial mediators of tumor-stroma communication are tumor-derived extracellular vesicles (EVs), in particular exosomes, which operate both locally within the primary tumor and in distant organs, at pre-metastatic niches as the future sites of metastasis. Here, we review how wild-type and mutant p53 proteins control the secretion, size, and especially the RNA and protein cargo of tumor-derived EVs. We highlight how EVs extend the cell-autonomous tumor suppressive activity of wild-type p53 into the tumor microenvironment (TME), and how mutant p53 proteins switch EVs into oncogenic messengers that reprogram tumor-host communication within the entire organism so as to promote metastatic tumor cell dissemination.
    Keywords:  exosomes; extracellular vesicles; metastatic niche priming; mutant p53; p53; pre-metastatic niche; tumor microenvironment
    DOI:  https://doi.org/10.3390/ijms21249648
  19. Biochim Biophys Acta Biomembr. 2020 Dec 16. pii: S0005-2736(20)30375-8. [Epub ahead of print] 183533
      Structure determination of membrane proteins is critical to the molecular understanding of many life processes, yet it has historically been a technically challenging endeavor. This past decade has given rise to a number of technological advancements, techniques, and reagents, which have facilitated membrane protein structural biology, resulting in an ever-growing number of membrane protein structures determined. To collate these advances, we have mined available literature to analyze the purification and structure determination specifics for all uniquely solved membrane protein structures from 2010 to 2019. Our analyses demonstrate the strong impact of single-particle cryo-electron microscopy on the field and illustrate how this technique has affected detergent and membrane mimetic usage. Furthermore, we detail how different structure determination methods, taxonomic domains and protein classes have unique detergent/membrane mimetic profiles, highlighting the importance of tailoring their selection. Our analyses provide a quantitative overview of where the field of membrane protein structural biology stands and how it has developed over time. We anticipate that these will serve as a useful tool to streamline future membrane protein structure determination by guiding the choice of detergent/membrane mimetic.
    Keywords:  Amphipols; Detergent mimetics; Detergents; Membrane proteins; Nanodiscs; Single-particle cryo-electron microscopy; Structural biology; X-ray crystallography
    DOI:  https://doi.org/10.1016/j.bbamem.2020.183533
  20. EMBO J. 2020 Dec 21. e107097
      Transfer RNAs (tRNAs) are central adaptors that decode genetic information during translation and have been long considered static cellular components. However, whether dynamic changes in tRNAs and tRNA-derived fragments actively contribute to gene regulation remains debated. In this issue, Huh et al (2020) highlight tyrosine tRNAGUA fragmentation at the nexus of an evolutionarily conserved adaptive codon-based stress response that fine-tunes translation to restrain growth in human cells.
    DOI:  https://doi.org/10.15252/embj.2020107097
  21. Am J Hum Genet. 2020 Dec 16. pii: S0002-9297(20)30436-5. [Epub ahead of print]
      The ubiquitin-proteasome system facilitates the degradation of unstable or damaged proteins. UBR1-7, which are members of hundreds of E3 ubiquitin ligases, recognize and regulate the half-life of specific proteins on the basis of their N-terminal sequences ("N-end rule"). In seven individuals with intellectual disability, epilepsy, ptosis, hypothyroidism, and genital anomalies, we uncovered bi-allelic variants in UBR7. Their phenotype differs significantly from that of Johanson-Blizzard syndrome (JBS), which is caused by bi-allelic variants in UBR1, notably by the presence of epilepsy and the absence of exocrine pancreatic insufficiency and hypoplasia of nasal alae. While the mechanistic etiology of JBS remains uncertain, mutation of both Ubr1 and Ubr2 in the mouse or of the C. elegans UBR5 ortholog results in Notch signaling defects. Consistent with a potential role in Notch signaling, C. elegans ubr-7 expression partially overlaps with that of ubr-5, including in neurons, as well as the distal tip cell that plays a crucial role in signaling to germline stem cells via the Notch signaling pathway. Analysis of ubr-5 and ubr-7 single mutants and double mutants revealed genetic interactions with the Notch receptor gene glp-1 that influenced development and embryo formation. Collectively, our findings further implicate the UBR protein family and the Notch signaling pathway in a neurodevelopmental syndrome with epilepsy, ptosis, and hypothyroidism that differs from JBS. Further studies exploring a potential role in histone regulation are warranted given clinical overlap with KAT6B disorders and the interaction of UBR7 and UBR5 with histones.
    Keywords:  Notch; UBR5; UBR7; epigenetic; epilepsy; hypothyroidism; kat6b; ptosis; ubr-5; ubr-7
    DOI:  https://doi.org/10.1016/j.ajhg.2020.11.018
  22. Genomics Proteomics Bioinformatics. 2020 Dec 17. pii: S1672-0229(20)30136-4. [Epub ahead of print]
      Intrinsically disordered proteins (IDPs) are an important class of proteins in all domains of life for their functional importance. However, how nature has shaped the disorder potential of prokaryotic and eukaryotic proteins is still not clearly known. Randomly generated sequences are free of any selective constraints thus these sequences are commonly used as null models. Considering different types of random protein models, here we seek to understand how the disorder potential of natural eukaryotic and prokaryotic proteins differs from random sequences. Comparing proteome-wide disorder content between real and random sequences of 12 model organisms we noticed that eukaryotic proteins are enriched in disordered regions compared to random sequences, but in prokaryotes such regions are depleted. By analyzing the position-wise disorder profile, we show that there is a generally higher disorder near the N- and C-terminal regions of eukaryotic proteins as compared to the random models; however, either no or a weak such trend was found in prokaryotic proteins. Moreover here we show that this preference is not caused by the amino acid or nucleotide composition at the respective sites. Instead, these regions were found to be endowed with a higher fraction of protein-protein binding sites suggesting their functional importance. We discuss several possible explanations for this pattern, such as improving the efficiency of protein-protein interaction, ribosome movement during translation, and post-translational modification, etc. However, further studies are needed to clearly understand the biophysical mechanisms causing the trend.
    Keywords:  Comparative genomics; Gene function; Intrinsically disordered protein; Proteome evolution; Z-score
    DOI:  https://doi.org/10.1016/j.gpb.2020.06.005
  23. J Cell Physiol. 2020 Dec 21.
      Proteotoxic stress is a common challenge for all organisms. Among various mechanisms involved in defending such stress, the evolutionarily conserved unfolded protein responses (UPRs) play a key role across species. Interestingly, UPRs can occur in different subcellular compartments including the endoplasmic reticulum (UPRER ), mitochondria (UPRMITO ), and cytoplasm (UPRCYTO ) through distinct mechanisms. While previous studies have shown that the UPRs are intuitively linked to organismal aging, a systematic assay on the temporal regulation of different type of UPRs during aging is still lacking. Here, using Caenorhabditis elegans (C. elegans) as the model system, we found that the endogenous UPRs (UPRER , UPRMITO , and UPRCYTO ) elevate with age, but their inducibility exhibits an age-dependent decline. Moreover, we revealed that the temporal requirements to induce different types of UPRs are distinct. Namely, while the UPRMITO can only be induced during the larval stage, the UPRER can be induced until early adulthood and the inducibility of UPRCYTO is well maintained until mid-late stage of life. Furthermore, we showed that different tissues may exhibit distinct temporal profiles of UPR inducibility during aging. Collectively, our findings demonstrate that UPRs of different subcellular compartments may have distinct temporal mechanisms during aging.
    Keywords:  aging; cytosolic UPR; endoplasmic reticulum UPR; mitochondrial UPR; stress; temporal
    DOI:  https://doi.org/10.1002/jcp.30215
  24. Biochem Biophys Res Commun. 2020 Dec 17. pii: S0006-291X(20)32191-4. [Epub ahead of print]535 66-72
      Bacteria possess several molecular pathways to adapt to changing environments and to stress conditions. One of these pathways involves a complex network of chaperone proteins that together control proteostasis. In the aquatic bacterium Shewanella oneidensis, we have recently identified a previously unknown co-chaperone of the DnaK/Hsp70 chaperone system, AtcJ, that is essential for adaptation to low temperatures. AtcJ is encoded in the atcJABC operon, whose products, together with DnaK, form a protein network allowing growth at low temperature. However, how these proteins allow cold adaptation is unknown. Here, we found that AtcB directly interacts with the RNA polymerase and decreases its activity. In addition, AtcB overproduction prevents bacterial growth due to RNA polymerase inhibition. Together, these results suggest that the Atc proteins could direct the DnaK chaperone to the RNA polymerase to sustain life at low temperatures.
    Keywords:  Bacterial adaptation; Cold stress; DnaK chaperone system; J-domain proteins (JDP); RNA polymerase; Stress response
    DOI:  https://doi.org/10.1016/j.bbrc.2020.12.015
  25. Free Radic Biol Med. 2020 Dec 18. pii: S0891-5849(20)31676-2. [Epub ahead of print]
      Mitochondrial unfolded protein response (UPRmt) is a mitochondria stress response, which the transcriptional activation programs of mitochondrial chaperone proteins and proteases are initiated to maintain proteostasis in mitochondria. Additionally, the activation of UPRmt delays aging and extends lifespan by maintaining mitochondrial proteostasis. Growing evidences suggests that UPRmt plays an important role in diverse human diseases, especially ageing-related diseases. Therefore, this review focuses on the role of UPRmt in ageing and ageing-related neurodegenerative diseases such as Alzheimer's disease, Huntington's disease and Parkinson's disease. The activation of UPRmt and the high expression of UPRmt components contribute to longevity extension. The activation of UPRmt may ameliorate Alzheimer's disease, Parkinson's disease and Huntington's disease. Besides, UPRmt is also involved in the occurrence and development of cancers and heart diseases. UPRmt contributes to the growth, invasive and metastasis of cancers. UPRmt has paradoxical roles in heart diseases. UPRmt not only protects against heart damage, but may sometimes aggravates the development of heart diseases. Considering the pleiotropic actions of UPRmt system, targeting UPRmt pathway may be a potent therapeutic avenue for neurodegenerative diseases, cancers and heart diseases.
    Keywords:  UPR(mt); ageing; cancers; diseases; heart; neurodegenerative
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2020.12.013
  26. Matrix Biol. 2020 Dec 13. pii: S0945-053X(20)30118-9. [Epub ahead of print]
      The conserved catabolic process of autophagy is an important control mechanism that degrades cellular organelles, debris and pathogens in autolysosomes. Although autophagy primarily protects against cellular insults, nutrient starvation or oxidative stress, hyper-activation of autophagy is also believed to cause autophagy-dependent cell death (ADCD). ADCD is a caspase-independent form of programmed cell death (PCD), characterized by an over-activation of autophagy, leading to prominent self-digestion of cellular material in autolysosomes beyond the point of cell survival. ADCD plays important roles in the development of lower organisms, but also in the response of cancer cells upon exposure of specific drugs or natural compounds. Importantly, the induction of ADCD as an alternative cell death pathway is of special interest in apoptosis-resistant cancer types and serves as an attractive and potential therapeutic option. Although the mechanisms of ADCD are diverse and not yet fully understood, both non-selective (bulk) autophagy and organelle-specific types of autophagy are believed to be involved in this type of cell death. Accordingly, several ADCD-inducing drugs are known to trigger severe mitochondrial damage and endoplasmic reticulum (ER) stress, whereas the contribution of other cell organelles, like ribosomes or peroxisomes, to the control of ADCD is not well understood. In this review, we highlight the general mechanisms of ADCD and discuss the current evidence for mitochondria- and ER-specific killing mechanisms of ADCD-inducing drugs.
    Keywords:  Autophagy-dependent cell death; ER, ER stress; Mitochondria; Mitophagy
    DOI:  https://doi.org/10.1016/j.matbio.2020.12.003
  27. Eur J Pharmacol. 2020 Dec 17. pii: S0014-2999(20)30921-3. [Epub ahead of print] 173816
      Diabetes-related brain complications are the most serious complications of terminal diabetes. The increasing evidence have showed that the predisposing factor is not only hyperglycemia, but also insulin deficiency. In this study, we demonstrated that insulin deficiency was involved in the apoptosis of nerve cells, and it was related to the interaction between acid-sensitive ion channel 1a (ASIC1a) and endoplasmic reticulum stress (ERS). By silencing C/EBP homologous protein (CHOP) and ASIC1a, the pro-apoptotic effect of insulin deficiency on NS20y cells was relieved. Further research found that the binding of CHOP and C/EBPα was increased in the nucleus of cells cultured without insulin, and C/EBPα was competitively inhibited as a negative regulator of ASIC1a, which further increased the ERS and lead to neuronal apoptosis. In summary, ERS and ASIC1a play an important role in neurological damage caused by insulin deficiency. Our finding may lead to new ideas and treatment of diabetes-related brain complications.
    Keywords:  ASIC1a; C/EBPα; CHOP; Cell apoptosis; Diabetes; Endoplasmic reticulum stress
    DOI:  https://doi.org/10.1016/j.ejphar.2020.173816
  28. Eur J Immunol. 2020 Dec 22.
      Autophagy has been reported to be involved in supporting antigen cross-presentation by dendritic cells (DCs). We have shown that DCs have the ability to store antigen for a prolonged time in endo-lysosomal compartments and thereby sustain MHCI antigen cross-presentation to CD8+ T cells. In the current study, we investigated the role of autophagy in long-term antigen presentation. We show that the autophagy machinery has a negative impact on storage of antigen in DCs. Atg5- /- DCs which are deficient in autophagy or DCs treated with common autophagy inhibitors showed enhanced antigen storage and antigen cross-presentation. This augmented antigen cross-presentation effect is independent of altered proteasome enzyme activity or MHCI surface expression on DCs. We visualized that the storage compartments are in close proximity to LC3 positive autophagosomes. Our results indicate that autophagosomes disrupt antigen storage in DCs and thereby regulate long-term MHCI cross-presentation. This article is protected by copyright. All rights reserved.
    Keywords:  DC; LC3; MHCI; autophagy; cross-presentation
    DOI:  https://doi.org/10.1002/eji.202048961
  29. EMBO J. 2020 Dec 22. e105001
      mRNA transport in neurons requires formation of transport granules containing many protein components, and subsequent alterations in phosphorylation status can release transcripts for translation. Further, mutations in a structurally disordered domain of the transport granule protein hnRNPA2 increase its aggregation and cause hereditary proteinopathy of neurons, myocytes, and bone. We examine in vitro hnRNPA2 granule component phase separation, partitioning specificity, assembly/disassembly, and the link to neurodegeneration. Transport granule components hnRNPF and ch-TOG interact weakly with hnRNPA2 yet partition specifically into liquid phase droplets with the low complexity domain (LC) of hnRNPA2, but not FUS LC. In vitro hnRNPA2 tyrosine phosphorylation reduces hnRNPA2 phase separation, prevents partitioning of hnRNPF and ch-TOG into hnRNPA2 LC droplets, and decreases aggregation of hnRNPA2 disease variants. The expression of chimeric hnRNPA2 D290V in Caenorhabditis elegans results in stress-induced glutamatergic neurodegeneration; this neurodegeneration is rescued by loss of tdp-1, suggesting gain-of-function toxicity. The expression of Fyn, a tyrosine kinase that phosphorylates hnRNPA2, reduces neurodegeneration associated with chimeric hnRNPA2 D290V. These data suggest a model where phosphorylation alters LC interaction specificity, aggregation, and toxicity.
    Keywords:  Fyn; hnRNPA2; liquid-liquid phase separation; neurodegeneration; tyrosine phosphorylation
    DOI:  https://doi.org/10.15252/embj.2020105001
  30. EBioMedicine. 2020 Dec 17. pii: S2352-3964(20)30514-4. [Epub ahead of print]63 103138
       BACKGROUND: The chromosome 22q11.2 deletion is an extremely high risk genetic factor for various neuropsychiatric disorders; however, the 22q11.2 deletion-related brain pathology in humans at the cellular and molecular levels remains unclear.
    METHODS: We generated iPS cells from healthy controls (control group) and patients with 22q11.2 deletion (22DS group), and differentiated them into dopaminergic neurons. Semiquantitative proteomic analysis was performed to compare the two groups. Next, we conducted molecular, cell biological and pharmacological assays.
    FINDINGS: Semiquantitative proteomic analysis identified 'protein processing in the endoplasmic reticulum (ER)' as the most altered pathway in the 22DS group. In particular, we found a severe defect in protein kinase R-like endoplasmic reticulum kinase (PERK) expression and its activity in the 22DS group. The decreased PERK expression was also shown in the midbrain of a 22q11.2 deletion mouse model. The 22DS group showed characteristic phenotypes, including poor tolerance to ER stress, abnormal F-actin dynamics, and decrease in protein synthesis. Some of phenotypes were rescued by the pharmacological manipulation of PERK activity and phenocopied in PERK-deficient dopaminergic neurons. We lastly showed that DGCR14 was associated with reduction in PERK expression.
    INTERPRETATION: Our findings led us to conclude that the 22q11.2 deletion causes various vulnerabilities in dopaminergic neurons, dependent on PERK dysfunction.
    FUNDING: This study was supported by the AMED under grant nos JP20dm0107087, JP20dm0207075, JP20ak0101113, JP20dk0307081, and JP18dm0207004h0005; the MEXT KAKENHI under grant nos. 16K19760, 19K08015, 18H04040, and 18K19511; the Uehara Memorial Foundation under grant no. 201810122; and 2019 iPS Academia Japan Grant.
    Keywords:  22q11.2 deletion; Dopaminergic neurons; Neuropsychiatric disorders; PERK; iPS cells
    DOI:  https://doi.org/10.1016/j.ebiom.2020.103138
  31. Vaccines (Basel). 2020 Dec 17. pii: E773. [Epub ahead of print]8(4):
      Bacteria do not simply express a constitutive panel of proteins but they instead undergo dynamic changes in their protein repertoire in response to changes in nutritional status and when exposed to different environments. These differentially expressed proteins may be suitable to use for vaccine antigens if they are virulence factors. Immediately upon entry into the host organism, bacteria are exposed to a different environment, which includes changes in temperature, osmotic pressure, pH, etc. Even when an organism has already penetrated the blood or lymphatics and it then enters another organ or a cell, it can respond to these new conditions by increasing the expression of virulence factors to aid in bacterial adherence, invasion, or immune evasion. Stress response proteins such as heat shock proteins and chaperones are some of the proteins that undergo changes in levels of expression and/or changes in cellular localization from the cytosol to the cell surface or the secretome, making them potential immunogens for vaccine development. Herein we highlight literature showing that intracellular chaperone proteins GroEL and DnaK, which were originally identified as playing a role in protein folding, are relocated to the cell surface or are secreted during invasion and therefore may be recognized by the host immune system as antigens. In addition, we highlight literature showcasing the immunomodulation effects these proteins can have on the immune system, also making them potential adjuvants or immunotherapeutics.
    Keywords:  DnaK; GroEL; adjuvant; bacteria; chaperone; heat shock protein; stress protein; virulence factor
    DOI:  https://doi.org/10.3390/vaccines8040773