bims-proteo Biomed News
on Proteostasis
Issue of 2020‒08‒23
thirty-nine papers selected by
Eric Chevet
INSERM


  1. Nature. 2020 Aug 19.
      Integral membrane proteins are encoded by approximately 25% of all protein-coding genes1. In eukaryotes, the majority of membrane proteins are inserted, modified and folded at the endoplasmic reticulum (ER)2. Research over the past several decades has determined how membrane proteins are targeted to the ER and how individual transmembrane domains (TMDs) are inserted into the lipid bilayer3. By contrast, very little is known about how multi-spanning membrane proteins with several TMDs are assembled within the membrane. During the assembly of TMDs, interactions between polar or charged amino acids typically stabilize the final folded configuration4-8. TMDs with hydrophilic amino acids are likely to be chaperoned during the co-translational biogenesis of membrane proteins; however, ER-resident intramembrane chaperones are poorly defined. Here we identify the PAT complex, an abundant obligate heterodimer of the widely conserved ER-resident membrane proteins CCDC47 and Asterix. The PAT complex engages nascent TMDs that contain unshielded hydrophilic side chains within the lipid bilayer, and it disengages concomitant with substrate folding. Cells that lack either subunit of the PAT complex show reduced biogenesis of numerous multi-spanning membrane proteins. Thus, the PAT complex is an intramembrane chaperone that protects TMDs during assembly to minimize misfolding of multi-spanning membrane proteins and maintain cellular protein homeostasis.
    DOI:  https://doi.org/10.1038/s41586-020-2624-y
  2. Cells. 2020 Aug 20. pii: E1928. [Epub ahead of print]9(9):
      The endoplasmic reticulum (ER) stress response and autophagy are important cellular responses that determine cell fate and whose dysregulation is implicated in the perturbation of homeostasis and diseases. Tonicity-responsive enhancer-binding protein (TonEBP, also called NFAT5) is a pleiotropic stress protein that mediates both protective and pathological cellular responses. Here, we examined the role of TonEBP in β-cell survival under ER stress. We found that TonEBP increases β-cell survival under ER stress by enhancing autophagy. The level of TonEBP protein increased under ER stress due to a reduction in its degradation via the ubiquitin-proteasome pathway. In response to ER stress, TonEBP increased autophagosome formations and suppressed the accumulation of protein aggregates and β-cell death. The Rel-homology domain of TonEBP interacted with FIP200, which is essential for the initiation of autophagy, and was required for autophagy and cell survival upon exposure to ER stress. Mice in which TonEBP was specifically deleted in pancreatic endocrine progenitor cells exhibited defective glucose homeostasis and a loss of islet mass. Taken together, these findings demonstrate that TonEBP protects against ER stress-induced β-cell death by enhancing autophagy.
    Keywords:  FIP200; NFAT5; UPR; autophagy initiation; islet; unfolded protein response
    DOI:  https://doi.org/10.3390/cells9091928
  3. Cell Death Differ. 2020 Aug 15.
      Double-stranded RNA (dsRNA)-dependent protein kinase R (PKR) activation via autophosphorylation is the central cellular response to stress that promotes cell death or apoptosis. However, the key factors and mechanisms behind the simultaneous activation of pro-survival signaling pathways remain unknown. We have discovered a novel regulatory mechanism for the maintenance of cellular homeostasis that relies on the phosphorylation interplay between sphingosine kinase 1 (SPHK1) and PKR during exogenous stress. We identified SPHK1 as a previously unrecognized PKR substrate. Phosphorylated SPHK1, a central kinase, mediates the activation of PKR-induced pro-survival pathways by the S1P/S1PR1/MAPKs/IKKα signal axis, and antagonizes PKR-mediated endoplasmic reticulum (ER) stress signal transduction under stress conditions. Otherwise, phosphorylated SPHK1 also acts as the negative feedback factor, preferentially binding to the latent form of PKR at the C-terminal kinase motif, inhibiting the homodimerization of PKR, suppressing PKR autophosphorylation, and reducing the signaling strength for cell death and apoptosis. Our results suggest that the balance of the activation levels between PKR and SPHK1, a probable hallmark of homeostasis maintenance, determines cell fate during cellular stress response.
    DOI:  https://doi.org/10.1038/s41418-020-00608-8
  4. Plant Signal Behav. 2020 Aug 15. 1807723
      Plant potexvirus and potyvirus infection can trigger endoplasmic reticulum (ER) stress. ER stress signaling increases the expression of cytoprotective ER-chaperones, especially the BiP chaperones which contribute to pro-survival functions when plants are subjected to infection. The inositol requiring enzyme (IRE1) is one ER stress sensor that is activated to splice the bZIP60 mRNA which produces a truncated transcription factor that activates gene expression in the nucleus. The IRE1/bZIP60 pathway is associated with restricting potyvirus and potexvirus infection. Recent data also identified the IRE1-independent UPR pathways led by bZIP28 and bZIP17 contribute to potexvirus and potyvirus infection. These three bZIP pathways recognize cis-regulatory elements in the BiP promoters to enhance gene expression. BiP is part of a negative feedback loop that regulates the activities of the ER stress transducers IRE1, bZIP28, and bZIP17 to block their activation. We discuss a model in which bZIP60 and bZIP17 synergistically induce BiP and other genes restricting Plantago asiatica mosaic virus (PlAMV; a potexvirus) infection while bZIP60 and bZIP28 independently induce genes supporting PlAMV infection. Regarding Turnip mosiac virus (TuMV, a potyvirus) infection, bZIP60 and bZIP28 serve to repress local and systemic infection. Finally, tauroursodeoxycholic acid treatments were used to demonstrate that the protein folding capacity significantly influences PlAMV accumulation.
    Keywords:  BIP; Unfolded protein response; endoplasmic reticulum stress; molecular chaperones; plant stress; potexvirus; potyvirus
    DOI:  https://doi.org/10.1080/15592324.2020.1807723
  5. Proc Natl Acad Sci U S A. 2020 Aug 17. pii: 202003847. [Epub ahead of print]
      The endoplasmic reticulum (ER) is the reservoir for calcium in cells. Luminal calcium levels are determined by calcium-sensing proteins that trigger calcium dynamics in response to calcium fluctuations. Here we report that Selenoprotein N (SEPN1) is a type II transmembrane protein that senses ER calcium fluctuations by binding this ion through a luminal EF-hand domain. In vitro and in vivo experiments show that via this domain, SEPN1 responds to diminished luminal calcium levels, dynamically changing its oligomeric state and enhancing its redox-dependent interaction with cellular partners, including the ER calcium pump sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). Importantly, single amino acid substitutions in the EF-hand domain of SEPN1 identified as clinical variations are shown to impair its calcium-binding and calcium-dependent structural changes, suggesting a key role of the EF-hand domain in SEPN1 function. In conclusion, SEPN1 is a ER calcium sensor that responds to luminal calcium depletion, changing its oligomeric state and acting as a reductase to refill ER calcium stores.
    Keywords:  SEPN1; calcium sensor; endoplasmic reticulum; stress of the endoplasmic reticulum
    DOI:  https://doi.org/10.1073/pnas.2003847117
  6. Cell Signal. 2020 Aug 14. pii: S0898-6568(20)30213-8. [Epub ahead of print]75 109736
      GRP78, a major molecular chaperone, is critical for the folding and maturation of membrane and secretory proteins and serves as the master regulator of the unfolded protein response. Thus, GRP78 is frequently upregulated in highly proliferative cells to cope with elevated protein synthesis and metabolic stress. IGF-1 is a potent regulator of cell growth, metabolism and survival. Previously we discovered that GRP78 is a novel downstream target of IGF-1 signaling by utilizing mouse embryonic fibroblast model systems where the IGF-1 receptor (IGF-1R) was either overexpressed (R+) or knockout (R-). Here we investigated the mechanisms whereby GRP78 is upregulated in the R+ cells. Our studies revealed that suppression of PI3K/AKT/mTOR downstream of IGF-1R signaling resulted in concurrent decrease in GRP78 and the transcription factor ATF4. Through knock-down and overexpression studies, we established ATF4 as the essential downstream nodal of the PI3K/AKT/mTOR signaling pathway critical for GRP78 transcriptional upregulation mediated by IGF-1R.
    Keywords:  ATF4; GRP78; Growth factor signaling; IGF-1; PI3K/AKT/mTOR
    DOI:  https://doi.org/10.1016/j.cellsig.2020.109736
  7. Cell Death Dis. 2020 Aug 03. 11(8): 648
      Caveolin-1 (CAV1), is a broadly expressed, membrane-associated scaffolding protein that acts both, as a tumor suppressor and a promoter of metastasis, depending on the type of cancer and stage. CAV1 is downregulated in human tumors, tumor cell lines and oncogene-transformed cells. The tumor suppressor activity of CAV1 is generally associated with its presence at the plasma membrane, where it participates, together with cavins, in the formation of caveolae and also has been suggested to interact with and inhibit a wide variety of proteins through interactions mediated by the scaffolding domain. However, a pool of CAV1 is also located at the endoplasmic reticulum (ER), modulating the secretory pathway in a manner dependent on serine-80 (S80) phosphorylation. In melanoma cells, CAV1 expression suppresses tumor formation, but the protein is largely absent from the plasma membrane and does not form caveolae. Perturbations to the function of the ER are emerging as a central driver of cancer, highlighting the activation of the unfolded protein response (UPR), a central pathway involved in stress mitigation. Here we provide evidence indicating that the expression of CAV1 represses the activation of the UPR in vitro and in solid tumors, reflected in the attenuation of PERK and IRE1α signaling. These effects correlated with increased susceptibility of cells to ER stress and hypoxia. Interestingly, the tumor suppressor activity of CAV1 was abrogated by site-directed mutagenesis of S80, correlating with a reduced ability to repress the UPR. We conclude that the tumor suppression by CAV1 involves the attenuation of the UPR, and identified S80 as essential in this context. This suggests that intracellular CAV1 regulates cancer through alternative signaling outputs.
    DOI:  https://doi.org/10.1038/s41419-020-02792-4
  8. Elife. 2020 Aug 21. pii: e56889. [Epub ahead of print]9
      Membrane proteins with multiple transmembrane domains play critical roles in cell physiology, but little is known about the machinery coordinating their biogenesis at the endoplasmic reticulum. Here we describe a ~360 kDa ribosome-associated complex comprising the core Sec61 channel and five accessory factors: TMCO1, CCDC47 and the Nicalin-TMEM147-NOMO complex. Cryo-electron microscopy reveals a large assembly at the ribosome exit tunnel organized around a central membrane cavity. Similar to protein-conducting channels that facilitate movement of transmembrane segments, cytosolic and luminal funnels in TMCO1 and TMEM147, respectively, suggest routes into the central membrane cavity. High-throughput mRNA sequencing shows selective translocon engagement with hundreds of different multi-pass membrane proteins. Consistent with a role in multi-pass membrane protein biogenesis, cells lacking different accessory components show reduced levels of one such client, the glutamate transporter EAAT1. These results identify a new human translocon and provide a molecular framework for understanding its role in multi-pass membrane protein biogenesis.
    Keywords:  biochemistry; cell biology; chemical biology; human
    DOI:  https://doi.org/10.7554/eLife.56889
  9. Cancers (Basel). 2020 Aug 20. pii: E2357. [Epub ahead of print]12(9):
      Matrix metalloproteinase 11 (MMP11) is an extracellular proteolytic enzyme belonging to the matrix metalloproteinase (MMP11) family. These proteases are involved in extracellular matrix (ECM) remodeling and activation of latent factors. MMP11 is a negative regulator of adipose tissue development and controls energy metabolism in vivo. In cancer, MMP11 expression is associated with poorer survival, and preclinical studies in mice showed that MMP11 accelerates tumor growth. How the metabolic role of MMP11 contributes to cancer development is poorly understood. To address this issue, we developed a series of preclinical mouse mammary gland tumor models by genetic engineering. Tumor growth was studied in mice either deficient (Loss of Function-LOF) or overexpressing MMP11 (Gain of Function-GOF) crossed with a transgenic model of breast cancer induced by the polyoma middle T antigen (PyMT) driven by the murine mammary tumor virus promoter (MMTV) (MMTV-PyMT). Both GOF and LOF models support roles for MMP11, favoring early tumor growth by increasing proliferation and reducing apoptosis. Of interest, MMP11 promotes Insulin-like Growth Factor-1 (IGF1)/protein kinase B (AKT)/Forkhead box protein O1 (FoxO1) signaling and is associated with a metabolic switch in the tumor, activation of the endoplasmic reticulum stress response, and an alteration in the mitochondrial unfolded protein response with decreased proteasome activity. In addition, high resonance magic angle spinning (HRMAS) metabolomics analysis of tumors from both models established a metabolic signature that favors tumorigenesis when MMP11 is overexpressed. These data support the idea that MMP11 contributes to an adaptive metabolic response, named metabolic flexibility, promoting cancer growth.
    Keywords:  UPRER; UPRmt; Warburg effect; breast cancer; metabolic flexibility; metabolomics
    DOI:  https://doi.org/10.3390/cancers12092357
  10. Biochem Biophys Res Commun. 2020 Sep 03. pii: S0006-291X(20)31125-6. [Epub ahead of print]529(4): 1038-1044
      Human Immunodeficiency Virus-1 (HIV-1) Nef promotes p53 protein degradation to protect HIV-1 infected cells from p53 induced apoptosis. We found that Nef mediated p53 degradation is accomplished through ubiquitin proteasome pathway in an Mdm2-independent manner. By GST pulldown and immunoprecipitation assays, we have shown that Nef interacts with E3 ubiquitin ligase E6AP in both Nef transfected HEK-293T cells and HIV-1 infected MOLT3 cells. The p53 ubiquitination and degradation was found to be enhanced by Nef with E6AP but not by Nef with E6AP-C843A, a dominant negative E6AP mutant. We show that Nef binds with E6AP and promotes E6AP dependent p53 ubiquitination. Further, Nef inhibits apoptosis of p53 null H1299 cells after exogenous expression of p53 protein. The p53 dependent apoptosis of H1299 cells was further reduced after the expression of Nef with E6AP. However, Nef mediated reduction in p53 induced apoptosis of H1299 cells was restored when Nef was co-expressed with E6AP-C843A. Thus, Nef and E6AP co-operate to promote p53 ubiquitination and degradation in order to suppress p53 dependent apoptosis. CHME3 cells, which are a natural host of HIV-1, also show p53 ubiquitination and degradation by Nef and E6AP. These results establish that Nef induces p53 degradation via cellular E3 ligase E6AP to inhibit apoptosis during HIV-1 infection.
    DOI:  https://doi.org/10.1016/j.bbrc.2020.05.188
  11. Mutat Res. 2020 Jul - Sep;785:pii: S1383-5742(20)30041-7. [Epub ahead of print]785 108321
      BRAF is a member of the RAF family of serine/threonine-specific protein kinases. Oncogenic BRAF, in particular, BRAF V600E, can disturb the normal protein folding machinery in the endoplasmic reticulum (ER) leading to accumulation of unfolded/misfolded proteins in the ER lumen, a condition known as endoplasmic reticulum (ER) stress. To alleviate such conditions, ER-stressed cells have developed a highly robust and adaptable signaling network known as unfolded protein response (UPR). UPR is ordinarily a cytoprotective response and usually operates through the induction of autophagy, an intracellular lysosomal degradation pathway that directs damaged proteins, protein aggregates, and damaged organelles for bulk degradation and recycling. Both ER stress and autophagy are involved in the progression and chemoresistance of melanoma. Melanoma, which arises as a result of malignant transformation of melanocytes, exhibits exceptionally high therapeutic resistance. Many mechanisms of therapeutic resistance have been identified in individual melanoma patients and in preclinical BRAF-driven melanoma models. Recently, it has been recognized that oncogenic BRAF interacts with GRP78 and removes its inhibitory influence on the three fundamental ER stress sensors of UPR, PERK, IRE1α, and ATF6. Dissociation of GRP78 from these ER stress sensors prompts UPR that subsequently activates cytoprotective autophagy. Thus, pharmacological inhibition of BRAF-induced ER stress-mediated autophagy can potentially resensitize BRAF mutant melanoma tumors to apoptosis. However, the underlying molecular mechanism of how oncogenic BRAF elevates the basal level of ER stress-mediated autophagy in melanoma tumors is not well characterized. A better understanding of the crosstalk between oncogenic BRAF, ER stress and autophagy may provide a rationale for improving existing cancer therapies and identify novel targets for therapeutic intervention of melanoma.
    Keywords:  Autophagy; Chemoresistance; Endoplasmic reticulum (ER) stress; Melanoma; Unfolding protein response
    DOI:  https://doi.org/10.1016/j.mrrev.2020.108321
  12. Proc Natl Acad Sci U S A. 2020 Aug 19. pii: 202001323. [Epub ahead of print]
      Proteasome inhibitors, such as bortezomib (BTZ), are highly effective and widely used treatments for multiple myeloma. One proposed reason for myeloma cells' exceptional sensitivity to proteasome inhibition is that they produce and continually degrade unusually large amounts of abnormal immunoglobulins. We, therefore, hypothesized that, heat shock may also be especially toxic to myeloma cells by causing protein unfolding, increasing further the substrate load on proteasomes, and, thus, putting further stress on their capacity for protein homeostasis. After a shift from 37 to 43 °C, all four myeloma lines studied underwent extensive apoptosis in 4 h, unlike 13 nonmyeloma cell lines, even though the myeloma cells induced heat-shock proteins and increased protein degradation similar to other cells. Furthermore, two myeloma lines resistant to proteasome inhibitors were also more resistant to 43 °C. Shifting myeloma cells to 43, 41, or 39 °C (which was not cytotoxic) dramatically increased their killing by proteasome inhibitors and inhibitors of ubiquitination or p97/VCP. Combining increased temperature with BTZ increased the accumulation of misfolded proteins and substrate load on the 26S proteasome. The apoptosis seen at 43 °C and at 39 °C with BTZ was mediated by caspase-9 and was linked to an accumulation of the proapoptotic Bcl-2-family member Noxa. Thus, myeloma cells are exceptionally sensitive to increased temperatures, which greatly increase substrate load on the ubiquitin-proteasome system and eventually activate the intrinsic apoptotic pathway. Consequently, for myeloma, mild hyperthermia may be a beneficial approach to enhance the therapeutic efficacy of proteasome inhibitors.
    Keywords:  Noxa; heat shock; multiple myeloma; protein misfolding; ubiquitin-proteasome system
    DOI:  https://doi.org/10.1073/pnas.2001323117
  13. Biochem Biophys Res Commun. 2020 Aug 15. pii: S0006-291X(20)31419-4. [Epub ahead of print]
      The ubiquitin-proteasome system (UPS) is composed of E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme, and E3 ubiquitin ligase, which play a fundamental role in mediating intracellular protein degradation. Ferroptosis is a non-apoptotic regulated cell death caused by iron accumulation and subsequent lipid peroxidation. However, the key pathway for UPS to promote ferroptotic cell death is still poorly understood. Here, we screened 571 UPS-related E1, E2, and E3 genes in a human pancreatic cancer cell line (PANC1) and identified the upregulation of NEDD4-like E3 ubiquitin protein ligase (NEDD4L) as a novel ferroptosis suppressor. Mass spectrometry analysis further showed that lactotransferrin (LTF), an iron-binding transport protein, is a direct NEDD4L-binding protein. Consequently, NEDD4L-mediated LTF protein degradation inhibits intracellular iron accumulation and subsequent oxidative damage-mediated ferroptotic cell death in various cancer cells. These findings establish a new molecular link between UPS and ferroptosis, which may lead to the development of potential anticancer strategies.
    Keywords:  Degradation; Ferroptosis; Iron; LTF; NEDD4L; Transferrin; Ubiquitin proteasome system
    DOI:  https://doi.org/10.1016/j.bbrc.2020.07.032
  14. Mol Cell Biochem. 2020 Aug 19.
      Endoplasmic reticulum (ER) stress responses have been demonstrated to play important roles in maintaining various cellular functions and to underlie many tissue dysfunctions. In this study, we identified Sec16B as an ER stress-inducible gene by microarray analysis of brefeldin A (BFA)-inducible genes in a mouse neuroblastoma cell-line, Neuro2a. Sec16B mRNA was induced by treatment with the ER stress-inducing reagents thapsigargin (Tg) and brefeldin A in a time-dependent manner. In the genomic sequence of the mouse Sec16B gene, we found an unfolded protein response element (UPRE), which is well conserved between humans and mice. Using luciferase reporter analyses, we showed that the UPRE in the mouse Sec16B gene was functional and responded well to ER stress-inducing stimuli and spliced XBP1 (sXBP1)-overexpression. In addition, a unique ATF4-responsive sequence within the first intron of the mouse Sec16B gene was characterized. Our study may help to elucidate the regulation of trafficking through the ER-Golgi apparatus and the biogenesis of ER-derived intracellular organelles.
    Keywords:  ATF4; ER stress; Sec16B; XBP1
    DOI:  https://doi.org/10.1007/s11010-020-03883-8
  15. Proc Natl Acad Sci U S A. 2020 Aug 12. pii: 202008381. [Epub ahead of print]
      Cis-prenyltransferase (cis-PTase) catalyzes the rate-limiting step in the synthesis of glycosyl carrier lipids required for protein glycosylation in the lumen of endoplasmic reticulum. Here, we report the crystal structure of the human NgBR/DHDDS complex, which represents an atomic resolution structure for any heterodimeric cis-PTase. The crystal structure sheds light on how NgBR stabilizes DHDDS through dimerization, participates in the enzyme's active site through its C-terminal -RXG- motif, and how phospholipids markedly stimulate cis-PTase activity. Comparison of NgBR/DHDDS with homodimeric cis-PTase structures leads to a model where the elongating isoprene chain extends beyond the enzyme's active site tunnel, and an insert within the α3 helix helps to stabilize this energetically unfavorable state to enable long-chain synthesis to occur. These data provide unique insights into how heterodimeric cis-PTases have evolved from their ancestral, homodimeric forms to fulfill their function in long-chain polyprenol synthesis.
    Keywords:  cis-prenyltransferase; dolichol; glycosylation
    DOI:  https://doi.org/10.1073/pnas.2008381117
  16. Cell Microbiol. 2020 Aug 22.
      Natural resistance associated macrophage protein 1 (Nramp1) was originally discovered as a genetic determinant of resistance against multiple intracellular pathogens, including Leishmania. It encodes a transmembrane protein of the phago-endosomal compartments, where it functions as an iron transporter. But the mechanism by which Nramp1 controls host-pathogen dynamics and determines final outcome of an infection is yet to be fully deciphered. Whether the expression of Nramp1 is altered in response to a pathogen attack is also unknown. To address these, Nramp1 status was examined in Leishmania major infected murine macrophages. We observed that at 12 hours post infection, there was drastic lowering of Nramp1 level accompanied by increased phagolysosomal iron content and enhanced intracellular parasite growth. Leishmania infection-induced Nramp1 downregulation was caused by ubiquitin-proteasome degradation pathway, which in turn was found to be mediated by the iron-regulatory peptide hormone hepcidin. Blocking of Nramp1 degradation with proteasome inhibitor or transcriptional agonist of hepcidin resulted in depletion of phagolysosomal iron pool that led to significant reduction of intracellular parasite burden. Interestingly, Nramp1 level was restored to normalcy after 30 hours of infection with a concomitant drop in phagolysosomal iron, which is suggestive of a host counteractive response to deprive the pathogen of this essential micronutrient. Taken together, our study implicates Nramp1 as a central player in the host-pathogen battle for phagolysosomal iron. We also report Nramp1 as a novel target for hepcidin and this 'hepcidin-Nramp1' axis may have a broader role in regulating macrophage iron homeostasis. This article is protected by copyright. All rights reserved.
    Keywords:  Leishmania; Nramp1; hepcidin; iron; macrophage; proteasome
    DOI:  https://doi.org/10.1111/cmi.13253
  17. Cell Death Differ. 2020 Aug 19.
      NF-κB signaling plays a critical role in tumor growth and treatment resistance in GBM as in many other cancers. However, the molecular mechanisms underlying high, constitutive NF-κB activity in GBM remains to be elucidated. Here, we screened a panel of tripartite motif (TRIM) family proteins and identified TRIM22 as a potential activator of NF-κB using an NF-κB driven luciferase reporter construct in GBM cell lines. Knockout of TRIM22 using Cas9-sgRNAs led to reduced GBM cell proliferation, while TRIM22 overexpression enhanced proliferation of cell populations, in vitro and in an orthotopic xenograft model. However, two TRIM22 mutants, one with a critical RING-finger domain deletion and the other with amino acid changes at two active sites of RING E3 ligase (C15/18A), were both unable to promote GBM cell proliferation over controls, thus implicating E3 ligase activity in the growth-promoting properties of TRIM22. Co-immunoprecipitations demonstrated that TRIM22 bound a negative regulator of NF-κB, NF-κB inhibitor alpha (IκBα), and accelerated its degradation by inducing K48-linked ubiquitination. TRIM22 also formed a complex with the NF-κB upstream regulator IKKγ and promoted K63-linked ubiquitination, which led to the phosphorylation of both IKKα/β and IκBα. Expression of a non-phosphorylation mutant, srIκBα, inhibited the growth-promoting properties of TRIM22 in GBM cell lines. Finally, TRIM22 was increased in a cohort of primary GBM samples on a tissue microarray, and high expression of TRIM22 correlated with other clinical parameters associated with progressive gliomas, such as wild-type IDH1 status. In summary, our study revealed that TRIM22 activated NF-κB signaling through posttranslational modification of two critical regulators of NF-κB signaling in GBM cells.
    DOI:  https://doi.org/10.1038/s41418-020-00606-w
  18. Proc Natl Acad Sci U S A. 2020 Aug 18. pii: 201922891. [Epub ahead of print]
      Organisms can adapt to a broad spectrum of sudden and dramatic changes in their environment. These abrupt changes are often perceived as stress and trigger responses that facilitate survival and eventual adaptation. The ubiquitin-proteasome system (UPS) is involved in most cellular processes. Unsurprisingly, components of the UPS also play crucial roles during various stress response programs. The budding yeast SCFMet30 complex is an essential cullin-RING ubiquitin ligase that connects metabolic and heavy metal stress to cell cycle regulation. Cadmium exposure results in the active dissociation of the F-box protein Met30 from the core ligase, leading to SCFMet30 inactivation. Consequently, SCFMet30 substrate ubiquitylation is blocked and triggers a downstream cascade to activate a specific transcriptional stress response program. Signal-induced dissociation is initiated by autoubiquitylation of Met30 and serves as a recruitment signal for the AAA-ATPase Cdc48/p97, which actively disassembles the complex. Here we show that the UBX cofactor Shp1/p47 is an additional key element for SCFMet30 disassembly during heavy metal stress. Although the cofactor can directly interact with the ATPase, Cdc48 and Shp1 are recruited independently to SCFMet30 during cadmium stress. An intact UBX domain is crucial for effective SCFMet30 disassembly, and a concentration threshold of Shp1 recruited to SCFMet30 needs to be exceeded to initiate Met30 dissociation. The latter is likely related to Shp1-mediated control of Cdc48 ATPase activity. This study identifies Shp1 as the crucial Cdc48 cofactor for signal-induced selective disassembly of a multisubunit protein complex to modulate activity.
    Keywords:  Cdc48/p97; SCF-Met30; Shp1
    DOI:  https://doi.org/10.1073/pnas.1922891117
  19. Cell Death Differ. 2020 Aug 17.
      Autophagosomal membranes can serve as activation platforms for intracellular death-inducing signaling complexes (iDISCs) to initiate Caspase-8-dependent apoptosis. In this study, we explore the impact of ESCRT-III-dependent phagophore closure on iDISC assemblies and cell death in osteosarcoma and neuroblastoma cells. Inhibition of phagophore closure by conditional depletion of CHMP2A, an ESCRT-III component, stabilizes iDISCs on immature autophagosomal membranes and induces Caspase-8-dependent cell death. Importantly, suppression of the iDISC formation via deletion of ATG7, an E1 enzyme for ubiquitin-like autophagy-related proteins, blocks Caspase-8 activation and cell death following CHMP2A depletion. Although DR5 expression and TRAIL-induced apoptosis are enhanced in CHMP2A-depleted cells, the canonical extrinsic pathway of apoptosis is not responsible for the initiation of cell death by CHMP2A depletion. Furthermore, the loss of CHMP2A impairs neuroblastoma tumor growth associated with decreased autophagy and increased apoptosis in vivo. Together, these findings indicate that inhibition of the ESCRT-III-dependent autophagosome sealing process triggers noncanonical Caspase-8 activation and apoptosis, which may open new avenues for therapeutic targeting of autophagy in cancer.
    DOI:  https://doi.org/10.1038/s41418-020-00610-0
  20. Life Sci Alliance. 2020 Nov;pii: e201900630. [Epub ahead of print]3(11):
      Pch2 is a meiosis-specific AAA+ protein that controls several important chromosomal processes. We previously demonstrated that Orc1, a subunit of the ORC, functionally interacts with budding yeast Pch2. The ORC (Orc1-6) AAA+ complex loads the AAA+ MCM helicase to origins of replication, but whether and how ORC collaborates with Pch2 remains unclear. Here, we show that a Pch2 hexamer directly associates with ORC during the meiotic G2/prophase. Biochemical analysis suggests that Pch2 uses its non-enzymatic NH2-terminal domain and AAA+ core and likely engages the interface of ORC that also binds to Cdc6, a factor crucial for ORC-MCM binding. Canonical ORC function requires association with origins, but we show here that despite causing efficient removal of Orc1 from origins, nuclear depletion of Orc2 and Orc5 does not trigger Pch2/Orc1-like meiotic phenotypes. This suggests that the function for Orc1/Pch2 in meiosis can be executed without efficient association of ORC with origins of replication. In conclusion, we uncover distinct functionalities for Orc1/ORC that drive the establishment of a non-canonical, meiosis-specific AAA+ assembly with Pch2.
    DOI:  https://doi.org/10.26508/lsa.201900630
  21. Mol Microbiol. 2020 Aug 15.
      Eeyarestatin 1 (ES1) is an inhibitor of endoplasmic reticulum (ER) associated protein degradation, Sec61-dependent Ca2+ homeostasis and protein translocation into the ER. Recently, evidence was presented showing that a smaller analogue of ES1, ES24, targets the Sec61-translocon and captures it in an open conformation that is translocation-incompetent. We now show that ES24 impairs protein secretion and membrane protein insertion in Escherichia coli via the homologous SecYEG-translocon. Transcriptomic analysis suggested that ES24 has a complex mode of action, probably involving multiple targets. Interestingly, ES24 shows anti-bacterial activity towards clinically relevant strains. Furthermore, the anti-bacterial activity of ES24 is equivalent to or better than that of nitrofurantoin, a known antibiotic that, although structurally similar to ES24, does not interfere with SecYEG-dependent protein trafficking. Like nitrofurantoin, we find that ES24 requires activation by the NfsA and NfsB nitroreductases, suggesting that the formation of highly reactive nitroso intermediates is essential for target inactivation in vivo.
    Keywords:   Escherichia coli ; Sec61; eeyarestatin 1; nitrofurantoin
    DOI:  https://doi.org/10.1111/mmi.14589
  22. Antioxidants (Basel). 2020 Aug 20. pii: E773. [Epub ahead of print]9(9):
      Due to their high metabolic rate, tumor cells produce exacerbated levels of reactive oxygen species that need to be under control. Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) is a scaffold protein with multiple yet poorly understood functions that participates in tumor progression and promotes cancer cell survival. However, its participation in the control of oxidative stress has not been addressed yet. We show that WIP depletion increases the levels of reactive oxygen species and reduces the levels of transcription factor NRF2, the master regulator of redox homeostasis. We found that WIP stabilizes NRF2 by restraining the activity of its main NRF2 repressor, the E3 ligase adapter KEAP1, because the overexpression of a NRF2ΔETGE mutant that is resistant to targeted proteasome degradation by KEAP1 or the knock-down of KEAP1 maintains NRF2 levels in the absence of WIP. Mechanistically, we show that the increased KEAP1 activity in WIP-depleted cells is not due to the protection of KEAP1 from autophagic degradation, but is dependent on the organization of the Actin cytoskeleton, probably through binding between KEAP1 and F-Actin. Our study provides a new role of WIP in maintaining the oxidant tolerance of cancer cells that may have therapeutic implications.
    Keywords:  antioxidants; cytoskeleton; oxidative stress; redox
    DOI:  https://doi.org/10.3390/antiox9090773
  23. EMBO J. 2020 Aug 20. e103889
      Plasticity of the proteome is critical to adapt to varying conditions. Control of mitochondrial protein import contributes to this plasticity. Here, we identified a pathway that regulates mitochondrial protein import by regulated N-terminal processing. We demonstrate that dipeptidyl peptidases 8/9 (DPP8/9) mediate the N-terminal processing of adenylate kinase 2 (AK2) en route to mitochondria. We show that AK2 is a substrate of the mitochondrial disulfide relay, thus lacking an N-terminal mitochondrial targeting sequence and undergoing comparatively slow import. DPP9-mediated processing of AK2 induces its rapid proteasomal degradation and prevents cytosolic accumulation of enzymatically active AK2. Besides AK2, we identify more than 100 mitochondrial proteins with putative DPP8/9 recognition sites and demonstrate that DPP8/9 influence the cellular levels of a number of these proteins. Collectively, we provide in this study a conceptual framework on how regulated cytosolic processing controls levels of mitochondrial proteins as well as their dual localization to mitochondria and other compartments.
    Keywords:  MIA40; adenylate kinase 2; dipeptidyl peptidase 9; mitochondrial protein import; quality control
    DOI:  https://doi.org/10.15252/embj.2019103889
  24. Mol Immunol. 2020 Aug 18. pii: S0161-5890(20)30430-2. [Epub ahead of print]126 120-128
      The interleukin 12 (IL-12) family of cytokines regulates T cell functions and is key for the orchestration of immune responses. Each heterodimeric IL-12 family member is a glycoprotein. However, the impact of glycosylation on biogenesis and function of the different family members has remained incompletely defined. Here, we identify glycosylation sites within human IL-12 family subunits that become modified upon secretion. Building on these insights, we show that glycosylation is dispensable for secretion of human IL-12 family cytokines except for IL-35. Furthermore, our data show that glycosylation differentially influences IL-12 family cytokine functionality, with IL-27 being most strongly affected. Taken together, our study provides a comprehensive analysis of how glycosylation affects biogenesis and function of a key human cytokine family and provides the basis for selectively modulating their secretion via targeting glycosylation.
    Keywords:  immune signaling; interleukins; protein assembly; protein glycosylation; protein secretion
    DOI:  https://doi.org/10.1016/j.molimm.2020.07.015
  25. Sci Rep. 2020 Aug 18. 10(1): 13942
      Transcription is regulated through a dynamic interplay of DNA-associated proteins, and the composition of gene-regulatory complexes is subject to continuous adjustments. Protein alterations include post-translational modifications and elimination of individual polypeptides. Spatially and temporally controlled protein removal is, therefore, essential for gene regulation and accounts for the short half-life of many transcription factors. The ubiquitin-proteasome system is responsible for site- and target-specific ubiquitination and protein degradation. Specificity of ubiquitination is conferred by ubiquitin ligases. Cullin-RING complexes, the largest family of ligases, require multi-unit assembly around one of seven cullin proteins. To investigate the direct role of cullins in ubiquitination of DNA-bound proteins and in gene regulation, we analyzed their subcellular locations and DNA-affinities. We found CUL4A and CUL7 to be largely excluded from the nucleus, whereas CUL4B was primarily nuclear. CUL1,2,3, and 5 showed mixed cytosolic and nuclear expression. When analyzing chromatin affinity of individual cullins, we discovered that CUL1 preferentially associated with active promoter sequences and co-localized with 23% of all DNA-associated protein degradation sites. CUL1 co-distributed with c-MYC and specifically repressed nuclear-encoded mitochondrial and splicing-associated genes. These studies underscore the relevance of spatial control in chromatin-associated protein ubiquitination and define a novel role for CUL1 in gene repression.
    DOI:  https://doi.org/10.1038/s41598-020-70610-0
  26. Open Biol. 2020 Aug;10(8): 200089
      Hsp70 chaperones interact with substrate proteins in a coordinated fashion that is regulated by nucleotides and enhanced by assisting cochaperones. There are numerous homologues and isoforms of Hsp70 that participate in a wide variety of cellular functions. This diversity can facilitate adaption or specialization based on particular biological activity and location within the cell. In this review, we highlight two specialized binding partner proteins, Tim44 and IRE1, that interact with Hsp70 at the membrane in order to serve their respective roles in protein translocation and unfolded protein response signalling. Recent mechanistic data suggest analogy in the way the two Hsp70 homologues (BiP and mtHsp70) can bind and release from IRE1 and Tim44 upon substrate engagement. These shared mechanistic features may underlie how Hsp70 interacts with specialized binding partners and may extend our understanding of the mechanistic repertoire that Hsp70 chaperones possess.
    Keywords:  BiP; Hsp70 chaperones; IRE1; Tim44; UPR; protein translocation
    DOI:  https://doi.org/10.1098/rsob.200089
  27. Nat Chem Biol. 2020 Aug 17.
      The ubiquitin-proteasome system (UPS) is a highly regulated protein disposal process critical to cell survival. Inhibiting the pathway induces proteotoxic stress and can be an effective cancer treatment. The therapeutic window observed upon proteasomal blockade has motivated multiple UPS-targeting strategies, including preventing ubiquitination altogether. E1 initiates the cascade by transferring ubiquitin to E2 enzymes. A small molecule that engages the E1 ATP-binding site and derivatizes ubiquitin disrupts enzymatic activity and kills cancer cells. However, binding-site mutations cause resistance, motivating alternative approaches to block this promising target. We identified an interaction between the E2 N-terminal alpha-1 helix and a pocket within the E1 ubiquitin-fold domain as a potentially druggable site. Stapled peptides modeled after the E2 alpha-1 helix bound to the E1 groove, induced a consequential conformational change and inhibited E1 ubiquitin thiotransfer, disrupting E2 ubiquitin charging and ubiquitination of cellular proteins. Thus, we provide a blueprint for a distinct E1-targeting strategy to treat cancer.
    DOI:  https://doi.org/10.1038/s41589-020-0625-7
  28. Nat Cell Biol. 2020 Aug 17.
      Autophagy is a catabolic process whereby cytoplasmic components are degraded within lysosomes, allowing cells to maintain energy homeostasis during nutrient depletion. Several studies reported that the CDK inhibitor p27Kip1 promotes starvation-induced autophagy by an unknown mechanism. Here we find that p27 controls autophagy via an mTORC1-dependent mechanism in amino acid-deprived cells. During prolonged starvation, a fraction of p27 is recruited to lysosomes, where it interacts with LAMTOR1, a component of the Ragulator complex required for mTORC1 activation. Binding of p27 to LAMTOR1 prevents Ragulator assembly and mTORC1 activation, promoting autophagy. Conversely, p27-/- cells exhibit elevated mTORC1 signalling as well as impaired lysosomal activity and autophagy. This is associated with cytoplasmic sequestration of TFEB, preventing induction of the lysosomal genes required for lysosome function. LAMTOR1 silencing or mTOR inhibition restores autophagy and induces apoptosis in p27-/- cells. Together, these results reveal a direct coordinated regulation between the cell cycle and cell growth machineries.
    DOI:  https://doi.org/10.1038/s41556-020-0554-4
  29. Cancers (Basel). 2020 Aug 21. pii: E2363. [Epub ahead of print]12(9):
      Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively is able to increase apoptosis in cancer cells as agent with minimum toxicity to noncancerous cells. However, all cancer cells are not sensitive to TRAIL-induced apoptosis. In this study, we showed the sub-lethal concentrations of a lysosomotropic autophagy inhibitor, IITZ-01, sensitizes cancer cells (renal, lung, and breast carcinoma) to TRAIL-induced apoptosis through DR5 upregulation and survivin downregulation through ubiquitin-proteasome pathway. Knockdown of DR5 or overexpression of survivin inhibited combined treatment with IITZ-01 and TRAIL-induced apoptosis. IITZ-01 downregulated protein expression of Cbl, ubiquitin E3 ligase, and decreased expression level of Cbl markedly led to increase DR5 protein expression and TRAIL sensitivity. Moreover, IITZ-01 decreased expression level of survivin protein via downregulation of deubiquitinase ubiquitin-specific protease 9X (USP9X) expression. Taken together, these results provide the first evidence that IITZ-01 enhances TRAIL-mediated apoptosis through DR5 stabilization by downregulation of Cbl and USP9X-dependent survivin ubiquitination and degradation in renal carcinoma cells.
    Keywords:  DR5; IITZ-01; TRAIL; USP9X; survivin
    DOI:  https://doi.org/10.3390/cancers12092363
  30. Cells. 2020 Aug 21. pii: E1931. [Epub ahead of print]9(9):
      Extracellular membrane vesicles (EVs) are emerging as new vehicles in intercellular communication, but how the biological information contained in EVs is shared between cells remains elusive. Several mechanisms have been described to explain their release from donor cells and the initial step of their uptake by recipient cells, which triggers a cellular response. Yet, the intracellular routes and subcellular fate of EV content upon internalization remain poorly characterized. This is particularly true for EV-associated proteins and nucleic acids that shuttle to the nucleus of host cells. In this review, we will describe and discuss the release of EVs from donor cells, their uptake by recipient cells, and the fate of their cargoes, focusing on a novel intracellular route wherein small GTPase Rab7+ late endosomes containing endocytosed EVs enter into nuclear envelope invaginations and deliver their cargo components to the nucleoplasm of recipient cells. A tripartite protein complex composed of (VAMP)-associated protein A (VAP-A), oxysterol-binding protein (OSBP)-related protein-3 (ORP3), and Rab7 is essential for the transfer of EV-derived components to the nuclear compartment by orchestrating the particular localization of late endosomes in the nucleoplasmic reticulum.
    Keywords:  Rab7; VAMP-associated protein A; exosome; extracellular vesicle; intercellular communication; late endosome; nucleoplasmic reticulum; oxysterol-binding-related protein
    DOI:  https://doi.org/10.3390/cells9091931
  31. J Biol Chem. 2020 Aug 14. pii: jbc.RA120.013873. [Epub ahead of print]
      The retina-specific chaperone AIPL1 is essential for the correct assembly of phosphodiesterase 6 (PDE6), which is a pivotal effector enzyme for phototransduction and vision because it hydrolyzes cGMP. AIPL1 interacts with the cytokine-inducible ubiquitin-like modifier FAT10 that gets covalently conjugated to hundreds of proteins and targets its conjugation substrates for proteasomal degradation, but whether FAT10 affects PDE6 function or turnover is unknown. Here, we show that FAT10 mRNA is expressed in human retina and identify rod PDE6 as a retina-specific substrate of FAT10 conjugation. We found that AIPL1 stabilizes the FAT10 monomer as well as the PDE6-FAT10 conjugate. Additionally, we elucidated the functional consequences of PDE6 FAT10ylation. On the one hand, we demonstrate that FAT10 targets PDE6 for proteasomal degradation by formation of a covalent isopeptide linkage. On the other hand, FAT10 inhibits PDE6 cGMP hydrolyzing activity by non-covalently interacting with the PDE6 GAFa and catalytic domains. Therefore, FAT10 may contribute to loss of PDE6 and, as a consequence, degeneration of retinal cells in eye diseases linked to inflammation and inherited blindness causing mutations in AIPL1.
    Keywords:  AIPL1; FAT10; PDE6; cell culture; photoreceptor; proteasome; protein processing; protein stability; retinal degeneration; ubiquitylation (ubiquitination)
    DOI:  https://doi.org/10.1074/jbc.RA120.013873
  32. Mol Biol Cell. 2020 Aug 20. mbcE20010068
      The chaperone-mediated sequestration of misfolded proteins into specialized quality control compartments represents an important strategy for maintaining protein homeostasis in response to stress. However, precisely how this process is controlled in time and subcellular space and integrated with the cell's protein refolding and degradation pathways, remains unclear. We set out to understand how aggregated proteins are managed during infection-related development by a globally devastating plant pathogenic fungus, and to determine how impaired protein quality control impacts upon cellular differentiation and pathogenesis in this system. Here we show that in the absence of Hsp104 disaggregase activity aggregated proteins are spatially sequestered into quality control compartments within conidia, but not within terminally differentiated infection cells, and thus spatial protein quality control is cell-type dependent. We demonstrate that impaired aggregate resolution results in a short-term developmental penalty but has no significant impact upon appressorium function. Lastly, we show that, somewhat unexpectedly, the autophagy machinery is necessary for the normal formation and compartmentalization of protein aggregates. Taken together, our findings provide important new insight into spatial protein quality control during the process of terminal cellular differentiation by a globally important model eukaryote and reveals a new level of interplay between major proteostasis pathways. [Media: see text].
    DOI:  https://doi.org/10.1091/mbc.E20-01-0068
  33. J Biol Chem. 2020 Aug 17. pii: jbc.RA119.012300. [Epub ahead of print]
      Chaperones are essential components of the protein homeostasis network. There is a growing interest in optimizing chaperone function, but exactly how to achieve this aim is unclear. Here, using a model chaperone, the bacterial protein Spy, we demonstrate that substitutions that alter the electrostatic potential of Spy's concave, client-binding surface enhance Spy's anti-aggregation activity. We show that this strategy is more efficient than one that enhances the hydrophobicity of Spy's surface. Our findings thus challenge the traditional notion that hydrophobic interactions are the major driving forces that guide chaperone-substrate binding. Kinetic data revealed that both charge- and hydrophobicity-enhanced Spy variants release clients more slowly, resulting in a greater "holdase" activity. However, increasing short-range hydrophobic interactions deleteriously affected Spy's ability to capture substrates, thus reducing its in vitro chaperone activity toward fast-aggregating substrates. Our strategy in chaperone surface engineering therefore sought to fine-tune the different molecular forces involved in chaperone-substrate interactions rather than focusing on enhancing hydrophobic interactions. These results improve our understanding of the mechanistic basis of chaperone-client interactions and illustrate how protein surface-based mutational strategies can facilitate the rational improvement of molecular chaperones.
    Keywords:  Spy; chaperone-substrate interaction; conformational change; electrostatic interaction; hydrophobic interaction; kinetics; molecular chaperone; protein aggregation; protein engineering; protein folding
    DOI:  https://doi.org/10.1074/jbc.RA119.012300
  34. Nat Commun. 2020 Aug 21. 11(1): 4184
      Oncogenic processes exert their greatest effect by targeting regulators of cell proliferation. Studying the mechanism underlying growth augmentation is expected to improve clinical therapies. The ovarian tumor (OTU) subfamily deubiquitinases have been implicated in the regulation of critical cell-signaling cascades, but most OTUs functions remain to be investigated. Through an unbiased RNAi screen, knockdown of OTUD5 is shown to significantly accelerate cell growth. Further investigation reveals that OTUD5 depletion leads to the enhanced transcriptional activity of TRIM25 and the inhibited expression of PML by altering the ubiquitination level of TRIM25. Importantly, OTUD5 knockdown accelerates tumor growth in a nude mouse model. OTUD5 expression is markedly downregulated in tumor tissues. The reduced OTUD5 level is associated with an aggressive phenotype and a poor clinical outcome for cancers patients. Our findings reveal a mechanism whereby OTUD5 regulates gene transcription and suppresses tumorigenesis by deubiquitinating TRIM25, providing a potential target for oncotherapy.
    DOI:  https://doi.org/10.1038/s41467-020-17926-7
  35. Anticancer Agents Med Chem. 2020 Aug 19.
      Intracellular protein degradation is mediated selectively by the Ubiquitin Proteasome System (UPS) and autophagic-lysosomal system in mammalian cells. Many cellular and physiological processes, such as cell division, cell differentiation, and cellular demise. are fine-tuned via the UPS-mediated protein degradation. Notably, impairment of UPS contributes to human disorders including cancer and neurodegeneration. The proteasome-dependent N-degron pathways mediate the degradation of proteins through their destabilizing amino-terminal residues. Recent advances unveiled that targeting N-degron proteolytic pathways can aid in sensitizing some cancer cells to chemotherapeutic agents. Furthermore, interestingly, exploiting the N-degron feature, the simplest degradation signal in mammals, and fusing it to a ligand specific for Estrogen-Related Receptor alpha (ERRa) has demonstrated its utility in ERRa knockdown, via Nterminal dependent degradation, and also its efficiency in the inhibition of growth of breast cancer cells. These recent advances uncover the therapeutic implications of targeting and exploiting N-degron proteolytic pathways to curb growth and migration of cancer cells.
    Keywords:  Cancer cell death; N-degron; N-end rule; PROTACS. ; apoptosis; proteasome; protein degradation; proteolysis; ubiquitin
    DOI:  https://doi.org/10.2174/1871520620666200819112632
  36. Proc Natl Acad Sci U S A. 2020 Aug 19. pii: 202008645. [Epub ahead of print]
      The early steps of DNA double-strand break (DSB) repair in human cells involve the MRE11-RAD50-NBS1 (MRN) complex and its cofactor, phosphorylated CtIP. The roles of these proteins in nucleolytic DSB resection are well characterized, but their role in bridging the DNA ends for efficient and correct repair is much less explored. Here we study the binding of phosphorylated CtIP, which promotes the endonuclease activity of MRN, to single long (∼50 kb) DNA molecules using nanofluidic channels and compare it to the yeast homolog Sae2. CtIP bridges DNA in a manner that depends on the oligomeric state of the protein, and truncated mutants demonstrate that the bridging depends on CtIP regions distinct from those that stimulate the nuclease activity of MRN. Sae2 is a much smaller protein than CtIP, and its bridging is significantly less efficient. Our results demonstrate that the nuclease cofactor and structural functions of CtIP may depend on the same protein population, which may be crucial for CtIP functions in both homologous recombination and microhomology-mediated end-joining.
    Keywords:  CtIP; DNA repair; homologous recombination; nanofluidics; single DNA molecule biophysics
    DOI:  https://doi.org/10.1073/pnas.2008645117
  37. Nature. 2020 Aug 19.
      Most quality control pathways target misfolded proteins to prevent toxic aggregation and neurodegeneration1. Dimerization quality control further improves proteostasis by eliminating complexes of aberrant composition2, but how it detects incorrect subunits remains unknown. Here we provide structural insight into target selection by SCF-FBXL17, a dimerization-quality-control E3 ligase that ubiquitylates and helps to degrade inactive heterodimers of BTB proteins while sparing functional homodimers. We find that SCF-FBXL17 disrupts aberrant BTB dimers that fail to stabilize an intermolecular β-sheet around a highly divergent β-strand of the BTB domain. Complex dissociation allows SCF-FBXL17 to wrap around a single BTB domain, resulting in robust ubiquitylation. SCF-FBXL17 therefore probes both shape and complementarity of BTB domains, a mechanism that is well suited to establish quality control of complex composition for recurrent interaction modules.
    DOI:  https://doi.org/10.1038/s41586-020-2636-7
  38. Cell Death Differ. 2020 Aug 19.
      STAT1 is a master regulator that orchestrates type 1 and 2 interferon (IFN)-induced IFN-stimulated gene (ISG) expression. The mechanisms by which STAT1 is phosphorylated and activated upon IFN signaling remain elusive. Our work demonstrated that ubiquitination of STAT1 mediated by the E3 ligase RNF220 contributed significantly to STAT1 activation and innate immune responses. Rnf220 gene deficiency resulted in the downregulation of IFN signaling and decreased expression of ISGs in response to type 1 and 2 IFNs stimulation and Acinetobacter baumannii and HSV-1 infection. Mechanistically, RNF220 interacted with STAT1 and mediated the K63-linked polyubiquitination of STAT1 at residue K110, which promoted the interaction between STAT1 and the kinase JAK1. The expression of RNF220 was induced by pathogenic infection and IFN signaling. RNF220 promoted STAT1 ubiquitination and phosphorylation through a positive feedback loop. RNF220 haploinsufficiency impaired IFN signaling, and RNF220-defective mice were more susceptible to A. baumannii and HSV-1 infection than WT mice. Our work offers novel insights into the mechanisms of STAT1 modulation and provides potential therapeutic targets against bacterial and viral infection and inflammatory diseases.
    DOI:  https://doi.org/10.1038/s41418-020-00609-7
  39. Cancer Res. 2020 Aug 14. pii: canres.1259.2020. [Epub ahead of print]
      Elevated expression of EZH2, the enzymatic subunit of polycomb repressive complex 2 (PRC2), often occurs in cancer. EZH2 expression results in the silencing of genes that suppress tumor formation and metastasis through trimethylation of histone H3 at lysine 27 (H3K27me3) at said gene promoters. However, inhibitors of EZH2 enzymatic activity have not shown the expected efficacy against cancer in clinical trials, suggesting a need for other strategies to address EZH2 overexpression. Here we show that SUMOylation, a post-translational modification characterized by covalent attachment of small ubiquitin-like modifier (SUMO) proteins to a lysine (Lys) residue on target proteins, enhances EZH2 transcription. Either knockdown of the SUMO-activating enzyme SAE2 or pharmacological inhibition of SUMOylation resulted in decreased levels of EZH2 mRNA and protein as well as reduced H3K27me3 levels. SUMOylation regulated EZH2 expression by enhancing binding of the E2F1 transcriptional activator to the EZH2 promoter. Inhibition of SUMOylation not only resulted in reduced EZH2 mRNA and protein levels but also increased expression of genes silenced by EZH2, such as E-cadherin which suppresses epithelial-mesenchymal transition and metastasis. In more than 6,500 patient tumor samples across different cancer types, expression of UBA2 and EZH2 were positively correlated. Taken together, our findings suggest that inhibition of SUMOylation may serve as a potential strategy to address EZH2 overexpression and improve current cancer therapeutic approaches.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-20-1259