bims-proteo Biomed News
on Proteostasis
Issue of 2020–08–09
23 papers selected by
Eric Chevet, INSERM



  1. Mol Cell. 2020 Jul 24. pii: S1097-2765(20)30475-5. [Epub ahead of print]
      Misfolded proteins in the endoplasmic reticulum (ER) are degraded by ER-associated degradation (ERAD). Although ERAD components involved in degradation of luminal substrates are well characterized, much less is known about quality control of membrane proteins. Here, we analyzed the degradation pathways of two short-lived ER membrane model proteins in mammalian cells. Using a CRISPR-Cas9 genome-wide library screen, we identified an ERAD branch required for quality control of a subset of membrane proteins. Using biochemical and mass spectrometry approaches, we showed that this ERAD branch is defined by an ER membrane complex consisting of the ubiquitin ligase RNF185, the ubiquitin-like domain containing proteins TMUB1/2 and TMEM259/Membralin, a poorly characterized protein. This complex cooperates with cytosolic ubiquitin ligase UBE3C and p97 ATPase in degrading their membrane substrates. Our data reveal that ERAD branches have remarkable specificity for their membrane substrates, suggesting that multiple, perhaps combinatorial, determinants are involved in substrate selection.
    Keywords:  ER-associated degradation; ERAD; RNF185; TEB4/MARCH6; TMEM259; TMUB1/TMUB2; UBE3C; endoplasmic reticulum; membralin; protein quality control
    DOI:  https://doi.org/10.1016/j.molcel.2020.07.009
  2. Genetics. 2020 Aug;215(4): 889-901
      Sustaining a healthy proteome is a lifelong challenge for each individual cell of an organism. However, protein homeostasis or proteostasis is constantly jeopardized since damaged proteins accumulate under proteotoxic stress that originates from ever-changing metabolic, environmental, and pathological conditions. Proteostasis is achieved via a conserved network of quality control pathways that orchestrate the biogenesis of correctly folded proteins, prevent proteins from misfolding, and remove potentially harmful proteins by selective degradation. Nevertheless, the proteostasis network has a limited capacity and its collapse deteriorates cellular functionality and organismal viability, causing metabolic, oncological, or neurodegenerative disorders. While cell-autonomous quality control mechanisms have been described intensely, recent work on Caenorhabditis elegans has demonstrated the systemic coordination of proteostasis between distinct tissues of an organism. These findings indicate the existence of intricately balanced proteostasis networks important for integration and maintenance of the organismal proteome, opening a new door to define novel therapeutic targets for protein aggregation diseases. Here, we provide an overview of individual protein quality control pathways and the systemic coordination between central proteostatic nodes. We further provide insights into the dynamic regulation of cellular and organismal proteostasis mechanisms that integrate environmental and metabolic changes. The use of C. elegans as a model has pioneered our understanding of conserved quality control mechanisms important to safeguard the organismal proteome in health and disease.
    Keywords:  C. elegans; WormBook; autophagy; chaperone; intertissue signaling; proteasome; proteostasis; proteotoxicity; stress response; ubiquitin; unfolded protein response
    DOI:  https://doi.org/10.1534/genetics.120.301283
  3. Plant Direct. 2020 Jul;4(7): e00241
      The accumulation of misfolded proteins in the endoplasmic reticulum (ER) defines a condition called ER stress that induces the unfolded protein response (UPR). The UPR in mammalian cells attenuates protein synthesis initiation, which prevents the piling up of misfolded proteins in the ER. Mammalian cells rely on Protein Kinase RNA-Like Endoplasmic Reticulum Kinase (PERK) phosphorylation of eIF2α to arrest protein synthesis, however, plants do not have a PERK homolog, so the question is whether plants control translation in response to ER stress. We compared changes in RNA levels in the transcriptome to the RNA levels protected by ribosomes and found a decline in translation efficiency, including many UPR genes, in response to ER stress. The decline in translation efficiency is due to the fact that many mRNAs are not loaded onto polyribosomes (polysomes) in proportion to their increase in total RNA, instead some of the transcripts accumulate in stress granules (SGs). The RNAs that populate SGs are not derived from the disassembly of polysomes because protein synthesis remains steady during stress. Thus, the surge in transcription of UPR genes in response to ER stress is accompanied by the formation of SGs, and the sequestration of mRNAs in SGs may serve to temporarily relieve the translation load during ER stress.
    Keywords:  ER stress; protein synthesis; ribosome profiling; ribosome‐protected fragments; stress granules; translation efficiency
    DOI:  https://doi.org/10.1002/pld3.241
  4. Cancers (Basel). 2020 Jul 30. pii: E2117. [Epub ahead of print]12(8):
      Multiple myeloma (MM) is a hematological malignancy of terminally differentiated bone marrow (BM) resident B lymphocytes known as plasma cells (PC). PC that reside in the bone marrow include a distinct population of long-lived plasma cells (LLPC) that have the capacity to live for very long periods of time (decades in the human population). LLPC biology is critical for understanding MM disease induction and progression because MM shares many of the same extrinsic and intrinsic survival programs as LLPC. Extrinsic survival signals required for LLPC survival include soluble factors and cellular partners in the bone marrow microenvironment. Intrinsic programs that enhance cellular fidelity are also required for LLPC survival including increased autophagy, metabolic fitness, the unfolded protein response (UPR), and enhanced responsiveness to endoplasmic reticulum (ER) stress. Targeting LLPC cell survival mechanisms have led to standard of care treatments for MM including proteasome inhibition (Bortezomib), steroids (Dexamethasone), and immunomodulatory drugs (Lenalidomide). MM patients that relapse often do so by circumventing LLPC survival pathways targeted by treatment. Understanding the mechanisms by which LLPC are able to survive can allow us insight into the treatment of MM, which allows for the enhancement of therapeutic strategies in MM both at diagnosis and upon patient relapse.
    Keywords:  bone marrow microenvironment (BMME); long-lived plasma cell (LLPC); multiple myeloma (MM)
    DOI:  https://doi.org/10.3390/cancers12082117
  5. Elife. 2020 Aug 03. pii: e58828. [Epub ahead of print]9
      Translation of aberrant mRNAs induces ribosomal collisions, thereby triggering pathways for mRNA and nascent peptide degradation and ribosomal rescue. Here we use sucrose gradient fractionation combined with quantitative proteomics to systematically identify proteins associated with collided ribosomes. This approach identified Endothelial differentiation-related factor 1 (EDF1) as a novel protein recruited to collided ribosomes during translational distress. Cryo-electron microscopic analyses of EDF1 and its yeast homolog Mbf1 revealed a conserved 40S ribosomal subunit binding site at the mRNA entry channel near the collision interface. EDF1 recruits the translational repressors GIGYF2 and EIF4E2 to collided ribosomes to initiate a negative-feedback loop that prevents new ribosomes from translating defective mRNAs. Further, EDF1 regulates an immediate-early transcriptional response to ribosomal collisions. Our results uncover mechanisms through which EDF1 coordinates multiple responses of the ribosome-mediated quality control pathway and provide novel insights into the intersection of ribosome-mediated quality control with global transcriptional regulation.
    Keywords:  biochemistry; cell biology; chemical biology; human
    DOI:  https://doi.org/10.7554/eLife.58828
  6. Proc Natl Acad Sci U S A. 2020 Aug 03. pii: 202005052. [Epub ahead of print]
      KRAS, NRAS, and BRAF mutations which activate p44/42 mitogen-activated protein kinase (MAPK) signaling are found in half of myeloma patients and contribute to proteasome inhibitor (PI) resistance, but the underlying mechanisms are not fully understood. We established myeloma cell lines expressing wild-type (WT), constitutively active (CA) (G12V/G13D/Q61H), or dominant-negative (DN) (S17N)-KRAS and -NRAS, or BRAF-V600E. Cells expressing CA mutants showed increased proteasome maturation protein (POMP) and nuclear factor (erythroid-derived 2)-like 2 (NRF2) expression. This correlated with an increase in catalytically active proteasome subunit β (PSMB)-8, PSMB9, and PSMB10, which occurred in an ETS transcription factor-dependent manner. Proteasome chymotrypsin-like, trypsin-like, and caspase-like activities were increased, and this enhanced capacity reduced PI sensitivity, while DN-KRAS and DN-NRAS did the opposite. Pharmacologic RAF or MAPK kinase (MEK) inhibitors decreased proteasome activity, and sensitized myeloma cells to PIs. CA-KRAS, CA-NRAS, and CA-BRAF down-regulated expression of endoplasmic reticulum (ER) stress proteins, and reduced unfolded protein response activation, while DN mutations increased both. Finally, a bortezomib (BTZ)/MEK inhibitor combination showed enhanced activity in vivo specifically in CA-NRAS models. Taken together, the data support the hypothesis that activating MAPK pathway mutations enhance PI resistance by increasing proteasome capacity, and provide a rationale for targeting such patients with PI/RAF or PI/MEK inhibitor combinations. Moreover, they argue these mutations promote myeloma survival by reducing cellular stress, thereby distancing plasma cells from the apoptotic threshold, potentially explaining their high frequency in myeloma.
    Keywords:  BRAF; KRAS; NRAF; proteasome capacity; proteasome inhibitor sensitivity
    DOI:  https://doi.org/10.1073/pnas.2005052117
  7. Mol Cell. 2020 Jul 28. pii: S1097-2765(20)30477-9. [Epub ahead of print]
      During proteotoxic stress, bacteria maintain critical processes like DNA replication while removing misfolded proteins, which are degraded by the Lon protease. Here, we show that in Caulobacter crescentus Lon controls deoxyribonucleoside triphosphate (dNTP) pools during stress through degradation of the transcription factor CcrM. Elevated dNTP/nucleotide triphosphate (NTP) ratios in Δlon cells protects them from deletion of otherwise essential deoxythymidine triphosphate (dTTP)-producing pathways and shields them from hydroxyurea-induced loss of dNTPs. Increased dNTP production in Δlon results from higher expression of ribonucleotide reductase driven by increased CcrM. We show that misfolded proteins can stabilize CcrM by competing for limited protease and that Lon-dependent control of dNTPs improves fitness during protein misfolding conditions. We propose that linking dNTP production with availability of Lon allows Caulobacter to maintain replication capacity when misfolded protein burden increases, such as during rapid growth. Because Lon recognizes misfolded proteins regardless of the stress, this mechanism allows for response to a variety of unanticipated conditions.
    Keywords:  AAA+ protease; chaperone titration; proteotoxic stress; quality control; transposon sequencing
    DOI:  https://doi.org/10.1016/j.molcel.2020.07.011
  8. Exp Ther Med. 2020 Sep;20(3): 2639-2648
      Circadian rhythm serves an essential role in numerous physiological functions. Circadian oscillations are organized by circadian clock components at the molecular level. The precision of the circadian clock is controlled by transcriptional-translational negative feedback loops, as well as post-translational modifications of clock proteins, including ubiquitination; however, the influence of E3 ligases on clock protein ubiquitination requires further investigation. The results of co-immunoprecipitation and immunofluorescent localization, indicated that the endoplasmic reticulum transmembrane E3 ubiquitin ligase HRD1, encoded by the synoviolin 1 gene, interacted with brain and muscle ARNT-like 1 (BMAL1) and enhanced BMAL1 protein ubiquitination. In addition, the results of western blotting and reverse transcription-quantitative PCR suggested that HRD1 promoted K48-associated polyubiquitination of BMAL1 and thus mediated its degradation via the ubiquitin-proteasome system. Furthermore, gene knockdown and gene overexpression assays revealed that HRD1-dependent degradation of BMAL1 protein regulated the expression of BMAL1 target genes and the amplitude of circadian oscillations in mammalian cells. The findings of the current study indicate that HRD1 may influence the regulation of circadian rhythm via modulation of BMAL1 stability.
    Keywords:  BMAL1; E3 ubiquitin ligase; HRD1; circadian rhythm; ubiquitination
    DOI:  https://doi.org/10.3892/etm.2020.8988
  9. Cytoskeleton (Hoboken). 2020 Aug 03.
      Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are a large protein complex that is involved in the membrane fusion in vesicle trafficking, cell growth, cytokinesis, membrane repair, and synaptic transmission. As one of the SNARE proteins, SEC22B functions in membrane fusion of vesicle trafficking between the endoplasmic reticulum and the Golgi apparatus, antigen cross-presentation, secretory autophagy, and other biological processes. However, apart from not being SNARE proteins, there is little knowledge known about its two homologs (SEC22A and SEC22C). SEC22B alterations have been reported in many human diseases, especially, many mutations of SEC22B in human cancers have been detected. In this review, we will introduce the specific functions of SEC22B, and summarize the researches about SEC22B in human cancers and other diseases. These findings have laid the foundation for further studies to clarify the exact mechanism of SEC22B in the pathological process and to seek new therapeutic targets and better treatment strategies. This article is protected by copyright. All rights reserved.
    Keywords:  Golgi; SEC22B; SNARE; autophagy; cancer; endoplasmic reticulum; vesicle trafficking
    DOI:  https://doi.org/10.1002/cm.21628
  10. Front Microbiol. 2020 ;11 1656
      Enterovirus A71 (EV-A71) is one of the major etiologic agents causing hand, foot, and mouth disease (HFMD) in children and occasionally causes severe neurological diseases or even death. EV-A71 replicates rapidly in host cells. For a successful infection, viruses produce large quantities of viral proteins in a short period, which requires cellular chaperone proteins for viral protein folding and viral particle assembly. In this study, we explored the roles of the heat shock protein 70 (HSP70) chaperone subnetwork in the EV-A71 life cycle. Our results revealed that EV-A71 exploits multiple HSP70s at each step of the viral life cycle, i.e., viral entry, translation, replication, assembly and release, and that each HSP70 typically functions in several stages of the life cycle. For example, the HSP70 isoforms HSPA1, HSPA8, and HSPA9 are required for viral entry and the translational steps of the infection. HSPA8 and HSPA9 may facilitate folding and stabilize viral proteins 3D and 2C, respectively, thus contributing to the formation of a replication complex. HSPA8 and HSPA9 also promote viral particle assembly, whereas HSPA1 and HSPA8 are involved in viral particle release. Because of the importance of various HSP70s at distinct steps of the viral life cycle, an allosteric inhibitor, JG40, which targets all HSP70s, significantly blocks EV-A71 infection. JG40 also blocks the replication of several other enteroviruses, such as coxsackievirus (CV) A16, CVB1, CVB3, and echovirus 11. Thus, targeting HSP70s may be a means of providing broad-spectrum antiviral therapy.
    Keywords:  Enterovirus A71; chaperone; chaperone inhibitor; heat shock protein 70; viral life cycle
    DOI:  https://doi.org/10.3389/fmicb.2020.01656
  11. Sci Rep. 2020 Aug 04. 10(1): 13135
      Valosin-containing protein (VCP)/p97/Cdc48 is an AAA + ATPase associated with many ubiquitin-dependent cellular pathways that are central to protein quality control. VCP binds various cofactors, which determine pathway selectivity and substrate processing. Here, we used co-immunoprecipitation and mass spectrometry studies coupled to in silico analyses to identify the Leishmania infantum VCP (LiVCP) interactome and to predict molecular interactions between LiVCP and its major cofactors. Our data support a largely conserved VCP protein network in Leishmania including known but also novel interaction partners. Network proteomics analysis confirmed LiVCP-cofactor interactions and provided novel insights into cofactor-specific partners and the diversity of LiVCP complexes, including the well-characterized VCP-UFD1-NPL4 complex. Gene Ontology analysis coupled with digitonin fractionation and immunofluorescence studies support cofactor subcellular compartmentalization with either cytoplasmic or organellar or vacuolar localization. Furthermore, in silico models based on 3D homology modeling and protein-protein docking indicated that the conserved binding modules of LiVCP cofactors, except for NPL4, interact with specific binding sites in the hexameric LiVCP protein, similarly to their eukaryotic orthologs. Altogether, these results allowed us to build the first VCP protein interaction network in parasitic protozoa through the identification of known and novel interacting partners potentially associated with distinct VCP complexes.
    DOI:  https://doi.org/10.1038/s41598-020-70010-4
  12. Autophagy. 2020 Aug 07. 1-17
      Macroautophagy/autophagy plays a critical role in the pathogenesis of various human diseases including neurodegenerative disorders such as Parkinson disease (PD) and Huntington disease (HD). Chemical autophagy inducers are expected to serve as disease-modifying agents by eliminating cytotoxic/damaged proteins. Although many autophagy inducers have been identified, their precise molecular mechanisms are not fully understood because of the complicated crosstalk among signaling pathways. To address this issue, we performed several chemical genomic analyses enabling us to comprehend the dominancy among the autophagy-associated pathways followed by an aggresome-clearance assay. In a first step, more than 400 target-established small molecules were assessed for their ability to activate autophagic flux in neuronal PC12D cells, and we identified 39 compounds as autophagy inducers. We then profiled the autophagy inducers by testing their effect on the induction of autophagy by 200 well-established signal transduction modulators. Our principal component analysis (PCA) and clustering analysis using a dataset of "autophagy profiles" revealed that two Food and Drug Administration (FDA)-approved drugs, memantine and clemastine, activate endoplasmic reticulum (ER) stress responses, which could lead to autophagy induction. We also confirmed that SMK-17, a recently identified autophagy inducer, induced autophagy via the PRKC/PKC-TFEB pathway, as had been predicted from PCA. Finally, we showed that almost all of the autophagy inducers tested in this present work significantly enhanced the clearance of the protein aggregates observed in cellular models of PD and HD. These results, with the combined approach, suggested that autophagy-activating small molecules may improve proteinopathies by eliminating nonfunctional protein aggregates.
    ABBREVIATIONS: ADK: adenosine kinase; AMPK: AMP-activated protein kinase; ATF4: activating transcription factor 4; BECN1: beclin-1; DDIT3/CHOP: DNA damage inducible transcript 3; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2S1/eIF2α: eukaryotic translation initiation factor 2 subunit alpha; ER: endoplasmic reticulum; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FDA: Food and Drug Administration; GSH: glutathione; HD: Huntington disease; HSPA5/GRP78: heat shock protein family A (Hsp70) member 5; HTT: huntingtin; JAK: Janus kinase, MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MAP2K/MEK: mitogen-activated protein kinase kinase; MAP3K8/Tpl2: mitogen-activated protein kinase kinase kinase 8; MAPK: mitogen-activated protein kinase; MPP+: 1-methyl-4-phenylpyridinium; MTOR: mechanistic target of rapamycin kinase; MTORC: MTOR complex; NAC: N-acetylcysteine; NGF: nerve growth factor 2; NMDA: N-methyl-D-aspartate; PCA: principal component analysis; PD: Parkinson disease; PDA: pancreatic ductal adenocarcinoma; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PMA: phorbol 12-myristate 13-acetate; PRKC/PKC: protein kinase C; ROCK: Rho-associated coiled-coil protein kinase; RR: ribonucleotide reductase; SIGMAR1: sigma non-opioid intracellular receptor 1; SQSTM1/p62: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TFEB: Transcription factor EB; TGFB/TGF-β: Transforming growth factor beta; ULK1: unc-51 like autophagy activating kinase 1; XBP1: X-box binding protein 1.
    Keywords:  Aggrephagy; PRKC/PKC; TFEB; chemical genomics; neurodegenerative disease
    DOI:  https://doi.org/10.1080/15548627.2020.1794590
  13. Cell Death Differ. 2020 Aug 06.
      Lysosome is a crucial organelle in charge of degrading proteins and damaged organelles to maintain cellular homeostasis. Transcription factor EB (TFEB) is the master transcription factor regulating lysosomal biogenesis and autophagy. Under external stimuli such as starvation, dephosphorylated TFEB transports into the nucleus to specifically recognize and bind to the coordinated lysosomal expression and regulation (CLEAR) elements at the promotors of autophagy and lysosomal biogenesis-related genes. The function of TFEB in the nucleus is fine regulated but the molecular mechanism is not fully elucidated. In this study, we discovered that miR-30b-5p, a small RNA which is known to regulate a series of genes through posttranscriptional regulation in the cytoplasm, was translocated into the nucleus, bound to the CLEAR elements, suppressed the transcription of TFEB-dependent downstream genes, and further inhibited the lysosomal biogenesis and the autophagic flux; meanwhile, knocking out the endogenous miR-30b-5p by CRISPR/Cas9 technique significantly increased the TFEB-mediated transactivation, resulting in the increased expression of autophagy and lysosomal biogenesis-related genes. Overexpressing miR-30b-5p in mice livers showed a decrease in lysosomal biogenesis and autophagy. These in vitro and in vivo data indicate that miR-30b-5p may inhibit the TFEB-dependent transactivation by binding to the CLEAR elements in the nucleus to regulate the lysosomal biogenesis and autophagy. This novel mechanism of nuclear miRNA regulating gene transcription is conducive to further elucidating the roles of miRNAs in the lysosomal physiological functions and helps to understand the pathogenesis of abnormal autophagy-related diseases.
    DOI:  https://doi.org/10.1038/s41418-020-0602-4
  14. Br J Pharmacol. 2020 Aug 06.
      Amyotrophic Lateral Sclerosis (ALS) is an adult motoneuron disease coursing with progressive loss of upper and lower motoneurons, muscle paralysis and early death. ALS has a poor prognosis of 3-5 years after diagnosis since no effective cure is presently available. The etiopathogenic mechanisms involved in ALS include glutamate excitotoxicity, oxidative stress, protein misfolding, mitochondrial alterations, disrupted axonal transport and inflammation. Sigma non-opioid intracellular receptor 1 (Sigma-1R) is a protein expressed in motoneurons, mainly enriched in the endoplasmic reticulum (ER) at the mitochondria-associated ER membrane (MAM) or in close contact with cholinergic postsynaptic sites. MAMs are specific sites that allow the assembly of several complexes implicated in essential survival cell functions. Sigma-1R modulates essential mechanisms for motoneuron survival including excitotoxicity, calcium homeostasis, ER stress and mitochondrial dysfunction. This review updates Sigma-1R mechanisms and its alterations in ALS, focusing on MAM modulation, that may constitute a novel target for therapeutic strategies.
    Keywords:  amyotrophic lateral sclerosis; calcium homeostasis; motoneuron; neurodegenerative diseases; neuroprotection; sigma 1 receptor
    DOI:  https://doi.org/10.1111/bph.15224
  15. EMBO J. 2020 Aug 05. e104671
      Phosphorylation of the N-terminal domain of the huntingtin (HTT) protein has emerged as an important regulator of its localization, structure, aggregation, clearance and toxicity. However, validation of the effect of bona fide phosphorylation in vivo and assessing the therapeutic potential of targeting phosphorylation for the treatment of Huntington's disease (HD) require the identification of the enzymes that regulate HTT phosphorylation. Herein, we report the discovery and validation of a kinase, TANK-binding kinase 1 (TBK1), that efficiently phosphorylates full-length and N-terminal HTT fragments in vitro (at S13/S16), in cells (at S13) and in vivo. TBK1 expression in HD models (cells, primary neurons, and Caenorhabditis elegans) increases mutant HTT exon 1 phosphorylation and reduces its aggregation and cytotoxicity. We demonstrate that the TBK1-mediated neuroprotective effects are due to phosphorylation-dependent inhibition of mutant HTT exon 1 aggregation and an increase in autophagic clearance of mutant HTT. These findings suggest that upregulation and/or activation of TBK1 represents a viable strategy for the treatment of HD by simultaneously lowering mutant HTT levels and blocking its aggregation.
    Keywords:  Huntington's disease; TBK1; autophagy; huntingtin phosphorylation; reducing aggregation
    DOI:  https://doi.org/10.15252/embj.2020104671
  16. Proc Natl Acad Sci U S A. 2020 Aug 03. pii: 202004138. [Epub ahead of print]
      Although more than 75% of the proteome is composed of multidomain proteins, current knowledge of protein folding is based primarily on studies of isolated domains. In this work, we describe the folding mechanism of a multidomain tandem construct comprising two distinct covalently bound PDZ domains belonging to a protein called Whirlin, a scaffolding protein of the hearing apparatus. In particular, via a synergy between NMR and kinetic experiments, we demonstrate the presence of a misfolded intermediate that competes with productive folding. In agreement with the view that tandem domain swapping is a potential source of transient misfolding, we demonstrate that such a kinetic trap retains native-like functional activity, as shown by the preserved ability to bind its physiological ligand. Thus, despite the general knowledge that protein misfolding is intimately associated with dysfunction and diseases, we provide a direct example of a functionally competent misfolded state. Remarkably, a bioinformatics analysis of the amino acidic sequence of Whirlin from different species suggests that the tendency to perform tandem domain swapping between PDZ1 and PDZ2 is highly conserved, as demonstrated by their unexpectedly high sequence identity. On the basis of these observations, we discuss on a possible physiological role of such misfolded intermediate.
    Keywords:  folding; kinetics; misfolding
    DOI:  https://doi.org/10.1073/pnas.2004138117
  17. Cell Rep. 2020 Aug 04. pii: S2211-1247(20)30970-0. [Epub ahead of print]32(5): 107985
      PARP inhibitors (PARPi) cause synthetic lethality in BRCA-deficient tumors. Whether specific vulnerabilities to PARPi exist beyond BRCA mutations and related defects in homology-directed repair (HDR) is not well understood. Here, we identify the ubiquitin E3 ligase TRIP12 as negative regulator of PARPi sensitivity. We show that TRIP12 controls steady-state PARP1 levels and limits PARPi-induced cytotoxic PARP1 trapping. Upon loss of TRIP12, elevated PARPi-induced PARP1 trapping causes increased DNA replication stress, DNA damage, cell cycle arrest, and cell death. Mechanistically, we demonstrate that TRIP12 binds PARP1 via a central PAR-binding WWE domain and, using its carboxy-terminal HECT domain, catalyzes polyubiquitylation of PARP1, triggering proteasomal degradation and preventing supra-physiological PARP1 accumulation. Further, in cohorts of breast and ovarian cancer patients, PARP1 abundance is negatively correlated with TRIP12 expression. We thus propose TRIP12 as regulator of PARP1 stability and PARPi-induced PARP trapping, with potential implications for PARPi sensitivity and resistance.
    Keywords:  BRCA mutations; HECT-type ubiquitin ligases; PAR-targeted protein ubiquitylation; PARP inhibitors; cancer; endogenous DNA lesions; genome instability; personalized cancer therapy; replication stress; synthetic lethality
    DOI:  https://doi.org/10.1016/j.celrep.2020.107985
  18. J Biol Chem. 2020 Aug 06. pii: jbc.RA120.015288. [Epub ahead of print]
      Fanconi anemia (FA) is a chromosome instability syndrome of children caused by inherited mutations in one of FA genes, which together constitutes a DNA interstrand cross-link (ICL) repair, or the FA pathway. Monoubiquitination of Fanconi anemia group D2 protein (FANCD2) by the multi-subunit ubiquitin E3 ligase, the FA core complex, is an obligate step in activation of the FA pathway, and its activity needs to be tightly regulated. FAAP20 is a key structural component of the FA core complex, and regulated proteolysis of FAAP20 mediated by prolyl cis-trans isomerization and phosphorylation at a consensus phosphodegron motif is essential for preserving the integrity of the FA core complex, and thus FANCD2 monoubiquitination. However, how ubiquitin-dependent FAAP20 degradation is modulated to fine-tune FA pathway activation remains largely unknown. Here, we present evidence that FAAP20 is acetylated by the acetyltransferase p300/CBP on lysine 152, the key residue which when polyubiquitinated results in the degradation of FAAP20. Acetylation or mutation of the lysine residue stabilizes FAAP20 by preventing its ubiquitination, thereby protecting it from proteasome-dependent FAAP20 degradation. Consequently, disruption of the FAAP20 acetylation pathway impairs FANCD2 activation. Together, our study reveals a competition mechanism between ubiquitination and acetylation of a common lysine residue that controls FAAP20 stability and highlights a complex balancing between different posttranslational modifications as a way to refine the FA pathway signaling required for DNA ICL repair and genome stability.
    Keywords:  DNA repair; Fanconi anemia; acetylation; acetyltransferase; genome instability; post-translational modification (PTM); protein stability; proteolysis; the FA core complex; ubiquitylation (ubiquitination)
    DOI:  https://doi.org/10.1074/jbc.RA120.015288
  19. Elife. 2020 Aug 03. pii: e58246. [Epub ahead of print]9
      How cells adjust nutrient transport across their membranes is incompletely understood. Previously, we have shown that S. cerevisiae broadly re-configures the nutrient transporters at the plasma membrane in response to amino acid availability, through endocytosis of sugar- and amino acid transporters (AATs) (Müller et al., 2015). A genome-wide screen now revealed that the selective endocytosis of four AATs during starvation required the α-arrestin family protein Art2/Ecm21, an adaptor for the ubiquitin ligase Rsp5, and its induction through the general amino acid control pathway. Art2 uses a basic patch to recognize C-terminal acidic sorting motifs in AATs and thereby instructs Rsp5 to ubiquitinate proximal lysine residues. When amino acids are in excess, Rsp5 instead uses TORC1-activated Art1 to detect N-terminal acidic sorting motifs within the same AATs, which initiates exclusive substrate-induced endocytosis. Thus, amino acid excess or starvation activate complementary α-arrestin-Rsp5-complexes to control selective endocytosis and adapt nutrient acquisition.
    Keywords:  S. cerevisiae; cell biology
    DOI:  https://doi.org/10.7554/eLife.58246
  20. J Biol Chem. 2020 Aug 06. pii: jbc.RA120.014784. [Epub ahead of print]
      The membrane-bound, long form of MGAT4D, termed MGAT4D-L, inhibits MGAT1 activity in transfected cells and reduces the generation of complex N-glycans. MGAT1 is the GlcNAc-transferase that initiates complex and hybrid N-glycan synthesis. We show here that Drosophila MGAT1 was also inhibited by MGAT4D-L in S2 cells. In mammalian cells, expression of MGAT4D-L causes the substrate of MGAT1 (Man5GlcNAc2Asn) to accumulate on glycoproteins, a change that is detected by the lectin Galanthus nivalis agglutinin (GNA). Using GNA binding as an assay for the inhibition of MGAT1 in MGAT4D-L transfectants, we performed site-directed mutagenesis to determine requirements for MGAT1 inhibition. Deletion of 25 aa from the C-terminus inactivated MGAT4D-L, but deletion of 20 aa did not. Conversion of the five key amino acids (PSLFQ) to Ala, or deletion of PSLFQ in the context of full length MGAT4D-L, also inactivated MGAT1 inhibitory activity. Nevertheless, mutant, inactive MGAT4D-L interacted with MGAT1 in co-immunoprecipitation experiments. The PSLFQ sequence also occurs in MGAT4A and MGAT4B GlcNAc-transferases. However, neither inhibited MGAT1 in transfected CHO cells. MGAT4D-L inhibitory activity could be partially transferred by attaching PSLFQ or the 25 aa C-terminus of MGAT4D-L to the C-terminus of MGAT1. Mutation of each aa in PSLFQ to Ala identified both Leu and Phe as independently essential for MGAT4D-L activity. Thus, replacement of either Leu395 or Phe396 with Ala led to inactivation of MGAT4D-L inhibitory activity. These findings provide new insights into the mechanism of inhibition of MGAT1 by MGAT4D-L, and for the development of small molecule inhibitors of MGAT1.
    Keywords:  GNA; MGAT1; MGAT4D; N-glycans; flow cytometry; glycosylation inhibitor; glycosyltransferase; lectin; mutagenesis; mutational analysis
    DOI:  https://doi.org/10.1074/jbc.RA120.014784
  21. eNeuro. 2020 Aug 03. pii: ENEURO.0025-20.2020. [Epub ahead of print]
      Temperature is a physiological factor that affects neuronal growth and synaptic homeostasis at the invertebrate neuromuscular junctions (NMJs); however, whether temperature stress could also regulate the structure and function of the vertebrate NMJs remains unclear. In this study, we use Xenopus laevis primary cultures as a vertebrate model system for investigating the involvement of heat shock protein 90 (HSP90) family of stress proteins in NMJ development. Firstly, cold temperature treatment or HSP90 inhibition attenuates the formation of aneural acetylcholine receptor (AChR) clusters, but increases their stability after they are formed, in cultured muscles. HSP90 inhibition specifically affects the stability of aneural AChR clusters and their associated intracellular scaffolding protein rapsyn, instead of causing a global change in cell metabolism and protein expression in Xenopus muscle cultures. Upon synaptogenic stimulation, a specific HSP90 family member, glucose-regulated protein 94 (Grp94), modulates the phosphorylation and dynamic turnover of actin depolymerizing factor (ADF)/cofilin at aneural AChR clusters, leading to the recruitment of AChR molecules from aneural clusters to the assembly of agrin-induced postsynaptic specializations. Finally, postsynaptic Grp94 knockdown significantly inhibits nerve-induced AChR clustering and postsynaptic activity in nerve-muscle co-cultures as demonstrated by live-cell imaging and electrophysiological recording, respectively. Collectively, this study suggests that temperature-dependent alteration in Grp94 expression and activity inhibits the assembly of postsynaptic specializations through modulating ADF/cofilin phosphorylation and activity at aneural AChR clusters, which prevents AChR molecules from being recruited to the postsynaptic sites via actin-dependent vesicular trafficking, at developing vertebrate NMJs.SIGNIFICANCE STATEMENT HSP90 is one of the most studied and abundant molecular chaperones of eukaryotic cells that protect proteins from cellular stress. Our study provides the first evidence showing that temperature-dependent alteration in the expression and activity of a specific HSP90 family member Grp94 regulates the recruitment of aneural AChR clusters for the assembly of postsynaptic specializations through ADF/cofilin-mediated vesicular trafficking at developing vertebrate NMJs. Given the recent identification of Grp94 and other ER chaperones as potential biomarkers for diagnosis of myasthenia gravis, an autoimmune NMJ disease, results of this study not only enhance our understanding on the fundamental mechanisms underlying NMJ development, but also provide insights into the pathogenic mechanisms underlying ER stress response and NMJ disruption in neuromuscular diseases.
    Keywords:  ADF/cofilin; Acetylcholine receptor; Grp94; Heat shock protein; Neuromuscular junction; Temperature stress
    DOI:  https://doi.org/10.1523/ENEURO.0025-20.2020
  22. Oncogene. 2020 Aug 04.
      Non-small cell lung cancer (NSCLC) is the deadliest form of cancer worldwide, due in part to its proclivity to metastasize. Identifying novel drivers of invasion and metastasis holds therapeutic potential for the disease. We conducted a gain-of-function invasion screen, which identified two separate hits, IMPAD1 and KDELR2, as robust, independent drivers of lung cancer invasion and metastasis. Given that IMPAD1 and KDELR2 are known to be localized to the ER-Golgi pathway, we studied their common mechanism of driving in vitro invasion and in vivo metastasis and demonstrated that they enhance Golgi-mediated function and secretion. Therapeutically inhibiting matrix metalloproteases (MMPs) suppressed both IMPAD1- and KDELR2-mediated invasion. The hits from this unbiased screen and the mechanistic validation highlight Golgi function as one of the key cellular features altered during invasion and metastasis.
    DOI:  https://doi.org/10.1038/s41388-020-01410-z
  23. Nat Cell Biol. 2020 Aug;22(8): 973-985
      Autophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear translocation of TFEB. An mAtg8 partner of IRGM, GABARAP, interacted with TFEB. Deletion of all mAtg8s or GABARAPs affected the global transcriptional response to starvation and downregulated subsets of TFEB targets. IRGM and GABARAPs countered the action of mTOR as a negative regulator of TFEB. This was suppressed by constitutively active RagB, an activator of mTOR. Infection of macrophages with the membrane-permeabilizing microbe Mycobacterium tuberculosis or infection of target cells by HIV elicited TFEB activation in an IRGM-dependent manner. Thus, IRGM and its interactors mAtg8s close a loop between the autophagosomal pathway and the control of lysosomal biogenesis by TFEB, thus ensuring coordinated activation of the two systems that eventually merge during autophagy.
    DOI:  https://doi.org/10.1038/s41556-020-0549-1