Neurodegener Dis Manag. 2025 Dec 04. 1-15
Neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) share key pathological features, including oxidative stress, mitochondrial dysfunction, and impaired protein homeostasis, yet remain without effective disease-modifying therapies. Tetramethylpyrazine nitrone (TBN), a synthetic derivative of tetramethylpyrazine bearing a free radical-scavenging nitrone moiety, has emerged as a promising multi-target neuroprotective agent. This review synthesizes preclinical and clinical data supporting TBN's therapeutic potential in AD, PD, and ALS. In AD models, TBN reduces amyloid-β accumulation and tau hyperphosphorylation, enhances autophagic clearance, preserves synaptic integrity, and improves cognitive performance. In PD models, TBN confers dopaminergic neuroprotection, restores motor function, and promotes α-synuclein degradation, effects mediated largely through activation of the PGC-1α/Nrf2 pathway and augmentation of the ubiquitin-proteasome system (UPS). In ALS models, TBN mitigates motor neuron loss, improves motor performance, and extends survival, likely via the PGC-1α/Nrf2/HO-1 axis and enhanced autophagic activity. Phase I studies have established TBN's favorable oral and intravenous pharmacokinetics, effective blood - brain barrier penetration, and overall safety and tolerability in healthy volunteers. Owing to its multi-pathway mechanism, principally engaging antioxidant/mitochondrial pathways and proteostasis (autophagy/UPS), TBN represents a compelling candidate for continued clinical development, either as monotherapy or in combination with disease-specific interventions.
Keywords: PGC-1α/Nrf2 pathway; Parkinson’s disease; Tetramethylpyrazine nitrone; alzheimer’s disease; amyotrophic lateral sclerosis