bioRxiv. 2024 Nov 07. pii: 2024.11.07.621551. [Epub ahead of print]
Autophagic dysfunction is a hallmark of neurodegenerative disease, leaving neurons vulnerable to the accumulation of damaged organelles and proteins. However, the late onset of diseases suggests that compensatory quality control mechanisms may be engaged to delay the deleterious effects induced by compromised autophagy. Neurons expressing common familial Parkinson's disease (PD)-associated mutations in LRRK2 kinase exhibit defective autophagy. Here, we demonstrate that both primary murine neurons and human iPSC-derived neurons harboring pathogenic LRRK2 upregulate the secretion of extracellular vesicles. We used unbiased proteomics to characterize the secretome of LRRK2 G2019S neurons and found that autophagic cargos including mitochondrial proteins were enriched. Based on these observations, we hypothesized that autophagosomes are rerouted toward secretion when cell-autonomous degradation is compromised, likely to mediate clearance of undegraded cellular waste. Immunoblotting confirmed the release of autophagic cargos and immunocytochemistry demonstrated that secretory autophagy was upregulated in LRRK2 G2019S neurons. We also found that LRRK2 G2019S neurons upregulate the release of exosomes containing miRNAs. Live-cell imaging confirmed that this upregulation of exosomal release was dependent on hyperactive LRRK2 activity, while pharmacological experiments indicate that this release staves off apoptosis. Finally, we show that markers of both vesicle populations are upregulated in plasma from mice expressing pathogenic LRRK2. In sum, we find that neurons expressing pathogenic LRRK2 upregulate the compensatory release of secreted autophagosomes and exosomes, to mediate waste disposal and transcellular communication, respectively. We propose that this increased secretion contributes to the maintenance of cellular homeostasis, delaying neurodegenerative disease progression over the short term while potentially contributing to increased neuroinflammation over the longer term.
SIGNIFICANCE: A hallmark feature of many neurodegenerative diseases is autophagy dysfunction, resulting in the accumulation of damaged proteins and organelles that is detrimental to neuronal health. The late onset of neurodegenerative diseases, however, suggests alternative quality control mechanisms may delay neuronal degeneration. Here, we demonstrate that neurons expressing a Parkinson's Disease-causing mutation upregulate the release of two extracellular vesicle populations. First, we observe the increased expulsion of secreted autophagosomes to mediate cellular waste disposal. Second, we observe the increased release of exosomes, likely to facilitate transcellular communication. Thus, we propose that increases in secretory autophagy and exosome release are a homeostatic response in neurons undergoing chronic stress.