bims-proned Biomed News
on Proteostasis in neurodegeneration
Issue of 2024–06–23
eightteen papers selected by
Verena Kohler, Umeå University



  1. ACS Chem Neurosci. 2024 Jun 21.
      Parkinson's disease (PD) is the second most common age-related neurodegenerative disease in the world, and synuclein is closely related to the onset and progression of PD. Synuclein is considered a therapeutic target for PD. Recent studies have found that abnormal aggregation of α-synuclein (α-Syn) in the brains of PD patients leads to mitochondrial dysfunction and neuroinflammation. Research in the field of neuroscience has confirmed that β-synuclein (β-Syn) also plays a role in Parkinson's disease. However, there has been little research on the role mechanisms and interactions between β-Syn and α-Syn in PD. Therefore, the purpose of this study is to clarify the relationship between α-Syn, β-Syn, and PD and to explore the roles and interactions of β-Syn and α-Syn in PD.
    Keywords:  Parkinson’s disease; mitochondrial autophagy; neurodegenerative disease; protein aggregation; α-synuclein; β-synuclein
    DOI:  https://doi.org/10.1021/acschemneuro.4c00263
  2. Chemistry. 2024 Jun 18. e202400277
      Amyloid plaques are a major pathological hallmark involved in Alzheimer's disease and consist of deposits of the amyloid-β peptide (Aβ). The aggregation process of Aβ is highly complex, which leads to polymorphous aggregates with different structures. In addition to aberrant aggregation, Aβ oligomers can undergo liquid-liquid phase separation and form dynamic condensates. It has been hypothesized that these amyloid liquid droplets affect and modulate amyloid fibril formation. In this review, we briefly introduce the relationship between stress granules and amyloid protein aggregation that is associated with neurodegenerative diseases. Then we highlight the regulatory role of liquid-liquid phase separation in Aβ aggregation and discuss the potential relationship between Aβ phase transition and aggregation. Furthermore, we summarize the current structures of Aβ oligomers and amyloid fibrils, which have been determined using nuclear magnetic resonance and cryo-electron microscopy. The structural variations of Aβ aggregates provide an explanation for the different levels of toxicity, shed light on the aggregation mechanism and may pave the way towards structure-based drug design for both clinical diagnosis and treatment.
    Keywords:  Alzheimer's disease; amyloid-β peptide; liquid-liquid phase separation; protein aggregation; solid-state NMR
    DOI:  https://doi.org/10.1002/chem.202400277
  3. Protein Sci. 2024 Jul;33(7): e5078
      Alzheimer's disease is the fastest-growing neurodegenerative disease that affects over six million Americans. The abnormal aggregation of amyloid β peptide and Tau protein is the expected molecular cause of the loss of neurons in brains of AD patients. A growing body of evidence indicates that lipids can alter the aggregation rate of amyloid β peptide and modify the toxicity of amyloid β aggregates. However, the role of lipids in Tau aggregation remains unclear. In this study, we utilized a set of biophysical methods to determine the extent to which phospatidylserine (PS) altered the aggregation properties of Tau isoforms with one (1N4R) and two (2N4R) N terminal inserts that enhance the binding of Tau to tubulin. We found that the length and saturation of fatty acids (FAs) in PS altered the aggregation rate of 2N4R isoform, while no changes in the aggregation rate of 1N4R were observed. These results indicate that N terminal inserts play an important role in protein-lipid interactions. We also found that PS could change the toxicity of 1N4R and 2N4R Tau fibrils, as well as alter molecular mechanisms by which these aggregates exert cytotoxicity to neurons. Finally, we found that although Tau fibrils formed in the presence and absence of PS endocytosed by cells, only fibril species that were formed in the presence of PS exert strong impairment of the cell mitochondria.
    Keywords:  1N4R tau; 2N4R tau; AFM‐IR; fibrils; oligomers; phosphatidylserine; toxicity
    DOI:  https://doi.org/10.1002/pro.5078
  4. J Phys Chem Lett. 2024 Jun 17. 6560-6567
      Aggregation of human α-synuclein protein is regarded to be a key stage in the etiology of Parkinson's disease and numerous other neurodegenerative illnesses. Microplastics pollution can be a potential agent to promote various neurodegenerative disorders. In this study, we have employed various multispectroscopic analytical methods to investigate the binding interactions between polyethylene (PE-MPs), polyvinyl chloride (PVC-MPs), polystyrene (PS-MPs) microplastics, and human α-synuclein protein. Spectroscopic investigations using UV-vis absorption, circular dichroism, and Fourier transform infrared have indicated different alterations in α-synuclein protein's secondary structures induced by the formation of the α-synuclein protein-MP binding complex. This study suggests that PS-MPs are found to be the most effective microplastic that promote amyloidogenic oligomer emergence because of their tiny size (100 nm).
    DOI:  https://doi.org/10.1021/acs.jpclett.4c00731
  5. bioRxiv. 2024 Jun 03. pii: 2024.06.03.593639. [Epub ahead of print]
      RNA binding proteins have emerged as central players in the mechanisms of many neurodegenerative diseases. In particular, a proteinopathy of fu sed in s arcoma (FUS) is present in some instances of familial Amyotrophic lateral sclerosis (ALS) and about 10% of sporadic FTLD. Here we establish that focal injection of sonicated human FUS fibrils into brains of mice in which ALS-linked mutant or wild-type human FUS replaces endogenous mouse FUS is sufficient to induce focal cytoplasmic mislocalization and aggregation of mutant and wild-type FUS which with time spreads to distal regions of the brain. Human FUS fibril-induced FUS aggregation in the mouse brain of humanized FUS mice is accelerated by an ALS-causing FUS mutant relative to wild-type human FUS. Injection of sonicated human FUS fibrils does not induce FUS aggregation and subsequent spreading after injection into naïve mouse brains containing only mouse FUS, indicating a species barrier to human FUS aggregation and its prion-like spread. Fibril-induced human FUS aggregates recapitulate pathological features of FTLD including increased detergent insolubility of FUS and TAF15 and amyloid-like, cytoplasmic deposits of FUS that accumulate ubiquitin and p62, but not TDP-43. Finally, injection of sonicated FUS fibrils is shown to exacerbate age-dependent cognitive and behavioral deficits from mutant human FUS expression. Thus, focal seeded aggregation of FUS and further propagation through prion-like spread elicits FUS-proteinopathy and FTLD-like disease progression.
    DOI:  https://doi.org/10.1101/2024.06.03.593639
  6. J Membr Biol. 2024 Jun 18.
      Protein aggregation plays a crucial role in the development of several neurodegenerative diseases. It is important to understand the aggregation process for the detection of the onset of these diseases. Alzheimer's Disease (AD) is one of the most prevalent neurodegenerative diseases caused by the aggregation of Aβ-40 and Aβ-42 peptides. The smaller oligomers lead to the formation of protein plaque at the neural membranes leading to memory loss and other disorders. Interestingly, aggregation takes place at the neural membranes, therefore the membrane composition seems to play an important role in the aggregation process. Despite a large number of literatures on the effect of lipid composition on protein aggregation, there are very few concise reviews that highlight the role of membrane composition in protein aggregation. In this review, we have discussed the implication of membrane composition on the aggregation of amyloid beta peptide with a special emphasis on cholesterol. We have further discussed the role of the degree of unsaturation of fatty acids and the participation of apolipoprotein E4 (ApoE4) in the onset of AD.
    Keywords:  Aggregation; Amyloid peptides; Apolipoprotein E; Cholesterol; Fatty acids; Lipid composition
    DOI:  https://doi.org/10.1007/s00232-024-00314-3
  7. Acta Neuropathol. 2024 06 19. 147(1): 104
      TAR DNA-binding protein 43 (TDP-43) is an RNA binding protein found within ribonucleoprotein granules tethered to lysosomes via annexin A11. TDP-43 protein forms inclusions in many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) and limbic predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC). Annexin A11 is also known to form aggregates in ALS cases with pathogenic variants in ANXA11. Annexin A11 aggregation has not been described in sporadic ALS, FTLD-TDP or LATE-NC cases. To explore the relationship between TDP-43 and annexin A11, genetic analysis of 822 autopsy cases was performed to identify rare ANXA11 variants. In addition, an immunohistochemical study of 368 autopsy cases was performed to identify annexin A11 aggregates. Insoluble annexin A11 aggregates which colocalize with TDP-43 inclusions were present in all FTLD-TDP Type C cases. Annexin A11 inclusions were also seen in a small proportion (3-6%) of sporadic and genetic forms of FTLD-TDP types A and B, ALS, and LATE-NC. In addition, we confirm the comingling of annexin A11 and TDP-43 aggregates in an ALS case with the pathogenic ANXA11 p.G38R variant. Finally, we found abundant annexin A11 inclusions as the primary pathologic finding in a case of progressive supranuclear palsy-like frontotemporal dementia with prominent striatal vacuolization due to a novel variant, ANXA11 p.P75S. By immunoblot, FTLD-TDP with annexinopathy and ANXA11 variant cases show accumulation of insoluble ANXA11 including a truncated fragment. These results indicate that annexin A11 forms a diverse and heterogeneous range of aggregates in both sporadic and genetic forms of TDP-43 proteinopathies. In addition, the finding of a primary vacuolar annexinopathy due to ANXA11 p.P75S suggests that annexin A11 aggregation is sufficient to cause neurodegeneration.
    Keywords:  ALS; Annexin A11; FTLD–TDP; Neurodegenerative disease; TDP-43
    DOI:  https://doi.org/10.1007/s00401-024-02753-7
  8. J Neurol. 2024 Jun 13.
      Amyotrophic lateral sclerosis (ALS) is a fatal disease. As its pathological mechanisms are not well understood, there are no efficient therapeutics for it at present. While it is highly heterogenous both etiologically and clinically, it has a common salient hallmark, i.e., aberrant protein aggregation (APA). The upstream pathogenesis and the downstream effects of APA in ALS are sophisticated and the investigation of this pathology would be of consequence for understanding ALS. In this paper, the pathomechanism of APA in ALS and the candidate treatment strategies for it are discussed.
    Keywords:  Aberrant protein aggregation; Amyotrophic lateral sclerosis; FUS; Proteinopathy; SOD1; TDP-43
    DOI:  https://doi.org/10.1007/s00415-024-12485-z
  9. J Phys Chem Lett. 2024 Jun 20. 6685-6690
      Thioflavin T (ThT) informed microviscosity changes can be used to monitor protein aggregation. Steady-state, time-resolved and lasing spectroscopy were used to detect transient states in α-synuclein - a protein associated with Parkinson's disease. The major focus was on the nucleation phase, where conventional ThT fluorescence assay lacks appropriate sensitivity to detect early stage oligomers. Instead, lasing spectroscopy and lasing threshold parameters, in particular, were sensitive to detecting protein oligomers. Through lasing spectroscopy, a change in microviscosity correlating with the stages of protein aggregation was observed at two wavelengths 405 and 440 nm. The two wavelengths are associated with free dye molecules and β-sheet bound ThT molecules. This provides a perspective on elucidating the early formed protein aggregation, a critical aspect in understanding the pathogenesis of neurodegenerative diseases. The insights from the presented study shows the potential of using lasing spectroscopy as a sensitive tool in studying protein aggregation dynamics.
    DOI:  https://doi.org/10.1021/acs.jpclett.4c00699
  10. Neurobiol Dis. 2024 Jun 15. pii: S0969-9961(24)00168-2. [Epub ahead of print]199 106568
      Substantial work has been devoted to better understand the contribution of the myriad of genes that may underly the development of Parkinson's disease (PD) and their role in disease etiology. The small GTPase Ras-like without CAAX2 (RIT2) is one such genetic risk factor, with one single nucleotide polymorphism in the RIT2 locus, rs12456492, having been associated with PD risk in multiple populations. While RIT2 has previously been shown to influence signaling pathways, dopamine transporter trafficking, and LRRK2 activity, its cellular function remains unclear. In the current study, we have situated RIT2 to be upstream of various diverse processes associated with PD. In cellular models, we have shown that RIT2 is necessary for activity-dependent changes in the expression of genes related to the autophagy-lysosomal pathway (ALP) by regulating the nuclear translocation of MiT/TFE3-family transcription factors. RIT2 is also associated with lysosomes and can regulate autophagic flux and clearance by regulating lysosomal hydrolase expression and activity. Interestingly, upregulation of RIT2 can augment ALP flux and protect against α-synuclein aggregation in cortical neurons. Taken together, the present study suggests that RIT2 can regulates gene expression upstream of ALP function and that enhancing RIT2 activity may provide therapeutic benefit in PD.
    Keywords:  Autophagy-lysosomal pathway; CLEAR genes; Lysosomal hydrolase; Parkinson's disease; Proteostasis; Ras-like without CAAX 2; TFEB/TFE3; p38 MAPK; α-Synuclein
    DOI:  https://doi.org/10.1016/j.nbd.2024.106568
  11. Int J Mol Sci. 2024 May 30. pii: 6021. [Epub ahead of print]25(11):
      We present in this article the PACSAB server, which is designed to provide information about the structural ensemble and interactions of both stable and disordered proteins to researchers in the field of molecular biology. The use of this tool does not require any computational skills as the user just needs to upload the structure of the protein to be studied; the server runs a simulation with the PACSAB model, a highly accurate coarse-grained model that is much more efficient than standard molecular dynamics for the exploration of the conformational space of multiprotein systems. The trajectories generated by the simulations based on this model reveal the propensity of the protein under study for aggregation, identify the residues playing a central role in the aggregation process, and reproduce the whole conformational space of disordered proteins. All of this information is shown and can be downloaded from the web page.
    Keywords:  intrinsically disordered proteins; protein aggregation; protein association; structural ensemble
    DOI:  https://doi.org/10.3390/ijms25116021
  12. Nat Commun. 2024 Jun 19. 15(1): 5206
      Disrupted glucose metabolism and protein misfolding are key characteristics of age-related neurodegenerative disorders including Parkinson's disease, however their mechanistic linkage is largely unexplored. The hexosamine biosynthetic pathway utilizes glucose and uridine-5'-triphosphate to generate N-linked glycans required for protein folding in the endoplasmic reticulum. Here we find that Parkinson's patient midbrain cultures accumulate glucose and uridine-5'-triphosphate, while N-glycan synthesis rates are reduced. Impaired glucose flux occurred by selective reduction of the rate-limiting enzyme, GFPT2, through disrupted signaling between the unfolded protein response and the hexosamine pathway. Failure of the unfolded protein response and reduced N-glycosylation caused immature lysosomal hydrolases to misfold and accumulate, while accelerating glucose flux through the hexosamine pathway rescued hydrolase function and reduced pathological α-synuclein. Our data indicate that the hexosamine pathway integrates glucose metabolism with lysosomal activity, and its failure in Parkinson's disease occurs by uncoupling of the unfolded protein response-hexosamine pathway axis. These findings offer new methods to restore proteostasis by hexosamine pathway enhancement.
    DOI:  https://doi.org/10.1038/s41467-024-49256-3
  13. bioRxiv. 2024 Jun 06. pii: 2024.06.04.597496. [Epub ahead of print]
      Tau aggregation is a hallmark of several neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia. There are disease-causing variants of the tau-encoding gene, MAPT , and the presence of tau aggregates is highly correlated with disease progression. However, the molecular mechanisms linking pathological tau to neuronal dysfunction are not well understood due to our incomplete understanding of the normal functions of tau in development and aging and how these processes change in the context of causal disease variants of tau. To address these questions in an unbiased manner, we conducted multi-omic characterization of iPSC-derived neurons harboring the MAPT V337M mutation. RNA-seq and phosphoproteomics revealed that both V337M tau and tau knockdown consistently perturbed levels of transcripts and phosphorylation of proteins related to axonogenesis or axon morphology. Surprisingly, we found that neurons with V337M tau had much lower tau phosphorylation than neurons with WT tau. We conducted functional genomics screens to uncover regulators of tau phosphorylation in neurons and found that factors involved in axonogenesis modified tau phosphorylation in both MAPT WT and MAPT V337M neurons. Intriguingly, the p38 MAPK pathway specifically modified tau phosphorylation in MAPT V337M neurons. We propose that V337M tau might perturb axon morphology pathways and tau hypophosphorylation via a "loss of function" mechanism, which could contribute to previously reported cognitive changes in preclinical MAPT gene carriers.
    DOI:  https://doi.org/10.1101/2024.06.04.597496
  14. bioRxiv. 2024 Jun 08. pii: 2024.06.05.597615. [Epub ahead of print]
      Parkinson's disease (PD) and other α-synucleinopathies are characterized by the accumulation of α-synuclein (αS) pathology that can spread via the cell-to-cell transmission of αS aggregates. To better understand how various brain cells contribute to the spreading of αS pathology, we examined the metabolism of αS aggreges or pre-formed fibrils (PFFs) in neuronal and glial cells (microglia, astrocytes, and oligodendrocytes). In neurons, while the full-length αS rapidly disappeared following αS PFF uptake, truncated αS accumulated with a half-life of days rather than hours. Epitope mapping and fractionation studies indicate that αS PFF was truncated at the C-terminal region following uptake and remained insoluble/aggregated. In contrast, microglia and astrocytes rapidly metabolized αS PFF as the half-lives of αS PFF in these glial cells were <6 hours. Differential processing of αS by neurons was recapitulated in cell lines as differentiated CLU neuronal cell lines stably accumulate truncated αS while undifferentiated cells rapidly metabolize αS. Immunolocalization and subcellular fractionation studies show that internalized αS PFF is initially localized to endosomes followed by lysosomes. The lysosome is largely responsible for the degradation of internalized αS PFF as the inhibition of lysosomal function leads to the stabilization of αS in all cell types. Significantly, αS PFF causes lysosomal dysfunction in neurons. In summary, we show that neurons are inefficient in metabolizing internalized αS aggregates, partially because αS aggregates cause lysosomal dysfunction, potentially generating aggregation-prone truncated αS. In contrast, glial cells may protect neurons from αS aggregates by rapidly clearing αS aggregates.
    DOI:  https://doi.org/10.1101/2024.06.05.597615
  15. Int J Mol Sci. 2024 Jun 06. pii: 6258. [Epub ahead of print]25(11):
      TDP-43 forms aggregates in the neurons of patients with several neurodegenerative diseases. Human TDP-43 also aggregates and is toxic in yeast. Here, we used a yeast model to investigate (1) the nature of TDP-43 aggregates and (2) the mechanism of TDP-43 toxicity. Thioflavin T, which stains amyloid but not wild-type TDP-43 aggregates, also did not stain mutant TDP-43 aggregates made from TDP-43 with intragenic mutations that increase or decrease its toxicity. However, 1,6-hexanediol, which dissolves liquid droplets, dissolved wild-type or mutant TDP-43 aggregates. To investigate the mechanism of TDP-43 toxicity, the effects of TDP-43 mutations on the autophagy of the GFP-ATG8 reporter were examined. Mutations in TDP-43 that enhance its toxicity, but not mutations that reduce its toxicity, caused a larger reduction in autophagy. TOROID formation, which enhances autophagy, was scored as GFP-TOR1 aggregation. TDP-43 inhibited TOROID formation. TORC1 bound to both toxic and non-toxic TDP-43, and to TDP-43, with reduced toxicity due to pbp1Δ. However, extragenic modifiers and TDP-43 mutants that reduced TDP-43 toxicity, but not TDP-43 mutants that enhanced toxicity, restored TOROID formation. This is consistent with the hypothesis that TDP-43 is toxic in yeast because it reduces TOROID formation, causing the inhibition of autophagy. Whether TDP-43 exerts a similar effect in higher cells remains to be determined.
    Keywords:  PBP1; TDP-43; TIP41; TOR1; TORC1; TOROID; autophagy; yeast
    DOI:  https://doi.org/10.3390/ijms25116258
  16. Angew Chem Int Ed Engl. 2024 Jun 16. e202408163
      While protein aggregation is a hallmark of many neurodegenerative diseases, acquiring structural information on protein aggregates inside live cells remains challenging. Traditional microscopy does not provide structural information on protein systems. Routinely used fluorescent protein tags, such as Green Fluorescent Protein (GFP), might perturb native structures. Here, we report a counter-propagating mid-infrared photothermal imaging approach enabling mapping of secondary structure of protein aggregates in live cells modeling Huntington's disease. By comparing mid-infrared photothermal spectra of label-free and GFP-tagged huntingtin inclusions, we demonstrate that GFP fusions indeed perturb the secondary structure of aggregates. By implementing spectra with small spatial step for dissecting spectral features within sub-micrometer distances, we reveal that huntingtin inclusions partition into a β-sheet-rich core and a ɑ-helix-rich shell. We further demonstrate that this structural partition exists only in cells with the [RNQ+] prion state, while [rnq-] cells only carry smaller β-rich non-toxic aggregates. Collectively, our methodology has the potential to unveil detailed structural information on protein assemblies in live cells, enabling high-throughput structural screenings of macromolecular assemblies.
    Keywords:  Huntington's Disease; Protein Aggregation; Secondary Structure; Synthetic Biology; Vibrational Spectroscopy
    DOI:  https://doi.org/10.1002/anie.202408163
  17. Autophagy. 2024 Jun 13.
      Protein aggregation caused by the disruption of proteostasis will lead to cellular cytotoxicity and even cell death, which is implicated in multiple neurodegenerative diseases. The elimination of aggregated proteins is mediated by selective macroautophagy receptors, which is termed aggrephagy. However, the identity and redundancy of aggrephagy receptors in recognizing substrates remain largely unexplored. Here, we find that CCDC50, a highly expressed autophagy receptor in brain, is recruited to proteotoxic stresses-induced polyubiquitinated protein aggregates and ectopically expressed aggregation-prone proteins. CCDC50 recognizes and further clears these cytotoxic aggregates through autophagy. The ectopic expression of CCDC50 increases the tolerance to stress-induced proteotoxicity and hence improved cell survival in neuron cells, whereas CCDC50 deficiency caused accumulation of lipid deposits and polyubiquitinated protein conjugates in the brain of one-year-old mice. Our study illustrates how aggrephagy receptor CCDC50 combats proteotoxic stress for the benefit of neuronal cell survival, thus suggesting a protective role in neurotoxic proteinopathy.
    Keywords:  Aggrephagy receptor; CCDC50; neurodegenerative diseases; protein aggregation; proteostasis
    DOI:  https://doi.org/10.1080/15548627.2024.2367183
  18. Molecules. 2024 Jun 02. pii: 2616. [Epub ahead of print]29(11):
      GSK-3β, IKK-β, and ROCK-1 kinases are implicated in the pathomechanism of Alzheimer's disease due to their involvement in the misfolding and accumulation of amyloid β (Aβ) and tau proteins, as well as inflammatory processes. Among these kinases, GSK-3β plays the most crucial role. In this study, we present compound 62, a novel, remarkably potent, competitive GSK-3β inhibitor (IC50 = 8 nM, Ki = 2 nM) that also exhibits additional ROCK-1 inhibitory activity (IC50 = 2.3 µM) and demonstrates anti-inflammatory and neuroprotective properties. Compound 62 effectively suppresses the production of nitric oxide (NO) and pro-inflammatory cytokines in the lipopolysaccharide-induced model of inflammation in the microglial BV-2 cell line. Furthermore, it shows neuroprotective effects in an okadaic-acid-induced tau hyperphosphorylation cell model of neurodegeneration. The compound also demonstrates the potential for further development, characterized by its chemical and metabolic stability in mouse microsomes and fair solubility.
    Keywords:  GSK-3β; IKK-β; ROCK-1; anti-inflammatory activity; neuroprotective properties Alzheimer’s disease
    DOI:  https://doi.org/10.3390/molecules29112616