bims-proned Biomed News
on Proteostasis in neurodegeneration
Issue of 2024‒03‒03
seven papers selected by
Verena Kohler, Umeå University



  1. Exp Brain Res. 2024 Mar 02.
      The gradual nature of age-related neurodegeneration causes Parkinson's disease (PD) and impairs movement, memory, intellectual ability, and social interaction. One of the most prevalent neurodegenerative conditions affecting the central nervous system (CNS) among the elderly is PD. PD affects both motor and cognitive functions. Degeneration of dopaminergic (DA) neurons and buildup of the protein α-synuclein (α-Syn) in the substantia nigra pars compacta (SNpc) are two major causes of this disorder. Both UPS and ALS systems serve to eliminate α-Syn. Autophagy and UPS deficits, shortened life duration, and lipofuscin buildup accelerate PD. This sickness has no cure. Innovative therapies are halting PD progression. Bioactive phytochemicals may provide older individuals with a natural substitute to help delay the onset of neurodegenerative illnesses. This study examines whether nicotine helps transgenic C. elegans PD models. According to numerous studies, nicotine enhances synaptic plasticity and dopaminergic neuronal survival. Upgrades UPS pathways, increases autophagy, and decreases oxidative stress and mitochondrial dysfunction. At 100, 150, and 200 µM nicotine levels, worms showed reduced α-Syn aggregation, repaired DA neurotoxicity after 6-OHDA intoxication, increased lifetime, and reduced lipofuscin accumulation. Furthermore, nicotine triggered autophagy and UPS. We revealed nicotine's potential as a UPS and autophagy activator to prevent PD and other neurodegenerative diseases.
    Keywords:   Caenorhabditis elegans ; Autophagy; Lgg-1; Longevity; Nicotine; Parkinson’s disease; Proteasome (UPS); α-Synuclein
    DOI:  https://doi.org/10.1007/s00221-023-06765-9
  2. Neuroscientist. 2024 Feb 29. 10738584241232963
      Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by the loss of dopaminergic neurons in the midbrain. A hallmark of both familial and sporadic PD is the presence of Lewy body inclusions composed mainly of aggregated α-synuclein (α-syn), a presynaptic protein encoded by the SNCA gene. The mechanisms driving the relationship between α-syn accumulation and neurodegeneration are not completely understood, although recent evidence indicates that multiple branches of the proteostasis pathway are simultaneously perturbed when α-syn aberrantly accumulates within neurons. Studies from patient-derived midbrain cultures that develop α-syn pathology through the endogenous expression of PD-causing mutations show that proteostasis disruption occurs at the level of synthesis/folding in the endoplasmic reticulum (ER), downstream ER-Golgi trafficking, and autophagic-lysosomal clearance. Here, we review the fundamentals of protein transport, highlighting the specific steps where α-syn accumulation may intervene and the downstream effects on proteostasis. Current therapeutic efforts are focused on targeting single pathways or proteins, but the multifaceted pathogenic role of α-syn throughout the proteostasis pathway suggests that manipulating several targets simultaneously will provide more effective disease-modifying therapies for PD and other synucleinopathies.
    Keywords:  Parkinson’s disease; autophagy; protein trafficking; synuclein
    DOI:  https://doi.org/10.1177/10738584241232963
  3. Aging Cell. 2024 Feb 28. e14128
      Parkinson's disease (PD) is characterized by aggregation of α-synuclein (α-syn) into protein inclusions in degenerating brains. Increasing amounts of aggregated α-syn species indicate significant perturbation of cellular proteostasis. Altered proteostasis depends on α-syn protein levels and the impact of α-syn on other components of the proteostasis network. Budding yeast Saccharomyces cerevisiae was used as eukaryotic reference organism to study the consequences of α-syn expression on protein dynamics. To address this, we investigated the impact of overexpression of α-syn and S129A variant on the abundance and stability of most yeast proteins using a genome-wide yeast library and a tandem fluorescent protein timer (tFT) reporter as a measure for protein stability. This revealed that the stability of in total 377 cellular proteins was altered by α-syn expression, and that the impact on protein stability was significantly enhanced by phosphorylation at Ser129 (pS129). The proteasome assembly chaperone Rpn14 was identified as one of the top candidates for increased protein stability by expression of pS129 α-syn. Elevated levels of Rpn14 enhanced the growth inhibition by α-syn and the accumulation of ubiquitin conjugates in the cell. We found that Rpn14 interacts physically with α-syn and stabilizes pS129 α-syn. The expression of α-syn along with elevated levels of Rpn14 or its human counterpart PAAF1 reduced the proteasome activity in yeast and in human cells, supporting that pS129 α-syn negatively affects the 26S proteasome through Rpn14. This comprehensive study into the alternations of protein homeostasis highlights the critical role of the Rpn14/PAAF1 in α-syn-mediated proteasome dysfunction.
    Keywords:  26S proteasome; Parkinson's disease; posttranslational modifications; proteasomal chaperone; protein homeostasis; tandem fluorescent protein timer; yeast; α-Synuclein
    DOI:  https://doi.org/10.1111/acel.14128
  4. Cell Rep. 2024 Feb 26. pii: S2211-1247(24)00193-1. [Epub ahead of print]43(3): 113865
      Microbial metabolites that can modulate neurodegeneration are promising therapeutic targets. Here, we found that the short-chain fatty acid propionate protects against α-synuclein-induced neuronal death and locomotion defects in a Caenorhabditis elegans model of Parkinson's disease (PD) through bidirectional regulation between the intestine and neurons. Both depletion of dietary vitamin B12, which induces propionate breakdown, and propionate supplementation suppress neurodegeneration and reverse PD-associated transcriptomic aberrations. Neuronal α-synuclein aggregation induces intestinal mitochondrial unfolded protein response (mitoUPR), which leads to reduced propionate levels that trigger transcriptional reprogramming in the intestine and cause defects in energy production. Weakened intestinal metabolism exacerbates neurodegeneration through interorgan signaling. Genetically enhancing propionate production or overexpressing metabolic regulators downstream of propionate in the intestine rescues neurodegeneration, which then relieves mitoUPR. Importantly, propionate supplementation suppresses neurodegeneration without reducing α-synuclein aggregation, demonstrating metabolic rescue of neuronal proteotoxicity downstream of protein aggregates. Our study highlights the involvement of small metabolites in the gut-brain interaction in neurodegenerative diseases.
    Keywords:  C. elegans; CP: Metabolism; CP: Neuroscience; Parkinson's disease; SCFAs; energy production; gut-brain axis; mitoUPR; mitochondrial unfolded protein response; neurodegeneration; propionate; short-chain fatty acids; vitamin B12; α-synuclein
    DOI:  https://doi.org/10.1016/j.celrep.2024.113865
  5. ACS Chem Neurosci. 2024 Feb 28.
      Oligomeric assemblies of the amyloid β peptide (Aβ) have been investigated for over two decades as possible neurotoxic agents in Alzheimer's disease. However, due to their heterogeneous and transient nature, it is not yet fully established which of the structural features of these oligomers may generate cellular damage. Here, we study distinct oligomer species formed by Aβ40 (the 40-residue form of Aβ) in the presence of four different metal ions (Al3+, Cu2+, Fe2+, and Zn2+) and show that they differ in their structure and toxicity in human neuroblastoma cells. We then describe a correlation between the size of the oligomers and their neurotoxic activity, which provides a type of structure-toxicity relationship for these Aβ40 oligomer species. These results provide insight into the possible role of metal ions in Alzheimer's disease by the stabilization of Aβ oligomers.
    Keywords:  Alzheimer’s disease; amyloid-β peptide; metal ions; protein aggregation; protein misfolding; protein oligomers
    DOI:  https://doi.org/10.1021/acschemneuro.3c00718
  6. Eur J Med Chem. 2024 Feb 23. pii: S0223-5234(24)00131-4. [Epub ahead of print]268 116251
      Parkinson's disease (PD) is characterized by the progressive death of dopamine (DA) neurons and the pathological accumulation of α-synuclein (α-syn) fibrils. In our previous study, simulated PHB2 phosphorylation was utilized to clarify the regulatory role of c-Abl in PHB2-mediated mitophagy in PD models. In this investigation, we employed an independently patented PHB2Y121 phosphorylated antibody in the PD model to further verify that the c-Abl inhibitor STI571 can impede PHB2Y121 phosphorylation, decrease the formation of α-Syn polymers, and improve autophagic levels. The specific involvement of Nur77 in PD pathology has remained elusive. We also investigate the contribution of Nur77, a nuclear transcription factor, to α-syn and mitophagy in PD. Our findings demonstrate that under α-syn, Nur77 translocates from the cytoplasm to the mitochondria, improving PHB-mediated mitophagy by regulating c-Abl phosphorylation. Moreover, Nur77 overexpression alleviates the expression level of pS129-α-syn and the loss of DA neurons in α-syn PFF mice, potentially associated with the p-c-Abl/p-PHB2 Y121 axis. This study provides initial in vivo and in vitro evidence that Nur77 protects PD DA neurons by modulating the p-c-Abl/p-PHB2 Y121 axis, and STI571 holds promise as a treatment for PD.
    Keywords:  Mitophagy; Nur77; PHB2; Parkinson's disease; STI571; c-Abl; α-synuclein
    DOI:  https://doi.org/10.1016/j.ejmech.2024.116251
  7. J Integr Neurosci. 2024 Feb 22. 23(2): 44
      BACKGROUND: Recently, the hypothesis that pathological α-Synuclein propagates from the gut to the brain has gained attention. Although results from animal studies support this hypothesis, the specific mechanism remains unclear. This study focused on the intestinal fatty acid-binding protein (FABP2), which is one of the subtypes of fatty acid binding proteins localizing in the gut, with the hypothesis that FABP2 is involved in the gut-to-brain propagation of α-synuclein. The aim of this study was to clarify the pathological significance of FABP2 in the pathogenesis and progression of synucleinopathy.METHODS: We examined the relationship between FABP2 and α-Synuclein in the uptake of α-Synuclein into enteric neurons using primary cultured neurons derived from mouse small intestinal myenteric plexus. We also quantified disease-related protein concentrations in the plasma of patients with synucleinopathy and related diseases, and analyzed the relationship between plasma FABP2 level and progression of the disease.
    RESULTS: Experiments on α-Synuclein uptake in primary cultured enteric neurons showed that following uptake, α-Synuclein was concentrated in areas where FABP2 was localized. Moreover, analysis of the plasma protein levels of patients with Parkinson's disease revealed that the plasma FABP2 and α-Synuclein levels fluctuate with disease duration. The FABP2/α-Synuclein ratio fluctuated more markedly than either FABP2 or α-Synuclein alone, depending on the duration of disease, indicating a higher discriminant ability of early Parkinson's disease patients from healthy patients.
    CONCLUSIONS: These results suggest that FABP2 potentially contributes to the pathogenesis and progression of α-synucleinopathies. Thus, FABP2 is an important molecule that has the potential to elucidate the consistent mechanisms that lead from the prodromal phase to the onset and subsequent progression of synucleinopathies.
    Keywords:  FABP2; Parkinson’s disease; blood biomarkers; enteric nerves system; primary culture; synucleinopathy; α-Synuclein
    DOI:  https://doi.org/10.31083/j.jin2302044